Allterum Therapeutics Inc., a portfolio company of Fannin Innovation Studio, is using the funds to prepare for clinical trials. Photo via Getty Images

Allterum Therapeutics Inc. has built a healthy launchpad for clinical trials of an immunotherapy being developed to fight a rare form of pediatric cancer.

The Houston startup recently collected $1.8 million in seed funding through an investor group associated with Houston-based Fannin Innovation Studio, which focuses on commercializing biotech and medtech discoveries. Allterum has also brought aboard pediatric oncologist Dr. Philip Breitfeld as its chief medical officer. And the startup, a Fannin spinout, has received a $2.9 million grant from the Cancer Prevention Research Institute of Texas.

The funding and Breitfeld's expertise will help Allterum prepare for clinical trials of 4A10, a monoclonal antibody therapy for treatment of cancers that "express" the interleukin-7 receptor (IL7R) gene. These cancers include pediatric acute lymphoblastic leukemia (ALL) and some solid-tumor diseases. The U.S. Food and Drug Administration (FDA) has granted "orphan drug" and "rare pediatric disease" designations to Allterum's monoclonal antibody therapy.

If the phrase "monoclonal antibody therapy" sounds familiar, that's because the FDA has authorized emergency use of this therapy for treatment of COVID-19. In early January, the National Institute of Allergy and Infectious Diseases announced the start of a large-scale clinical trial to evaluate monoclonal antibody therapy for treatment of mild and moderate cases of COVID-19.

Fannin Innovation Studio holds exclusive licensing for Allterum's antibody therapy, developed at the National Cancer Institute. Aside from the cancer institute, Allterum's partners in advancing this technology include the Therapeutic Alliance for Children's Leukemia, Baylor College of Medicine, Texas Children's Hospital, Children's Oncology Group, and Leukemia & Lymphoma Society.

Although many pediatric patients with ALL respond well to standard chemotherapy, some patients continue to grapple with the disease. In particular, patients whose T-cell ALL has returned don't have effective standard therapies available to them. Similarly, patients with one type of B-cell ALL may not benefit from current therapies. Allterum's antibody therapy is designed to effectively treat those patients.

Later this year, Allterum plans to seek FDA approval to proceed with concurrent first- and second-phase clinical trials for its immunotherapy, says Dr. Atul Varadhachary, managing partner of Fannin Innovation Studio, and president and CEO of Allterum. The cash Allterum has on hand now will go toward pretrial work. That will include the manufacturing of the antibody therapy by Japan's Fujifilm Diosynth Biotechnologies, which operates a facility in College Station.

"The process of making a monoclonal antibody ready to give to patients is actually quite expensive," says Varadhachary, adding that Allterum will need to raise more money to carry out the clinical trials.

The global market for monoclonal antibody therapies is projected to exceed $350 billion by 2027, Fortune Business Insight says. The continued growth of these products "is expected to be a major driver of overall biopharmaceutical product sales," according to a review published last year in the Journal of Biomedical Science.

One benefit of these antibody therapies, delivered through IV-delivered infusions, is that they tend to cause fewer side effects than chemotherapy drugs, the American Cancer Society says.

"Monoclonal antibodies are laboratory-produced molecules engineered to serve as substitute antibodies that can restore, enhance or mimic the immune system's attack on cancer cells. They are designed to bind to antigens that are generally more numerous on the surface of cancer cells than healthy cells," the Mayo Clinic says.

Varadhachary says that unlike chemotherapy, monoclonal antibody therapy takes aim at specific targets. Therefore, monoclonal antibody therapy typically doesn't broadly harm healthy cells the way chemotherapy does.

Allterum's clinical trials initially will involve children with ALL, he says, but eventually will pivot to children and adults with other kinds of cancer. Varadhachary believes the initial trials may be the first cancer therapy trials to ever start with children.

"Our collaborators are excited about that because, more often than not, the cancer drugs for children are ones that were first developed for adults and then you extend them to children," he says. "We're quite pleased to be able to do something that's going to be important to children."

Three health and tech research projects coming out of the Houston area have received grants to continue their work. Getty Images

These 3 Houston-area researchers receive millions in grants for ongoing innovation projects

Research roundup

Money makes the world go 'round, and that's certainly the case with research projects. Grants are what drives research at academic institutions across the country and fuel the next great innovations.

These three projects coming out of Houston-area universities were all granted multimillion-dollar sums in order to continue their health tech, cancer-prevention, and even electric vehicle battery research projects,

University of Houston's $3.2 million grant for its next-generation micro CT scan

Associate professor of physics Mini Das developed a better way to approach CT scans. Photo via uh.edu

In an effort to improve imaging and lower radiation, Mini Das, associate professor of physics at the University of Houston, is moving the needle on introducing the next generation of micro computed tomography (CT) imaging. Das recently received a five-year, $3.2 million grant from the National Institute of Biomedical Imaging and Bioengineering to help move along her work in this field.

"This has the potential to transform the landscape of micro-CT imaging," says Das in a news release.

Das is responsible for developing the theory, instrumentation and algorithms for spectral phase-contrast imaging (PCI) that allows for lower radiation with higher image details, according to the release.

"Current X-ray and CT systems have inherent contrast limitations and dense tissue and cancer can often look similar. Even if you increase the radiation dose, there is a limit to what you can see. In addition, image noise becomes significant when increasing resolution to see fine details, often desirable when scanning small objects," says Das.

Rice University researcher's $2.4 million grant to advance on car batteries

This company’s machine learning programs are making driving in Houston safer — and cheaper

A Rice University scientist is looking to optimize car batteries. Pexels

A Rice University scientist is working toward improving batteries for electric vehicles. Materials scientist Ming Tang and his colleagues — backed by a $2.4 million grant from the United States Advanced Battery Consortium — are working on a project led by Worcester Polytechnic Institute (WPI) in Massachusetts, which will run for 36 months and will focus on low-cost and fast-charging batteries.

"Traditional battery electrodes are prepared by the slurry casting method and usually have uniform porosity throughout the electrode thickness," says Tang, an assistant professor of materials science and nanoengineering, in a news release. "However, our earlier modeling study shows that an electrode could have better rate performance by having two or more layers with different porosities.

"Now with the Missouri University of Science and Technology and WPI developing a new dry printing method for battery electrode fabrication, such layered electrodes can be manufactured relatively easily," he said. Tang's group will use modeling to optimize the structural parameters of multilayer electrodes to guide their fabrication.

The academics will also work with a manufacturer, Microvast, that will assemble large-format pouch cells using layered electrodes and evaluate the electrochemical performance against the program goals, according to the release.

"The public/private partnership is critical to steer the research performed at universities," Tang says. "It helps us understand what matters most to commercial applications and what gaps remain between what we have and what is needed by the market. It also provides valuable feedback and gives the project access to the state-of-the-art commercial battery fabrication and testing capabilities."


Texas A&M faculty member's $5 million grant for cancer research

Tanmay Lele of Texas A&M University is looking at how cells react to mechanical forces in cancer. Photo via tamu.edu

Tanmay Lele, a new faculty member in Texas A&M University's Department of Biomedical Engineering, received a $5 million Recruitment of Established Investigators grant from the Cancer Prevention and Research Institute of Texas (CPRIT) in May to research how cancer progresses.

More specifically, Lele's research focuses on mechanobiology and how cells sense external mechanical forces as well as how they generate mechanical forces, and how these mechanical forces impact cell function, according to a news release from A&M.

"The nuclei in normal tissue have smooth surfaces, but over time the surfaces of cancer nuclei become irregular in shape," Lele says in the release. "Now, why? Nobody really knows. We're still at the tip of the iceberg at trying to figure this problem out. But nuclear abnormalities are ubiquitous and occur in all kinds of cancers — breast, prostate and lung cancers."

Lele will work from two laboratories — one in College Station and one in the Texas A&M Health Science Center's Institute of Biosciences & Technology in Houston. THe will collaborate with Dr. Michael Mancini and Dr. Fabio Stossi from Baylor College of Medicine.

"Like any other basic field, we are trying to make discoveries with the hope that they will have long-term impacts on human health," Lele says.

Five Houston research centers have received funds from the Cancer Prevention and Research Institute of Texas in its most recent round of grants. Photo by Dwight C. Andrews/Greater Houston Convention and Visitors Bureau

Houston cancer-fighting researchers granted over $30 million from statewide organization

just granted

The Cancer Prevention and Research Institute of Texas has again granted millions to Texas institutions. Across the state, cancer-fighting scientists have received 55 new grants totaling over $78 million.

Five Houston-area institutions — Baylor College of Medicine, the University of Houston, The University of Texas Medical Branch at Galveston, The University of Texas Health Science Center at Houston, and the The University of Texas MD Anderson Cancer Center — have received around $30 million of that grand total.

"These awards reflect CPRIT's established priorities to invest in childhood cancer research, address population and geographic disparities, and recruit top cancer research talent to our academic institutions," says Wayne Roberts, CPRIT CEO, in a news release. "I'm excited about all the awardees, particularly those in San Antonio, a region that continues expand their cancer research and prevention prowess. San Antonio is poised to have an even greater impact across the Texas cancer-fighting ecosystem."

Four grants went to new companies that are bringing new technologies to the market. Two companies with a presence in Houston — Asylia Therapeutics and Barricade Therapeutics Corp. — received grants in this category.

Last fall, CPRIT gave out nearly $136 million to Texas researchers, and, to date, the organization has granted $2.49 billion to Texas research institutions and organizations.

Here's what recent grants were made to Houston institutions.

Baylor College of Medicine

  • $900,000 granted for Feng Yang's research in targeting AKT signaling in MAPK4-high Triple Negative Breast Cancer (Individual Investigator Award)
  • $897,527 Hyun-Sung Lee's research for Spatial Profiling of Tumor-Immune Microenvironment by Multiplexed Single Cell Imaging Mass Cytometry (Individual Investigator Award)
  • $899,847 for Joshua Wythe's research in targeting Endothelial Transcriptional Networks in GBM (Individual Investigator Award)

University of Houston

  • $890,502 for Matthew Gallagher's research in Transdiagnostic Cognitive Behavioral Therapy for Smokers With Anxiety and Depression (Individual Investigator Research Award for Prevention and Early Detection)
  • $299,953 for Lorraine Reitzel's research in Taking Texas Tobacco Free Through a Sustainable Education/Training Program Designed for Personnel Addressing Tobacco Control in Behavioral Health Settings (Dissemination of CPRIT-Funded Cancer Control Interventions Award)

The University of Texas Medical Branch at Galveston

  • $1,993,096 for Abbey Berenson's research in maximizing opportunities for HPV vaccination in medically underserved counties of Southeast Texas (Expansion of Cancer Prevention Services to Rural and Medically Underserved Populations)

The University of Texas Health Science Center at Houston

  • $900,000 for Melissa Aldrich's research on "Can Microsurgeries Cure Lymphedema? An Objective Assessment" (Individual Investigator Award)
  • $900,000 for John Hancock's research in KRAS Spatiotemporal Dynamics: Novel Therapeutic Targets (Individual Investigator Award)
  • $900,000 for Nami McCarty's research in targeting Multiple Myeloma Stem Cell Niche (Individual Investigator Award)
  • $1.96 million for Paula Cuccaro's research in Expanding "All for Them": A comprehensive school-based approach to increase HPV vaccination through public schools (Expansion of Cancer Prevention Services to Rural and Medically Underserved Populations)

The University of Texas MD Anderson Cancer Center

  • $900,000 for Laurence Court's research in Artificial Intelligence for the Peer Review of Radiation Therapy Treatments
  • $900,000 for John deGroot's research in targeting MEK in EGFR-Amplified Glioblastoma (Individual Investigator Award)
  • $900,000 for Don Gibbons's research in Investigating the Role ofCD38 as a Mechanism of Acquired Resistance to Immune Checkpoint Inhibitors in Lung Cancer (Individual Investigator Award)
  • $900,000 for John Heymach's research in Molecular Features Impacting Drug Resistance in Atypical EGFR Exon 18 and Exon 20 Mutant NSCLC and the Development of Novel Mutant- Selective Inhibitors (Individual Investigator Award)
  • $900,000 for Zhen Fan's research in Development of a Novel Strategy for Tumor Delivery of MHC-I-Compatible Peptides for Cancer Immunotherapy (Individual Investigator Award)
  • $900,000 for Jin Seon Im's research in off the shelf, Cord-Derived iNK T cells Engineered to Prevent GVHD and Relapse After Hematopoietic Stem Cell Transplantation (Individual Investigator Award)
  • $900,000 for Jae-il Park's research in CRAD Tumor Suppressor and Mucinous Adenocarcinoma (Individual Investigator Award)
  • $900,000 for Helen Piwnica-Worms's research in Single-Cell Evaluation to Identify Tumor-stroma Niches Driving the Transition from In Situ to Invasive Breast Cancer (Individual Investigator Award)
  • $898,872 for Kunal Rai's research in Heterogeneity of Enhancer Patterns in Colorectal Cancers- Mechanisms and Therapy (Individual Investigator Award)
  • $900,000 for Ferdinandos Skoulidis's research in Elucidating Aberrant Splicing-Induced Immune Pathway Activation in RBMl0-Deficient KRAS-Mutant NSCLC and Harnessing Its Potential for Precision Immunotherapy (Individual Investigator Award)
  • $887,713 for Konstantin Sokolov's research in High-Sensitivity 19F MRI for Clinically Translatable Imaging of Adoptive NK Cell Brain Tumor Therapy (Individual Investigator Award)
  • $900,000 for Liuqing Yang's research in Adipocyte-Producing Noncoding RNA Promotes Liver Cancer Immunoresistance (Individual Investigator Award)
  • $1.44 million for Eugenie Kleinerman's research in Doxorubicin-Induced Cardiotoxicity: Defining Blood and Echocardiogram Biomarkers in a Mouse Model and AYA Sarcoma Patients for Evaluating Exercise Interventions (Individual Investigator Award for Cancer in Children and Adolescents)
  • $2.4 million for Arvind Dasari's research in Circulating Tumor DNA- Defined Minimal Residual Disease in Colorectal Cancer (Individual Investigator Research Award for Clinical Translation)
  • Targeting Alterations of the NOTCH! Pathway in Head and Neck Squamous Cell Carcinoma (HNSCC)(Faye Johnson) - $1.2 million (Individual Investigator Research Award for Clinical Translation)
  • $2.07 million for Florencia McAllister's research in Modulating the Gut- Tumor Microbial Axis to Reverse Pancreatic Cancer Immunosuooression (Individual Investigator Research Award for Clinical Translation)
  • $2 million to recruit Eric Smith, MD, PhD, to The University of Texas MD Anderson Cancer Center from Memorial Sloan Kettering Cancer Center (Recruitment of First-Time, Tenure-Track Faculty Members Award)
  • $2 million for Karen Basen-Engquist's research in Active Living After Cancer: Combining a Physical Activity Program with Survivor Navigation (Expansion of Cancer Prevention Services to Rural and Medically Underserved Populations)


Seed Awards for Product Development Research

  • Houston and Boston-based Asylia Therapeutics's Jeno Gyuris was granted $3 million for its development of a Novel Approach to Cancer Immunotherapy by Targeting Extracellular Tumor- derived HSP70 to Dendritic Cells
  • Houston-based Barricade Therapeutics Corp.'s Neil Thapar was granted $3 million for its development of a First-In-Class Small Molecule, TASIN, for Targeting Truncated APC Mutations for the Treatment of Colorectal Cancer (CRC)
A new accelerator program will aim to advance cancer therapeutics technology. Photo courtesy of TMC

TMC introduces new cancer therapeutics accelerator program following $5 million grant

Curing cancer

The Texas Medical Center is taking a step forward in cancer prevention and treatment thanks to a multimillion-dollar grant from a Texas organization.

Last month, the Cancer Prevention and Research Institute of Texas announced 71 new statewide grants that totaled $136 million. TMC was the recipient of a $5 million grant that is being used to develop a new accelerator geared at designing new cancer therapeutics treatments.

"Texas Medical Center is proud to be among the esteemed organizations chosen by the CPRIT from across the State of Texas that have been targeted to continue to take the fight to the front lines when it comes to cancer and its deleterious effects on patients and their loved ones," says TMC CEO and president, Bill McKeon, in a release.

TMC | ACT, which stands for Accelerating Cancer Therapeutics, will be a nine-month program of biotech entrepreneurship training and drug development.

"This funding will be critical to the success of our newly formed TMC | ACT program, which will unite business, pharmaceutical, and academic leaders from across the country with the world's largest medical city in order to accelerate the translation of cancer breakthroughs into new drugs that will help save the lives of an untold number of cancer patients," McKeon continues in the release.

The program will bring together startups and researchers for training and mentoring for lessons in market research, FDA regulation, intellectual property, licensing, fundraising, and more. According to the release, the program will conclude with at least one grant and a venture capital pitch day.

This is the second new program TMC has launched this year; TMCalpha was announced in June at the TMCx pitch event. This new program is also geared at connecting research and commercialization and hosts regular events for TMC staff members who have early-stage medical technology ideas.

Texas doctors and researchers received millions for their transformational work in cancer prevention and treatment. Getty Images

A Texas organization has doled out millions to Houston cancer-fighting professionals

granted

Researchers at medical institutions across the state have something to celebrate. The Cancer Prevention and Research Institute of Texas has made 71 grants this week to cancer-fighting organizations that total a near $136 million.

"CPRIT's priorities of pediatric cancer research and cancers of significance to Texans highlight this large slate of awards," says Wayne Roberts, CPRIT CEO, in a release. "Investments are made across the cancer research and prevention continuum in Texas unlike any other state in the country."

New to the awards this time around is the Collaborative Action Program for Liver Cancer, which has been claimed by Baylor College of Medicine's Hashem B. El-Serag.

"Texas has the highest incidence rates of hepatocellular cancer in the nation," El-Serag says in a release from BCM. "Our CPRIT funded Center will house infrastructure to support and enhance research collaborations among liver cancer researchers; to educate providers, researchers and the general public on best practices and opportunities to reduce the burden of liver cancer; and to engage private and public entities in policy initiatives."

Houston organizations also received recruitment awards, which reward Texas organizations for bringing in great minds from across the world. According to the release, CPRIT has brought in a total of 181 scholars and 13 companies to the Lone Star State.

Of the 71 grants, 58 represent academic research, 10 prevention, and three product development research. Here are the ones awarded to Houston organizations.

The University of Texas MD Anderson Cancer Center

  • $900,000 granted for Shao-Cung Sun's research in regulation of CD8 T cell responses in antitumor immunity (Individual Investigator Research Award)
  • $897,483 granted for Alemayehu A. Gorfe's research in characterization and optimization of novel allosteric KRAS inhibitors (Individual Investigator Research Award)
  • $3 million granted for Hashem B. El-Serag's research at The Texas Collaborative Center for Hepatocellular Cancer (Collaborative Action Program to Reduce Liver Cancer Mortality in Texas: Collaborative Action Center Award)
  • $2.46 million to Jessica Hwang for patient-centered liver cancer prevention in the Houston community (Collaborative Action Program to Reduce Liver Cancer Mortality in Texas: Investigator-Initiated Research Awards)
  • $3.51 million for Kevin McBride's Recombinant Antibody Production Core at Science Park
  • $199,804 granted for Andrea Viale's epithelial memory of resolved inflammation as a driver of pancreatic cancer progression (High Impact High Risk Award)
  • $6 million for the recruitment of Christopher Flowers, M.D. (Recruitment of Established Investigator Awards)
  • $2 million for the recruitment of Kevin Nead, MD, MPhil (Recruitment of First-Time, Tenure-Track Faculty Members Awards)
  • $2 million for the recruitment of Alison Taylor, PhD (Recruitment of First-Time, Tenure-Track Faculty Members Awards)
  • $2 million for the recruitment of Mackenzie Wehner, MD, MPhil (Recruitment of First-Time, Tenure-Track Faculty Members Awards)

Baylor College of Medicine

  • $5.38 million granted for Steven J. Ludtke's new capabilities for cancer research in the TMC CryoEM Cores (Core Facility Support Awards)
  • $1.35 million granted for Bryan M. Burt's novel endoscope-cleaning port for minimally invasive cancer surgery (Early Translational Research Awards)
  • $199,500 granted for Yohannes T. Ghebre's Topical Esomeprazole for Radiation-induced Dermatitis (High Impact High Risk Award)
  • $199,920 granted for Robin Parihar's targeting of cancer associated fibroblasts with anti-IL-11-secreting CAR T cells (High Impact High Risk Award)
  • $2 million for the recruitment of Umesh Jadhav, PhD (Recruitment of First-Time, Tenure-Track Faculty Members Awards)
  • $2 million for the recruitment of Stanley Lee, PhD (Recruitment of First-Time, Tenure-Track Faculty Members Awards)
  • $2 million for the recruitment of Ang Li, MD (Recruitment of First-Time, Tenure-Track Faculty Members Awards)
  • $1.29 million for Jane R. Montealegre's expansion of "a Community Network for Cancer Prevention to Increase HPV Vaccine Uptake and Tobacco Prevention in a Medically Underserved Pediatric Population"

Texas Medical Center

  • $5.44 million granted for William McKeon's Business-Driven Accelerator for Cancer Therapeutics (Core Facility Support Awards)

The University of Texas Health Science Center at Houston

  • $5.95 million granted for Zhiqiang An's Advanced Cancer Antibody Drug Modalities Core Facility (Core Facility Support Awards)
  • $2 million granted for Qingyun Liu's discovery and development of novel peptibody-drug conjugate for treating cancers of the digestive system (Early Translational Research Awards)
  • $199,998 granted for Leng Han's expression landscape and biomedical significance of transfer RNAs in cancer (High Impact High Risk Award)
  • $2 million for Lara S. Savas' Salud en Mis Manos that delivers "Evidence-Based Breast & Cervical Cancer Prevention Services to Latinas in Underserved Texas South and Gulf Coast Communities"

The University of Texas Medical Branch at Galveston

  • $3.55 million granted for William K. Russell's A Targeted Proteomics and Metabolomics Mass Spectrometry Core Facility at the University of Texas Medical Branch at Galveston (Core Facility Support Awards)
  • $199,996 granted for Brendan Prideaux's novel cellular-level imaging approach to assess payload drug distribution in tumors following administration of targeted drug delivery systems (High Impact High Risk Award)
  • $200,000 granted for Casey W. Wright's targeting ARNT and RBFOX2 alternative splicing as a novel treatment modality in lymphoid malignancies (High Impact High Risk Award)

The Methodist Hospital Research Institute

  • $200,000 granted for Robert Rostomily's development of a mini-pig glioma model and validation of human clinical relevance (High Impact High Risk Award)

Texas Southern University

  • $200,000 for Song Gao's alleviating SN-38-induced late-onset diarrhea by preserving local UGTs in the colon (High Impact High Risk Award)

University of Houston

  • $200,000 granted for Sergey S. Shevkoplyas' Novel High-Throughput Microfluidic Device for Isolating T-cells Directly from Whole Blood to Simplify Manufacturing of Cellular Therapies (High Impact High Risk Award)

Rice University

  • $2 million for the recruitment of Jiaozhi (George) Lu, PhD (Recruitment of First-Time, Tenure-Track Faculty Members Awards)
  • $1.67 million for the recruitment of Vicky Yao, PhD (Recruitment of First-Time, Tenure-Track Faculty Members Awards)

The Rose

  • $2 million for Bernice Joseph's Empower Her To Care Expansion

Legacy Community Health Services

  • $999,276 for Charlene Flash's "Increasing Breast and Colorectal Cancer Screening Rates for the Medically Underserved using Population Health Strategies at a Multi-County FQHC"
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

5 can't-miss innovation events at CERAWeek featuring Houston speakers

where to be online

While usually hundreds of energy experts, C-level executives, diplomats, members of royal families, and more descend upon Houston for the the annual CERAWeek by IHS Markit conference, this year will be a little different. Canceled last year due to COVID-19, CERAWeek is returning — completely virtually.

The Agora track is back and focused on innovation within the energy sector. The Agora track's events — thought-provoking panels, intimate pods, and corporate-hosted "houses" — can be accessed through a virtual atrium.

Undoubtedly, many of the panels will have Houston representatives considering Houston's dominance in the industry, but here are five innovation-focused events you can't miss during CERAWeek that feature Houstonians.

Monday — New Horizons for Energy & Climate Research

The COVID-19 pandemic has made vivid and real the risks of an uncontrolled virus. Risks posed by climate change are also becoming more palpable every day. At the forefront of understanding these risks, universities are developing solutions by connecting science, engineering, business, and public policy disciplines. Along with industry and governments, universities are critical to developing affordable and sustainable solutions to meet the world's energy needs and achieve net-zero emission goals. Can the dual challenge of more energy and lower emissions be met? What is some of the most promising energy and climate research at universities? Beyond research, what are the roles and responsibilities of universities in the energy transition?

Featuring: Kenneth B. Medlock, III, James A. Baker, III, and Susan G. Baker Fellow In Energy And Resource Economics, Baker Institute and Senior Director, Center For Energy Studies at Rice University

Catch the panel at 1 pm on Monday, March 1. Learn more.

Tuesday — Conversations in Cleantech: Powering the energy transition

With renewables investment outperforming oil and gas investment for the first time ever in the middle of a pandemic, 2020 was a tipping point in the Energy Transition. Low oil prices intensified energy majors' attention on diversification and expansion into mature and emerging clean technologies such as battery storage, low-carbon hydrogen, and carbon removal technologies. Yet, the magnitude of the Energy Transition challenge requires an acceleration of strategic decisions on the technologies needed to make it happen, policy frameworks to promote public-private partnerships, and innovative investment schemes.

Three Cleantech leaders share their challenges, successes, and lessons learned at the forefront of the Energy Transition. What is their vision and strategy to accelerate lowering emissions and confronting climate change? Can companies develop clear strategies for cleantech investments that balance sustainability goals and corporate returns? What is the value of increasing leadership diversity for energy corporations? Can the Energy Transition be truly transformational without an inclusive workforce and a diverse leadership?

Featuring: Emily Reichert, CEO of Greentown Labs, which is opening a location in Houston this year.

The event takes place at 11:30 am on Tuesday, March 2. Learn more.

Wednesday — Rice Alliance Venture Day at CERAWeek

The Rice Alliance for Technology and Entrepreneurship pitch event will showcase 20 technology companies with new solutions for the energy industry. Each presentation will be followed by questions from a panel of industry experts.

Presenting Companies: Acoustic Wells, ALLY ENERGY, Bluefield Technologies, Cemvita Factory, Connectus Global, Damorphe, Ovopod Ltd., DrillDocs, GreenFire Energy, inerG, Locus Bio-Energy Solutions, Nesh, Pythias Analytics, REVOLUTION Turbine Technologies, Revterra, ROCSOLE, Senslytics, Subsea Micropiles, Syzygy Plasmonics, Transitional Energy, and Universal Subsea.

The event takes place at 9 am on Wednesday, March 3. Learn more.

Thursday — How Will the Energy Innovation Ecosystem Evolve?

Although the cleantech innovation ecosystem—research institutions, entrepreneurs, financiers, and support institutions—is diverse and productive, converting cleantech discoveries and research breakthroughs into commercially viable, transformative energy systems has proven difficult. With incumbent energy systems economically efficient and deeply entrenched, cleantech innovation faces a fundamental dilemma—the scale economies necessary to compete require a large customer base that does not yet exist. How is our clean energy innovation ecosystem equipped to be transformative? What needs to be strengthened? Is it profitable to focus on individual elements, or should we consider the system holistically, and reframe our expectations?

Featuring: Barbara Burger, vice president of innovation at Chevron and president at Chevron Technology Ventures

The event takes place at 7:30 am on Thursday, March 4. Learn more.

Friday — Cities: Managing crises & the future of energy

Houston is the capital of global energy and for the past four decades the home of CERAWeek. Mayor Sylvester Turner will share lessons from the city's experience with the pandemic, discuss leadership strategies during times of crisis, and explore Houston's evolving role in the new map of energy.

The event takes place at 8 am on Friday, March 5. Learn more.

Rice University develops 2 new innovative tools to detect COVID-19

pandemic tech

Rice University is once again spearheading research and solutions in the ongoing battle with COVID-19. The university announced two developing innovations: a "real-time sensor" to detect the virus and a cellphone tool that can detect the disease in less than an hour.

Sensing COVID
Researchers at Rice received funding for up to $1 million to develop the real-time sensor that promises to detect minute amounts of the airborne virus.

Teams at Rice and the University of Texas Medical Branch (UTMB) at Galveston are working to develop a thin film electronic device that senses as few as eight SARS-CoV-2 viruses in 10 minutes of sampling air flowing at 8 liters per minute, per a press release.

Dubbed the Real-Time Amperometric Platform Using Molecular Imprinting for Selective Detection of SARS-CoV-2 (or, RAPID), the project has been funded by the Defense Advanced Research Projects Agency (DARPA), Rice notes. Further funding will be contingent upon a successful demonstration of the technology.

Attacking with an app
Meanwhile, the university announced that its engineers have developed a plug-in tool that can diagnose COVID-19 in around 55 minutes. The tool utilizes programmed magnetic nanobeads and a tool that plugs into a basic cellphone.

First, a stamp-sized microfluidic chip measures the concentration of SARS-CoV-2 nucleocapsid protein in blood serum from a standard finger prick.

Then, nanobeads bind to SARS-CoV-2 N protein, a biomarker for COVID-19, in the chip and transport it to an electrochemical sensor that detects minute amounts of the biomarker. Paired with a Google Pixel 2 phone and a plug-in tool, researchers quickly secured a positive diagnosis.

This, researchers argue, simplifies sample handling compared to swab-based PCR tests that must be analyzed in a laboratory.

"What's great about this device is that it doesn't require a laboratory," said Rice engineer Peter Lillehoj in a statement. "You can perform the entire test and generate the results at the collection site, health clinic or even a pharmacy. The entire system is easily transportable and easy to use."

------

This article originally ran on CultureMap.