Here's what Houston organizations are benefitting from the latest CPRIT funding announcement. Photo via Getty Images

Houston’s Baylor College of Medicine is beefing up its team of cancer researchers.

The college just received $6 million from the state agency Cancer Prevention and Research Institute of Texas (CPRIT) to recruit three cancer researchers: Graham Erwin, Michael Robertson and Dr. Varun Venkataramani. Each researcher is getting $2 million.

In addition, the University of Texas MD Anderson Cancer Center snagged a $2 million CPRIT grant to recruit Simon Eschweiler.

In all, CPRIT recently announced $49 million in cancer research and prevention grants, including nearly $24 million for recruitment of cancer researchers.

Here’s a rundown of the recruitment grants awarded in Houston:

  • Graham Erwin. Erwin is a postdoctoral fellow at Stanford University’s Stanford Cancer Institute. He’s a biologist who specializes in DNA sequencing related to the development of cancer therapeutics and diagnostics.
  • Michael Robertson. Robertson also is a postdoctoral fellow at Stanford. He focuses on molecular and cellular physiology at Stanford’s medical school.
  • Dr. Varun Venkataramani. Venkataramani, a neuroscientist, is a brain tumor researcher at University Hospital Heidelberg, one of the largest hospitals in Germany.
  • Simon Eschweiler. Eschweiler is a research assistant professor at Southern California’s La Jolla Institute for Immunology. He specializes in immunotherapy for cancer patients.

Aside from the recruitment grants, three institutions in the Houston area received nearly $6 million in funding for cancer treatment and prevention programs. Here’s an overview of those grants:

  • Almost $2.5 million for expansion of a program at the University of Texas Medical Branch at Galveston that supplies HPV vaccinations for new mothers.
  • Nearly $2.5 million for an MD Anderson program that promotes physical activity for cancer survivors.
  • Almost $500,000 for an MD Anderson program to increase treatment of tobacco users who are participating in opioid treatment programs.
  • Nearly $500,000 for a University of Houston program designed to help LGBTQ+ Texans lead tobacco-free lives.

“From new research programs, recruitment of preeminent scientists to Texas, pilot studies, new technology, and expanding the reach of successful cancer prevention programs, [the] grants highlight the effect CPRIT is having on not just cancer research and prevention efforts, but on life science infrastructure in Texas,” Wayne Roberts, the organization’s CEO, said in a news release.

These cancer research professionals just got fresh funding from a statewide organization. Photo by Dwight C. Andrews/Greater Houston Convention and Visitors Bureau

Texas nonprofit cancer research funder doles out millions to health professionals moving to Houston

money moves

Thanks in part to multimillion-dollar grants from the Cancer Prevention and Research Institute of Texas, two top-flight cancer researchers are taking key positions at Houston’s Baylor College of Medicine.

Dr. Pavan Reddy and Dr. Michael Taylor each recently received a grant of $6 million from the Cancer Prevention and Research Institute of Texas (CPRIT).

Reddy is leaving his position as chief of hematology-oncology and deputy director at the University of Michigan’s Rogel Cancer Center to become director of the Baylor College of Medicine’s Dan L. Duncan Comprehensive Cancer Center. Dr. C. Kent Osborne stepped down as the center’s director in 2020; Dr. Helen Heslop has been the interim director.

Taylor, a pediatric neurosurgeon at the University of Toronto, is set to become the first-ever director of pediatric neuro-oncology research at Texas Children’s Hospital. The hospital is affiliated with the Baylor College of Medicine. Taylor is an expert in children’s brain tumors.

In all, 11 researchers recruited by three health care institutions in Houston recently received $34 million in CPRIT grants. The nine other grant recipients in Houston are:

  • Dr. Christine Lovly, M.D. Anderson Cancer Center, $4 million. She is co-leader of the Translational Research and Interventional Oncology Research Program at the Vanderbilt-Ingram Cancer Center in Nashville.
  • Hans Renata, Rice University, $4 million. He is an associate professor at UF Scripps Biomedical Research in Jupiter, Florida.
  • Mingjie Dai, Rice University, $2 million. He is a technology development fellow at Harvard University’s Weiss Institute for Biologically Inspired Engineering.
  • William Hudson, Baylor College of Medicine, $2 million. He is a postdoctoral fellow at Emory University in Atlanta.
  • Deepshika Ramanan, M.D. Anderson Cancer Center, $2 million. She is a research fellow in immunology at Harvard Medical School.
  • Jason Schenkel, M.D. Anderson Cancer Center, $2 million. He is an instructor in pathology at Harvard’s Brigham and Women’s Hospital.
  • Aria Vaishnavi, M.D. Anderson Cancer Center, $2 million. She is a postdoctoral scholar at the University of Utah’s Huntsman Cancer Institute.
  • Samantha Yruegas, Rice University, $2 million. She is a postdoctoral research associate at Princeton University in New Jersey.
  • Qian Zhu, Baylor College of Medicine, $2 million. He is a research fellow at Harvard’s Dana-Farber Cancer Institute.

A CPRIT committee recently approved 17 recruitment grants totaling nearly $48 million for cancer research institutions in Texas.

“CPRIT’s mission is to invest in the research prowess of Texas institutions while expediting breakthroughs in cancer cures and prevention … . These 17 highly respected researchers will join an impressive roster of cancer-fighters who call the Lone Star State home,” says Wayne Roberts, CEO of CPRIT.

Since its creation, CPRIT has awarded $2.9 billion in grants to cancer research organizations around the state.

A UH researcher has fresh funding to support her life-saving, cancer-fighting drug. Photo via UH.edu

University of Houston researcher receives grant for first-of-its-kind breast cancer drug

funds granted

A University of Houston researcher was awarded a $2 million grant from the Cancer Prevention and Research Institute of Texas to develop a new drug that will initially target breast cancer, the university announced this month.

The drug is intended to impact a type of traditionally "undraggable" target of cancer, known as intrinsically disordered proteins (IDPs), which researchers have yet to gain fundamental understanding of. According to the release, approximately 70 percent of proteins impacted by cancer are considered IDPs.

Gül Zerze, an assistant professor in the William A. Brookshire Department of Chemical and Biomolecular Engineering at the UH Cullen College of Engineering, has specialized in research on the computational modeling and simulations of these IDPs, and is one of the 12 cancer researchers awarded such a grant by the CPRIT.

Candidates for Zerze's drug will be rapidly tested through collaborations within UH and MD Anderson, according to the statement.

Gül Zerze is an assistant professor in the William A. Brookshire Department of Chemical and Biomolecular Engineering. Photo via UH.edu

"One out of nearly six Texas women diagnosed with breast cancer will die of the disease. Importantly, Texan women of color are disproportionately impacted by the high mortality rate compared to white Texan women (41 percent higher mortality rate reported for Black Texan women in 2016)," Zerze said in a statement. "This high mortality rate, despite the substantial efforts made for early diagnosis, calls for better therapeutics urgently.”

Zerze was recruited by the CPRIT to come to UH from Princeton last November. She was part of the latest class of recruitment grants from the organization, totaling $38 million to “form a critical ecosystem of distinguished cancer-fighting talent” in Texas.

According to the CPRIT website, the organization has recruited 263 cancer researchers and their labs to Texas over the years. First launched in 2007, the CPRIT is now a $6 billion, 20-year initiative that's allowing institutions in Houston compete against the likes of Harvard and Stanford universities, and the Cleveland and Mayo clinics.

“The ideas proposed here will save lives," Zerze said in the statement. "And the products that will come out of this project have a great potential for commercialization and founding companies to contribute to the Texas economy.”

Allterum Therapeutics Inc., a portfolio company of Fannin Innovation Studio, is using the funds to prepare for clinical trials. Photo via Getty Images

Houston biotech startup raises millions to battle pediatric cancer

fresh funds

Allterum Therapeutics Inc. has built a healthy launchpad for clinical trials of an immunotherapy being developed to fight a rare form of pediatric cancer.

The Houston startup recently collected $1.8 million in seed funding through an investor group associated with Houston-based Fannin Innovation Studio, which focuses on commercializing biotech and medtech discoveries. Allterum has also brought aboard pediatric oncologist Dr. Philip Breitfeld as its chief medical officer. And the startup, a Fannin spinout, has received a $2.9 million grant from the Cancer Prevention Research Institute of Texas.

The funding and Breitfeld's expertise will help Allterum prepare for clinical trials of 4A10, a monoclonal antibody therapy for treatment of cancers that "express" the interleukin-7 receptor (IL7R) gene. These cancers include pediatric acute lymphoblastic leukemia (ALL) and some solid-tumor diseases. The U.S. Food and Drug Administration (FDA) has granted "orphan drug" and "rare pediatric disease" designations to Allterum's monoclonal antibody therapy.

If the phrase "monoclonal antibody therapy" sounds familiar, that's because the FDA has authorized emergency use of this therapy for treatment of COVID-19. In early January, the National Institute of Allergy and Infectious Diseases announced the start of a large-scale clinical trial to evaluate monoclonal antibody therapy for treatment of mild and moderate cases of COVID-19.

Fannin Innovation Studio holds exclusive licensing for Allterum's antibody therapy, developed at the National Cancer Institute. Aside from the cancer institute, Allterum's partners in advancing this technology include the Therapeutic Alliance for Children's Leukemia, Baylor College of Medicine, Texas Children's Hospital, Children's Oncology Group, and Leukemia & Lymphoma Society.

Although many pediatric patients with ALL respond well to standard chemotherapy, some patients continue to grapple with the disease. In particular, patients whose T-cell ALL has returned don't have effective standard therapies available to them. Similarly, patients with one type of B-cell ALL may not benefit from current therapies. Allterum's antibody therapy is designed to effectively treat those patients.

Later this year, Allterum plans to seek FDA approval to proceed with concurrent first- and second-phase clinical trials for its immunotherapy, says Dr. Atul Varadhachary, managing partner of Fannin Innovation Studio, and president and CEO of Allterum. The cash Allterum has on hand now will go toward pretrial work. That will include the manufacturing of the antibody therapy by Japan's Fujifilm Diosynth Biotechnologies, which operates a facility in College Station.

"The process of making a monoclonal antibody ready to give to patients is actually quite expensive," says Varadhachary, adding that Allterum will need to raise more money to carry out the clinical trials.

The global market for monoclonal antibody therapies is projected to exceed $350 billion by 2027, Fortune Business Insight says. The continued growth of these products "is expected to be a major driver of overall biopharmaceutical product sales," according to a review published last year in the Journal of Biomedical Science.

One benefit of these antibody therapies, delivered through IV-delivered infusions, is that they tend to cause fewer side effects than chemotherapy drugs, the American Cancer Society says.

"Monoclonal antibodies are laboratory-produced molecules engineered to serve as substitute antibodies that can restore, enhance or mimic the immune system's attack on cancer cells. They are designed to bind to antigens that are generally more numerous on the surface of cancer cells than healthy cells," the Mayo Clinic says.

Varadhachary says that unlike chemotherapy, monoclonal antibody therapy takes aim at specific targets. Therefore, monoclonal antibody therapy typically doesn't broadly harm healthy cells the way chemotherapy does.

Allterum's clinical trials initially will involve children with ALL, he says, but eventually will pivot to children and adults with other kinds of cancer. Varadhachary believes the initial trials may be the first cancer therapy trials to ever start with children.

"Our collaborators are excited about that because, more often than not, the cancer drugs for children are ones that were first developed for adults and then you extend them to children," he says. "We're quite pleased to be able to do something that's going to be important to children."

Three health and tech research projects coming out of the Houston area have received grants to continue their work. Getty Images

These 3 Houston-area researchers receive millions in grants for ongoing innovation projects

Research roundup

Money makes the world go 'round, and that's certainly the case with research projects. Grants are what drives research at academic institutions across the country and fuel the next great innovations.

These three projects coming out of Houston-area universities were all granted multimillion-dollar sums in order to continue their health tech, cancer-prevention, and even electric vehicle battery research projects,

University of Houston's $3.2 million grant for its next-generation micro CT scan

Associate professor of physics Mini Das developed a better way to approach CT scans. Photo via uh.edu

In an effort to improve imaging and lower radiation, Mini Das, associate professor of physics at the University of Houston, is moving the needle on introducing the next generation of micro computed tomography (CT) imaging. Das recently received a five-year, $3.2 million grant from the National Institute of Biomedical Imaging and Bioengineering to help move along her work in this field.

"This has the potential to transform the landscape of micro-CT imaging," says Das in a news release.

Das is responsible for developing the theory, instrumentation and algorithms for spectral phase-contrast imaging (PCI) that allows for lower radiation with higher image details, according to the release.

"Current X-ray and CT systems have inherent contrast limitations and dense tissue and cancer can often look similar. Even if you increase the radiation dose, there is a limit to what you can see. In addition, image noise becomes significant when increasing resolution to see fine details, often desirable when scanning small objects," says Das.

Rice University researcher's $2.4 million grant to advance on car batteries

This company’s machine learning programs are making driving in Houston safer — and cheaper

A Rice University scientist is looking to optimize car batteries. Pexels

A Rice University scientist is working toward improving batteries for electric vehicles. Materials scientist Ming Tang and his colleagues — backed by a $2.4 million grant from the United States Advanced Battery Consortium — are working on a project led by Worcester Polytechnic Institute (WPI) in Massachusetts, which will run for 36 months and will focus on low-cost and fast-charging batteries.

"Traditional battery electrodes are prepared by the slurry casting method and usually have uniform porosity throughout the electrode thickness," says Tang, an assistant professor of materials science and nanoengineering, in a news release. "However, our earlier modeling study shows that an electrode could have better rate performance by having two or more layers with different porosities.

"Now with the Missouri University of Science and Technology and WPI developing a new dry printing method for battery electrode fabrication, such layered electrodes can be manufactured relatively easily," he said. Tang's group will use modeling to optimize the structural parameters of multilayer electrodes to guide their fabrication.

The academics will also work with a manufacturer, Microvast, that will assemble large-format pouch cells using layered electrodes and evaluate the electrochemical performance against the program goals, according to the release.

"The public/private partnership is critical to steer the research performed at universities," Tang says. "It helps us understand what matters most to commercial applications and what gaps remain between what we have and what is needed by the market. It also provides valuable feedback and gives the project access to the state-of-the-art commercial battery fabrication and testing capabilities."


Texas A&M faculty member's $5 million grant for cancer research

Tanmay Lele of Texas A&M University is looking at how cells react to mechanical forces in cancer. Photo via tamu.edu

Tanmay Lele, a new faculty member in Texas A&M University's Department of Biomedical Engineering, received a $5 million Recruitment of Established Investigators grant from the Cancer Prevention and Research Institute of Texas (CPRIT) in May to research how cancer progresses.

More specifically, Lele's research focuses on mechanobiology and how cells sense external mechanical forces as well as how they generate mechanical forces, and how these mechanical forces impact cell function, according to a news release from A&M.

"The nuclei in normal tissue have smooth surfaces, but over time the surfaces of cancer nuclei become irregular in shape," Lele says in the release. "Now, why? Nobody really knows. We're still at the tip of the iceberg at trying to figure this problem out. But nuclear abnormalities are ubiquitous and occur in all kinds of cancers — breast, prostate and lung cancers."

Lele will work from two laboratories — one in College Station and one in the Texas A&M Health Science Center's Institute of Biosciences & Technology in Houston. THe will collaborate with Dr. Michael Mancini and Dr. Fabio Stossi from Baylor College of Medicine.

"Like any other basic field, we are trying to make discoveries with the hope that they will have long-term impacts on human health," Lele says.

Five Houston research centers have received funds from the Cancer Prevention and Research Institute of Texas in its most recent round of grants. Photo by Dwight C. Andrews/Greater Houston Convention and Visitors Bureau

Houston cancer-fighting researchers granted over $30 million from statewide organization

just granted

The Cancer Prevention and Research Institute of Texas has again granted millions to Texas institutions. Across the state, cancer-fighting scientists have received 55 new grants totaling over $78 million.

Five Houston-area institutions — Baylor College of Medicine, the University of Houston, The University of Texas Medical Branch at Galveston, The University of Texas Health Science Center at Houston, and the The University of Texas MD Anderson Cancer Center — have received around $30 million of that grand total.

"These awards reflect CPRIT's established priorities to invest in childhood cancer research, address population and geographic disparities, and recruit top cancer research talent to our academic institutions," says Wayne Roberts, CPRIT CEO, in a news release. "I'm excited about all the awardees, particularly those in San Antonio, a region that continues expand their cancer research and prevention prowess. San Antonio is poised to have an even greater impact across the Texas cancer-fighting ecosystem."

Four grants went to new companies that are bringing new technologies to the market. Two companies with a presence in Houston — Asylia Therapeutics and Barricade Therapeutics Corp. — received grants in this category.

Last fall, CPRIT gave out nearly $136 million to Texas researchers, and, to date, the organization has granted $2.49 billion to Texas research institutions and organizations.

Here's what recent grants were made to Houston institutions.

Baylor College of Medicine

  • $900,000 granted for Feng Yang's research in targeting AKT signaling in MAPK4-high Triple Negative Breast Cancer (Individual Investigator Award)
  • $897,527 Hyun-Sung Lee's research for Spatial Profiling of Tumor-Immune Microenvironment by Multiplexed Single Cell Imaging Mass Cytometry (Individual Investigator Award)
  • $899,847 for Joshua Wythe's research in targeting Endothelial Transcriptional Networks in GBM (Individual Investigator Award)

University of Houston

  • $890,502 for Matthew Gallagher's research in Transdiagnostic Cognitive Behavioral Therapy for Smokers With Anxiety and Depression (Individual Investigator Research Award for Prevention and Early Detection)
  • $299,953 for Lorraine Reitzel's research in Taking Texas Tobacco Free Through a Sustainable Education/Training Program Designed for Personnel Addressing Tobacco Control in Behavioral Health Settings (Dissemination of CPRIT-Funded Cancer Control Interventions Award)

The University of Texas Medical Branch at Galveston

  • $1,993,096 for Abbey Berenson's research in maximizing opportunities for HPV vaccination in medically underserved counties of Southeast Texas (Expansion of Cancer Prevention Services to Rural and Medically Underserved Populations)

The University of Texas Health Science Center at Houston

  • $900,000 for Melissa Aldrich's research on "Can Microsurgeries Cure Lymphedema? An Objective Assessment" (Individual Investigator Award)
  • $900,000 for John Hancock's research in KRAS Spatiotemporal Dynamics: Novel Therapeutic Targets (Individual Investigator Award)
  • $900,000 for Nami McCarty's research in targeting Multiple Myeloma Stem Cell Niche (Individual Investigator Award)
  • $1.96 million for Paula Cuccaro's research in Expanding "All for Them": A comprehensive school-based approach to increase HPV vaccination through public schools (Expansion of Cancer Prevention Services to Rural and Medically Underserved Populations)

The University of Texas MD Anderson Cancer Center

  • $900,000 for Laurence Court's research in Artificial Intelligence for the Peer Review of Radiation Therapy Treatments
  • $900,000 for John deGroot's research in targeting MEK in EGFR-Amplified Glioblastoma (Individual Investigator Award)
  • $900,000 for Don Gibbons's research in Investigating the Role ofCD38 as a Mechanism of Acquired Resistance to Immune Checkpoint Inhibitors in Lung Cancer (Individual Investigator Award)
  • $900,000 for John Heymach's research in Molecular Features Impacting Drug Resistance in Atypical EGFR Exon 18 and Exon 20 Mutant NSCLC and the Development of Novel Mutant- Selective Inhibitors (Individual Investigator Award)
  • $900,000 for Zhen Fan's research in Development of a Novel Strategy for Tumor Delivery of MHC-I-Compatible Peptides for Cancer Immunotherapy (Individual Investigator Award)
  • $900,000 for Jin Seon Im's research in off the shelf, Cord-Derived iNK T cells Engineered to Prevent GVHD and Relapse After Hematopoietic Stem Cell Transplantation (Individual Investigator Award)
  • $900,000 for Jae-il Park's research in CRAD Tumor Suppressor and Mucinous Adenocarcinoma (Individual Investigator Award)
  • $900,000 for Helen Piwnica-Worms's research in Single-Cell Evaluation to Identify Tumor-stroma Niches Driving the Transition from In Situ to Invasive Breast Cancer (Individual Investigator Award)
  • $898,872 for Kunal Rai's research in Heterogeneity of Enhancer Patterns in Colorectal Cancers- Mechanisms and Therapy (Individual Investigator Award)
  • $900,000 for Ferdinandos Skoulidis's research in Elucidating Aberrant Splicing-Induced Immune Pathway Activation in RBMl0-Deficient KRAS-Mutant NSCLC and Harnessing Its Potential for Precision Immunotherapy (Individual Investigator Award)
  • $887,713 for Konstantin Sokolov's research in High-Sensitivity 19F MRI for Clinically Translatable Imaging of Adoptive NK Cell Brain Tumor Therapy (Individual Investigator Award)
  • $900,000 for Liuqing Yang's research in Adipocyte-Producing Noncoding RNA Promotes Liver Cancer Immunoresistance (Individual Investigator Award)
  • $1.44 million for Eugenie Kleinerman's research in Doxorubicin-Induced Cardiotoxicity: Defining Blood and Echocardiogram Biomarkers in a Mouse Model and AYA Sarcoma Patients for Evaluating Exercise Interventions (Individual Investigator Award for Cancer in Children and Adolescents)
  • $2.4 million for Arvind Dasari's research in Circulating Tumor DNA- Defined Minimal Residual Disease in Colorectal Cancer (Individual Investigator Research Award for Clinical Translation)
  • Targeting Alterations of the NOTCH! Pathway in Head and Neck Squamous Cell Carcinoma (HNSCC)(Faye Johnson) - $1.2 million (Individual Investigator Research Award for Clinical Translation)
  • $2.07 million for Florencia McAllister's research in Modulating the Gut- Tumor Microbial Axis to Reverse Pancreatic Cancer Immunosuooression (Individual Investigator Research Award for Clinical Translation)
  • $2 million to recruit Eric Smith, MD, PhD, to The University of Texas MD Anderson Cancer Center from Memorial Sloan Kettering Cancer Center (Recruitment of First-Time, Tenure-Track Faculty Members Award)
  • $2 million for Karen Basen-Engquist's research in Active Living After Cancer: Combining a Physical Activity Program with Survivor Navigation (Expansion of Cancer Prevention Services to Rural and Medically Underserved Populations)


Seed Awards for Product Development Research

  • Houston and Boston-based Asylia Therapeutics's Jeno Gyuris was granted $3 million for its development of a Novel Approach to Cancer Immunotherapy by Targeting Extracellular Tumor- derived HSP70 to Dendritic Cells
  • Houston-based Barricade Therapeutics Corp.'s Neil Thapar was granted $3 million for its development of a First-In-Class Small Molecule, TASIN, for Targeting Truncated APC Mutations for the Treatment of Colorectal Cancer (CRC)
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Your data center is either closer than you think or much farther away

houston voices

A new study shows why some facilities cluster in cities for speed and access, while others move to rural regions in search of scale and lower costs. Based on research by Tommy Pan Fang (Rice Business) and Shane Greenstein (Harvard).

Key findings:

  • Third-party colocation centers are physical facilities in close proximity to firms that use them, while cloud providers operate large data centers from a distance and sell access to virtualized computing resources as on‑demand services over the internet.
  • Hospitals and financial firms often require urban third-party centers for low latency and regulatory compliance, while batch processing and many AI workloads can operate more efficiently from lower-cost cloud hubs.
  • For policymakers trying to attract data centers, access to reliable power, water and high-capacity internet matter more than tax incentives.

Recent outages and the surge in AI-driven computing have made data center siting decisions more consequential than ever, especially as energy and water constraints tighten. Communities invest public dollars on the promise of jobs and growth, while firms weigh long-term commitments to land, power and connectivity.

Against that backdrop, a critical question comes into focus: Where do data centers get built — and what actually drives those decisions?

A new study by Tommy Pan Fang (Rice Business) and Shane Greenstein (Harvard Business School) provides the first large-scale statistical analysis of data center location strategies across the United States. It offers policymakers and firms a clearer starting point for understanding how different types of data centers respond to economic and strategic incentives.

Forthcoming in the journal Strategy Science, the study examines two major types of infrastructure: third-party colocation centers that lease server space to multiple firms, and hyperscale cloud centers owned by providers like Amazon, Google and Microsoft.

Two Models, Two Location Strategies

The study draws on pre-pandemic data from 2018 and 2019, a period of relative geographic stability in supply and demand. This window gives researchers a clean baseline before remote work, AI demand and new infrastructure pressures began reshaping internet traffic patterns.

The findings show that data centers follow a bifurcated geography. Third-party centers cluster in dense urban markets, where buyers prioritize proximity to customers despite higher land and operating costs. Cloud providers, by contrast, concentrate massive sites in a small number of lower-density regions, where electricity, land and construction are cheaper and economies of scale are easier to achieve.

Third-party data centers, in other words, follow demand. They locate in urban markets where firms in finance, healthcare and IT value low latency, secure storage, and compliance with regulatory standards.

Using county-level data, the researchers modeled how population density, industry mix and operating costs predict where new centers enter. Every U.S. metro with more than 700,000 residents had at least one third-party provider, while many mid-sized cities had none.

ImageThis pattern challenges common assumptions. Third-party facilities are more distributed across urban America than prevailing narratives suggest.

Customer proximity matters because some sectors cannot absorb delay. In critical operations, even slight pauses can have real consequences. For hospital systems, lag can affect performance and risk exposure. And in high-frequency trading, milliseconds can determine whether value is captured or lost in a transaction.

“For industries where speed is everything, being too far from the physical infrastructure can meaningfully affect performance and risk,” Pan Fang says. “Proximity isn’t optional for sectors that can’t absorb delay.”

The Economics of Distance

For cloud providers, the picture looks very different. Their decisions follow a logic shaped primarily by cost and scale. Because cloud services can be delivered from afar, firms tend to build enormous sites in low-density regions where power is cheap and land is abundant.

These facilities can draw hundreds of megawatts of electricity and operate with far fewer employees than urban centers. “The cloud can serve almost anywhere,” Pan Fang says, “so location is a question of cost before geography.”

The study finds that cloud infrastructure clusters around network backbones and energy economics, not talent pools. Well-known hubs like Ashburn, Virginia — often called “Data Center Alley” — reflect this logic, having benefited from early network infrastructure that made them natural convergence points for digital traffic.

Local governments often try to lure data centers with tax incentives, betting they will create high-tech jobs. But the study suggests other factors matter more to cloud providers, including construction costs, network connectivity and access to reliable, affordable electricity.

When cloud centers need a local presence, distance can sometimes become a constraint. Providers often address this by working alongside third-party operators. “Third-party centers can complement cloud firms when they need a foothold closer to customers,” Pan Fang says.

That hybrid pattern — massive regional hubs complementing strategic colocation — may define the next phase of data center growth.

Looking ahead, shifts in remote work, climate resilience, energy prices and AI-driven computing may reshape where new facilities go. Some workloads may move closer to users, while others may consolidate into large rural hubs. Emerging data-sovereignty rules could also redirect investment beyond the United States.

“The cloud feels weightless,” Pan Fang says, “but it rests on real choices about land, power and proximity.”

---

This article originally appeared on Rice Business Wisdom. Written by Scott Pett.

Pan Fang and Greenstein (2025). “Where the Cloud Rests: The Economic Geography of Data Centers,” forthcoming in Strategy Science.

Houston climbs to top 10 spot on North American tech hubs index

tech report

Houston already is the Energy Capital of the World, and now it’s gaining ground as a tech hub.

On Site Selection magazine’s 2026 North American Tech Hub Index, Houston jumped to No. 10 from No. 16 last year. The index relies on data from Site Selection as well as data from CBRE, CompTIA and TeleGeography to rank the continent’s tech hotspots. The index incorporates factors such as internet connectivity, tech talent and facility projects for tech companies.

In 2023, the Greater Houston Partnership noted the region had “begun to receive its due as a prominent emerging tech hub, joining the likes of San Francisco and Austin as a major player in the sector, and as a center of activity for the next generation of innovators and entrepreneurs.”

The Houston-area tech sector employs more than 230,000 people, according to the partnership, and generates an economic impact of $21.2 billion.

Elsewhere in Texas, two other metros fared well on the Site Selection index:

  • Dallas-Fort Worth nabbed the No. 1 spot, up from No. 2 last year.
  • Austin rose from No. 8 last year to No. 7 this year.

San Antonio slid from No. 18 in 2025 to No. 22 in 2026, however.

Two economic development officials in DFW chimed in about the region’s No. 1 ranking on the index:

  • “This ranking affirms what we’ve long seen on the ground — Dallas-Fort Worth is a top-tier technology and innovation center,” said Duane Dankesreiter, senior vice president of research and innovation at the Dallas Regional Chamber. “Our region’s scale, talent base, and diverse strengths … continue to set DFW apart as a national leader.”
  • “Being recognized as the top North American tech hub underscores the strength of the entire Dallas-Fort Worth region as a center of innovation and next-generation technology,” said Robert Allen, president and CEO of the Fort Worth Economic Development Partnership.

While not directly addressing Austin’s Site Selection ranking, Thom Singer, CEO of the Austin Technology Council, recently pondered whether Silicon Hills will grow “into the kind of community that other cities study for the right reasons.”

“Austin tech is not a club. It is not a scene. It is not a hashtag, a happy hour, or any one place or person,” Singer wrote on the council’s blog. “Austin tech is an economic engine and a global brand, built by thousands of people who decided to take a risk, build something, hire others, and be part of a community that is still young enough to reinvent itself.”

South of Austin, Port San Antonio is driving much of that region’s tech activity. Occupied by more than 80 employers, the 1,900-acre tech and innovation campus was home to 18,400 workers in 2024 and created a local economic impact of $7.9 billion, according to a study by Zenith Economics.

“Port San Antonio is a prime example of how innovation and infrastructure come together to strengthen [Texas’] economy, support thousands of good jobs, and keep Texas competitive on the global stage,” said Kelly Hancock, the acting state comptroller.

14 Houston startups starting 2026 with fresh funding

cha-ching

Houston startups closed out the last half of 2025 with major funding news.

Here are 14 Houston companies—from groundbreaking energy leaders to growing space startups—that secured funding in the last six months of the year, according to reporting by InnovationMap and our sister site, EnergyCapitalHTX.com.

Did we miss a funding round? Let us know by emailing innoeditor@innovationmap.com.

Fervo Energy

Fervo Energy has closed an oversubscribed Series E. Photo via Fervo Energy

Houston-based geothermal energy company Fervo Energy closed an oversubscribed $462 million series E funding round, led by new investor B Capital, in December.

The company also secured $205.6 million from three sources in June.

“Fervo is setting the pace for the next era of clean, affordable, and reliable power in the U.S.,” Jeff Johnson, general partner at B Capital, said in a news release.

The funding will support the continued buildout of Fervo’s Utah-based Cape Station development, which is slated to start delivering 100 MW of clean power to the grid beginning in 2026. Cape Station is expected to be the world's largest next-generation geothermal development, according to Fervo. The development of several other projects will also be included in the new round of funding. Continue reading.

Square Robot

Houston robotics co. unveils new robot that can handle extreme temperatures

Square Robot's technology eliminates the need for humans to enter dangerous and toxic environments. Photo courtesy of Square Robot

Houston- and Boston-based Square Robot Inc. announced a partnership with downstream and midstream energy giant Marathon Petroleum Corp. (NYSE: MPC) last month.

The partnership came with an undisclosed amount of funding from Marathon, which Square Robot says will help "shape the design and development" of its submersible robotics platform and scale its fleet for nationwide tank inspections. Continue reading.

Eclipse Energy

Eclipse Energy and Weatherford International are expected to launch joint projects early this year. Photo courtesy of Eclipse Energy.

Oil and gas giant Weatherford International (NASDAQ: WFRD) made a capital investment for an undisclosed amount in Eclipse Energy in December as part of a collaborative partnership aimed at scaling and commercializing Eclipse's clean fuel technology.

According to a release, joint projects from the two Houston-based companies are expected to launch as soon as this month. The partnership aims to leverage Weatherford's global operations with Eclipse Energy's pioneering subsurface biotechnology that converts end-of-life oil fields into low-cost, sustainable hydrogen sources. Continue reading.

Venus Aerospace 

Lockheed Martin Ventures says it's committed to helping Houston-based Venus Aerospace scale its technology. Photo courtesy Venus Aerospace

Venus Aerospace, a Houston-based startup specializing in next-generation rocket engine propulsion, has received funding from Lockheed Martin Ventures, the investment arm of aerospace and defense contractor Lockheed Martin, for an undisclosed amount, the company announced in November. The product lineup at Lockheed Martin includes rockets.

The investment follows Venus’ successful high-thrust test flight of its rotating detonation rocket engine (RDRE) in May. Venus says it’s the only company in the world that makes a flight-proven, high-thrust RDRE with a “clear path to scaled production.”

Venus says the Lockheed Martin Ventures investment reflects the potential of Venus’ dual-use technology for defense and commercial uses. Continue reading.

Koda Health

Tatiana Fofanova and Dr. Desh Mohan, founders of Koda Health, which recently closed a $7 million series A. Photo courtesy Koda Health.

Houston-based digital advance care planning company Koda Health closed an oversubscribed $7 million series A funding round in October.

The round, led by Evidenced, with participation from Mudita Venture Partners, Techstars and Texas Medical Center, will allow the company to scale operations and expand engineering, clinical strategy and customer success, according to a news release.

The company shared that the series A "marks a pivotal moment," as it has secured investments from influential leaders in the healthcare and venture capital space. Continue reading.

Hertha Metals

U.S. Rep. Morgan Luttrell, a Magnolia Republican, and Hertha Metals founder and CEO Laureen Meroueh toured Hertha’s Conroe plant in August. Photo courtesy Hertha Metals/Business Wire.

Conroe-based Hertha Metals, a producer of substantial steel, hauled in more than $17 million in venture capital from Khosla Ventures, Breakthrough Energy Fellows, Pear VC, Clean Energy Ventures and other investors.

The money was put toward the construction and the launch of its 1-metric-ton-per-day pilot plant in Conroe, where its breakthrough in steelmaking has been undergoing tests. The company uses a single-step process that it claims is cheaper, more energy-efficient and equally as scalable as conventional steelmaking methods. The plant is fueled by natural gas or hydrogen.

The company, founded in 2022, plans to break ground early this year on a new plant. The facility will be able to produce more than 9,000 metric tons of steel per year. Continue reading.

Helix Earth Technologies, Resilitix Intelligence and Fluxworks Inc.

Helix Earth's technology is estimated to save up to half of the net energy used in commercial air conditioning, reducing both emissions and costs for operators. Photo via Getty Images

Houston-based Helix Earth Technologies, Resilitix Intelligence and Fluxworks Inc. each secured $1.2 million in federal funding through the Small Business Innovation Research (SBIR) Phase II grant program this fall.

The three grants from the National Scienve foundation officially rolled out in early September 2025 and are expected to run through August 2027, according to the NSF. The SBIR Phase II grants support in-depth research and development of ideas that showed potential for commercialization after receiving Phase I grants from government agencies.

However, congressional authority for the program, often called "America's seed fund," expired on Sept. 30, 2025, and has stalled since the recent government shutdown. Continue reading.

Solidec Inc. (pre-seed)

7 innovative startups that are leading the energy transition in Houston

Houston-based Solidec was founded around innovations developed by Rice University associate professor Haotian Wang (far left). Photo courtesy Greentown Labs.

Solidec, a Houston startup that specializes in manufacturing “clean” chemicals, raised more than $2 million in pre-seed funding in August.

Houston-based New Climate Ventures led the oversubscribed pre-seed round, with participation from Plug and Play Ventures, Ecosphere Ventures, the Collaborative Fund, Safar Partners, Echo River Capital and Semilla Climate Capital, among other investors. Continue reading.

Molecule

Sameer Soleja is the founder and CEO of Molecule, which just closed its series B round. Photo courtesy of Molecule Software.

Houston-based energy trading risk management (ETRM) software company Molecule completed a successful series B round for an undisclosed amount, according to a July 16 release from the company.

The raise was led by Sundance Growth, a California-based software growth equity firm. Sameer Soleja, founder and CEO of Molecule, said in the release that the funding will allow the company to "double down on product innovation, grow our team, and reach even more markets." Continue reading.

Rarefied Studios, Solidec Inc. and Affekta

Houston startups were named among the nearly 300 recipients that received a portion of $44.85 million from NASA to develop space technology this fall. Photo via NASA/Ben Smegelsky

Houston-based Rarefied Studios, Solidec Inc. and Affekta were granted awards from NASA this summer to develop new technologies for the space agency.

The companies are among nearly 300 recipients that received a total agency investment of $44.85 million through the Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Phase I grant programs, according to NASA.

Each selected company received $150,000 and, based on their progress, will be eligible to submit proposals for up to $850,000 in Phase II funding to develop prototypes. The SBIR program lasts for six months and contracts small businesses. Continue reading.

Intuitive Machines 

Intuitive Machines expects to begin manufacturing and flight integration on its orbital transfer vehicle as soon as 2026. Photo courtesy Intuitive Machines.

Houston-based Intuitive Machines secured a $9.8 million Phase II government contract for its orbital transfer vehicle in July.

The contract was expected to push the project through its Critical Design Review phase, which is the final engineering milestone before manufacturing can begin, according to a news release from the company. Intuitive Machines reported that it expected to begin manufacturing and flight integration for its orbital transfer vehicle as soon as this year, once the design review is completed.

The non-NASA contract is for an undisclosed government customer, which Intuitive Machines says reinforces its "strategic move to diversify its customer base and deliver orbital capabilities that span commercial, civil, and national security space operations." Continue reading.