granted

A Texas organization has doled out millions to Houston cancer-fighting professionals

Texas doctors and researchers received millions for their transformational work in cancer prevention and treatment. Getty Images

Researchers at medical institutions across the state have something to celebrate. The Cancer Prevention and Research Institute of Texas has made 71 grants this week to cancer-fighting organizations that total a near $136 million.

"CPRIT's priorities of pediatric cancer research and cancers of significance to Texans highlight this large slate of awards," says Wayne Roberts, CPRIT CEO, in a release. "Investments are made across the cancer research and prevention continuum in Texas unlike any other state in the country."

New to the awards this time around is the Collaborative Action Program for Liver Cancer, which has been claimed by Baylor College of Medicine's Hashem B. El-Serag.

"Texas has the highest incidence rates of hepatocellular cancer in the nation," El-Serag says in a release from BCM. "Our CPRIT funded Center will house infrastructure to support and enhance research collaborations among liver cancer researchers; to educate providers, researchers and the general public on best practices and opportunities to reduce the burden of liver cancer; and to engage private and public entities in policy initiatives."

Houston organizations also received recruitment awards, which reward Texas organizations for bringing in great minds from across the world. According to the release, CPRIT has brought in a total of 181 scholars and 13 companies to the Lone Star State.

Of the 71 grants, 58 represent academic research, 10 prevention, and three product development research. Here are the ones awarded to Houston organizations.

The University of Texas MD Anderson Cancer Center

  • $900,000 granted for Shao-Cung Sun's research in regulation of CD8 T cell responses in antitumor immunity (Individual Investigator Research Award)
  • $897,483 granted for Alemayehu A. Gorfe's research in characterization and optimization of novel allosteric KRAS inhibitors (Individual Investigator Research Award)
  • $3 million granted for Hashem B. El-Serag's research at The Texas Collaborative Center for Hepatocellular Cancer (Collaborative Action Program to Reduce Liver Cancer Mortality in Texas: Collaborative Action Center Award)
  • $2.46 million to Jessica Hwang for patient-centered liver cancer prevention in the Houston community (Collaborative Action Program to Reduce Liver Cancer Mortality in Texas: Investigator-Initiated Research Awards)
  • $3.51 million for Kevin McBride's Recombinant Antibody Production Core at Science Park
  • $199,804 granted for Andrea Viale's epithelial memory of resolved inflammation as a driver of pancreatic cancer progression (High Impact High Risk Award)
  • $6 million for the recruitment of Christopher Flowers, M.D. (Recruitment of Established Investigator Awards)
  • $2 million for the recruitment of Kevin Nead, MD, MPhil (Recruitment of First-Time, Tenure-Track Faculty Members Awards)
  • $2 million for the recruitment of Alison Taylor, PhD (Recruitment of First-Time, Tenure-Track Faculty Members Awards)
  • $2 million for the recruitment of Mackenzie Wehner, MD, MPhil (Recruitment of First-Time, Tenure-Track Faculty Members Awards)

Baylor College of Medicine

  • $5.38 million granted for Steven J. Ludtke's new capabilities for cancer research in the TMC CryoEM Cores (Core Facility Support Awards)
  • $1.35 million granted for Bryan M. Burt's novel endoscope-cleaning port for minimally invasive cancer surgery (Early Translational Research Awards)
  • $199,500 granted for Yohannes T. Ghebre's Topical Esomeprazole for Radiation-induced Dermatitis (High Impact High Risk Award)
  • $199,920 granted for Robin Parihar's targeting of cancer associated fibroblasts with anti-IL-11-secreting CAR T cells (High Impact High Risk Award)
  • $2 million for the recruitment of Umesh Jadhav, PhD (Recruitment of First-Time, Tenure-Track Faculty Members Awards)
  • $2 million for the recruitment of Stanley Lee, PhD (Recruitment of First-Time, Tenure-Track Faculty Members Awards)
  • $2 million for the recruitment of Ang Li, MD (Recruitment of First-Time, Tenure-Track Faculty Members Awards)
  • $1.29 million for Jane R. Montealegre's expansion of "a Community Network for Cancer Prevention to Increase HPV Vaccine Uptake and Tobacco Prevention in a Medically Underserved Pediatric Population"

Texas Medical Center

  • $5.44 million granted for William McKeon's Business-Driven Accelerator for Cancer Therapeutics (Core Facility Support Awards)

The University of Texas Health Science Center at Houston

  • $5.95 million granted for Zhiqiang An's Advanced Cancer Antibody Drug Modalities Core Facility (Core Facility Support Awards)
  • $2 million granted for Qingyun Liu's discovery and development of novel peptibody-drug conjugate for treating cancers of the digestive system (Early Translational Research Awards)
  • $199,998 granted for Leng Han's expression landscape and biomedical significance of transfer RNAs in cancer (High Impact High Risk Award)
  • $2 million for Lara S. Savas' Salud en Mis Manos that delivers "Evidence-Based Breast & Cervical Cancer Prevention Services to Latinas in Underserved Texas South and Gulf Coast Communities"

The University of Texas Medical Branch at Galveston

  • $3.55 million granted for William K. Russell's A Targeted Proteomics and Metabolomics Mass Spectrometry Core Facility at the University of Texas Medical Branch at Galveston (Core Facility Support Awards)
  • $199,996 granted for Brendan Prideaux's novel cellular-level imaging approach to assess payload drug distribution in tumors following administration of targeted drug delivery systems (High Impact High Risk Award)
  • $200,000 granted for Casey W. Wright's targeting ARNT and RBFOX2 alternative splicing as a novel treatment modality in lymphoid malignancies (High Impact High Risk Award)

The Methodist Hospital Research Institute

  • $200,000 granted for Robert Rostomily's development of a mini-pig glioma model and validation of human clinical relevance (High Impact High Risk Award)

Texas Southern University

  • $200,000 for Song Gao's alleviating SN-38-induced late-onset diarrhea by preserving local UGTs in the colon (High Impact High Risk Award)

University of Houston

  • $200,000 granted for Sergey S. Shevkoplyas' Novel High-Throughput Microfluidic Device for Isolating T-cells Directly from Whole Blood to Simplify Manufacturing of Cellular Therapies (High Impact High Risk Award)

Rice University

  • $2 million for the recruitment of Jiaozhi (George) Lu, PhD (Recruitment of First-Time, Tenure-Track Faculty Members Awards)
  • $1.67 million for the recruitment of Vicky Yao, PhD (Recruitment of First-Time, Tenure-Track Faculty Members Awards)

The Rose

  • $2 million for Bernice Joseph's Empower Her To Care Expansion

Legacy Community Health Services

  • $999,276 for Charlene Flash's "Increasing Breast and Colorectal Cancer Screening Rates for the Medically Underserved using Population Health Strategies at a Multi-County FQHC"

Trending News

 
 

Promoted

A research team housed out of the newly launched Rice Biotech Launch Pad received funding to scale tech that could slash cancer deaths in half. Photo via Rice University

A research funding agency has deployed capital into a team at Rice University that's working to develop a technology that could cut cancer-related deaths in half.

Rice researchers received $45 million from the National Institutes of Health's Advanced Research Projects Agency for Health, or ARPA-H, to scale up development of a sense-and-respond implant technology. Rice bioengineer Omid Veiseh leads the team developing the technology as principal investigator.

“Instead of tethering patients to hospital beds, IV bags and external monitors, we’ll use a minimally invasive procedure to implant a small device that continuously monitors their cancer and adjusts their immunotherapy dose in real time,” he says in a news release. “This kind of ‘closed-loop therapy’ has been used for managing diabetes, where you have a glucose monitor that continuously talks to an insulin pump. But for cancer immunotherapy, it’s revolutionary.”

Joining Veiseh on the 19-person research project named THOR, which stands for “targeted hybrid oncotherapeutic regulation,” is Amir Jazaeri, co-PI and professor of gynecologic oncology at the University of Texas MD Anderson Cancer Center. The device they are developing is called HAMMR, or hybrid advanced molecular manufacturing regulator.

“Cancer cells are continually evolving and adapting to therapy. However, currently available diagnostic tools, including radiologic tests, blood assays and biopsies, provide very infrequent and limited snapshots of this dynamic process," Jazaeri adds. "As a result, today’s therapies treat cancer as if it were a static disease. We believe THOR could transform the status quo by providing real-time data from the tumor environment that can in turn guide more effective and tumor-informed novel therapies.”

With a national team of engineers, physicians, and experts across synthetic biology, materials science, immunology, oncology, and more, the team will receive its funding through the Rice Biotech Launch Pad, a newly launched initiative led by Veiseh that exists to help life-saving medical innovation scale quickly.

"Rice is proud to be the recipient of the second major funding award from the ARPA-H, a new funding agency established last year to support research that catalyzes health breakthroughs," Rice President Reginald DesRoches says. "The research Rice bioengineer Omid Veiseh is doing in leading this team is truly groundbreaking and could potentially save hundreds of thousands of lives each year. This is the type of research that makes a significant impact on the world.”

The initial focus of the technology will be on ovarian cancer, and this funding agreement includes a first-phase clinical trial of HAMMR for the treatment of recurrent ovarian cancer that's expected to take place in the fourth year of THOR’s multi-year project.

“The technology is broadly applicable for peritoneal cancers that affect the pancreas, liver, lungs and other organs,” Veiseh says. “The first clinical trial will focus on refractory recurrent ovarian cancer, and the benefit of that is that we have an ongoing trial for ovarian cancer with our encapsulated cytokine ‘drug factory’ technology. We'll be able to build on that experience. We have already demonstrated a unique model to go from concept to clinical trial within five years, and HAMMR is the next iteration of that approach.”

Trending News

 
 

Promoted