Here's what Houston organizations are benefitting from the latest CPRIT funding announcement. Photo via Getty Images

Houston’s Baylor College of Medicine is beefing up its team of cancer researchers.

The college just received $6 million from the state agency Cancer Prevention and Research Institute of Texas (CPRIT) to recruit three cancer researchers: Graham Erwin, Michael Robertson and Dr. Varun Venkataramani. Each researcher is getting $2 million.

In addition, the University of Texas MD Anderson Cancer Center snagged a $2 million CPRIT grant to recruit Simon Eschweiler.

In all, CPRIT recently announced $49 million in cancer research and prevention grants, including nearly $24 million for recruitment of cancer researchers.

Here’s a rundown of the recruitment grants awarded in Houston:

  • Graham Erwin. Erwin is a postdoctoral fellow at Stanford University’s Stanford Cancer Institute. He’s a biologist who specializes in DNA sequencing related to the development of cancer therapeutics and diagnostics.
  • Michael Robertson. Robertson also is a postdoctoral fellow at Stanford. He focuses on molecular and cellular physiology at Stanford’s medical school.
  • Dr. Varun Venkataramani. Venkataramani, a neuroscientist, is a brain tumor researcher at University Hospital Heidelberg, one of the largest hospitals in Germany.
  • Simon Eschweiler. Eschweiler is a research assistant professor at Southern California’s La Jolla Institute for Immunology. He specializes in immunotherapy for cancer patients.

Aside from the recruitment grants, three institutions in the Houston area received nearly $6 million in funding for cancer treatment and prevention programs. Here’s an overview of those grants:

  • Almost $2.5 million for expansion of a program at the University of Texas Medical Branch at Galveston that supplies HPV vaccinations for new mothers.
  • Nearly $2.5 million for an MD Anderson program that promotes physical activity for cancer survivors.
  • Almost $500,000 for an MD Anderson program to increase treatment of tobacco users who are participating in opioid treatment programs.
  • Nearly $500,000 for a University of Houston program designed to help LGBTQ+ Texans lead tobacco-free lives.

“From new research programs, recruitment of preeminent scientists to Texas, pilot studies, new technology, and expanding the reach of successful cancer prevention programs, [the] grants highlight the effect CPRIT is having on not just cancer research and prevention efforts, but on life science infrastructure in Texas,” Wayne Roberts, the organization’s CEO, said in a news release.

These cancer research professionals just got fresh funding from a statewide organization. Photo by Dwight C. Andrews/Greater Houston Convention and Visitors Bureau

Texas nonprofit cancer research funder doles out millions to health professionals moving to Houston

money moves

Thanks in part to multimillion-dollar grants from the Cancer Prevention and Research Institute of Texas, two top-flight cancer researchers are taking key positions at Houston’s Baylor College of Medicine.

Dr. Pavan Reddy and Dr. Michael Taylor each recently received a grant of $6 million from the Cancer Prevention and Research Institute of Texas (CPRIT).

Reddy is leaving his position as chief of hematology-oncology and deputy director at the University of Michigan’s Rogel Cancer Center to become director of the Baylor College of Medicine’s Dan L. Duncan Comprehensive Cancer Center. Dr. C. Kent Osborne stepped down as the center’s director in 2020; Dr. Helen Heslop has been the interim director.

Taylor, a pediatric neurosurgeon at the University of Toronto, is set to become the first-ever director of pediatric neuro-oncology research at Texas Children’s Hospital. The hospital is affiliated with the Baylor College of Medicine. Taylor is an expert in children’s brain tumors.

In all, 11 researchers recruited by three health care institutions in Houston recently received $34 million in CPRIT grants. The nine other grant recipients in Houston are:

  • Dr. Christine Lovly, M.D. Anderson Cancer Center, $4 million. She is co-leader of the Translational Research and Interventional Oncology Research Program at the Vanderbilt-Ingram Cancer Center in Nashville.
  • Hans Renata, Rice University, $4 million. He is an associate professor at UF Scripps Biomedical Research in Jupiter, Florida.
  • Mingjie Dai, Rice University, $2 million. He is a technology development fellow at Harvard University’s Weiss Institute for Biologically Inspired Engineering.
  • William Hudson, Baylor College of Medicine, $2 million. He is a postdoctoral fellow at Emory University in Atlanta.
  • Deepshika Ramanan, M.D. Anderson Cancer Center, $2 million. She is a research fellow in immunology at Harvard Medical School.
  • Jason Schenkel, M.D. Anderson Cancer Center, $2 million. He is an instructor in pathology at Harvard’s Brigham and Women’s Hospital.
  • Aria Vaishnavi, M.D. Anderson Cancer Center, $2 million. She is a postdoctoral scholar at the University of Utah’s Huntsman Cancer Institute.
  • Samantha Yruegas, Rice University, $2 million. She is a postdoctoral research associate at Princeton University in New Jersey.
  • Qian Zhu, Baylor College of Medicine, $2 million. He is a research fellow at Harvard’s Dana-Farber Cancer Institute.

A CPRIT committee recently approved 17 recruitment grants totaling nearly $48 million for cancer research institutions in Texas.

“CPRIT’s mission is to invest in the research prowess of Texas institutions while expediting breakthroughs in cancer cures and prevention … . These 17 highly respected researchers will join an impressive roster of cancer-fighters who call the Lone Star State home,” says Wayne Roberts, CEO of CPRIT.

Since its creation, CPRIT has awarded $2.9 billion in grants to cancer research organizations around the state.

A UH researcher has fresh funding to support her life-saving, cancer-fighting drug. Photo via UH.edu

University of Houston researcher receives grant for first-of-its-kind breast cancer drug

funds granted

A University of Houston researcher was awarded a $2 million grant from the Cancer Prevention and Research Institute of Texas to develop a new drug that will initially target breast cancer, the university announced this month.

The drug is intended to impact a type of traditionally "undraggable" target of cancer, known as intrinsically disordered proteins (IDPs), which researchers have yet to gain fundamental understanding of. According to the release, approximately 70 percent of proteins impacted by cancer are considered IDPs.

Gül Zerze, an assistant professor in the William A. Brookshire Department of Chemical and Biomolecular Engineering at the UH Cullen College of Engineering, has specialized in research on the computational modeling and simulations of these IDPs, and is one of the 12 cancer researchers awarded such a grant by the CPRIT.

Candidates for Zerze's drug will be rapidly tested through collaborations within UH and MD Anderson, according to the statement.

Gül Zerze is an assistant professor in the William A. Brookshire Department of Chemical and Biomolecular Engineering. Photo via UH.edu

"One out of nearly six Texas women diagnosed with breast cancer will die of the disease. Importantly, Texan women of color are disproportionately impacted by the high mortality rate compared to white Texan women (41 percent higher mortality rate reported for Black Texan women in 2016)," Zerze said in a statement. "This high mortality rate, despite the substantial efforts made for early diagnosis, calls for better therapeutics urgently.”

Zerze was recruited by the CPRIT to come to UH from Princeton last November. She was part of the latest class of recruitment grants from the organization, totaling $38 million to “form a critical ecosystem of distinguished cancer-fighting talent” in Texas.

According to the CPRIT website, the organization has recruited 263 cancer researchers and their labs to Texas over the years. First launched in 2007, the CPRIT is now a $6 billion, 20-year initiative that's allowing institutions in Houston compete against the likes of Harvard and Stanford universities, and the Cleveland and Mayo clinics.

“The ideas proposed here will save lives," Zerze said in the statement. "And the products that will come out of this project have a great potential for commercialization and founding companies to contribute to the Texas economy.”

Allterum Therapeutics Inc., a portfolio company of Fannin Innovation Studio, is using the funds to prepare for clinical trials. Photo via Getty Images

Houston biotech startup raises millions to battle pediatric cancer

fresh funds

Allterum Therapeutics Inc. has built a healthy launchpad for clinical trials of an immunotherapy being developed to fight a rare form of pediatric cancer.

The Houston startup recently collected $1.8 million in seed funding through an investor group associated with Houston-based Fannin Innovation Studio, which focuses on commercializing biotech and medtech discoveries. Allterum has also brought aboard pediatric oncologist Dr. Philip Breitfeld as its chief medical officer. And the startup, a Fannin spinout, has received a $2.9 million grant from the Cancer Prevention Research Institute of Texas.

The funding and Breitfeld's expertise will help Allterum prepare for clinical trials of 4A10, a monoclonal antibody therapy for treatment of cancers that "express" the interleukin-7 receptor (IL7R) gene. These cancers include pediatric acute lymphoblastic leukemia (ALL) and some solid-tumor diseases. The U.S. Food and Drug Administration (FDA) has granted "orphan drug" and "rare pediatric disease" designations to Allterum's monoclonal antibody therapy.

If the phrase "monoclonal antibody therapy" sounds familiar, that's because the FDA has authorized emergency use of this therapy for treatment of COVID-19. In early January, the National Institute of Allergy and Infectious Diseases announced the start of a large-scale clinical trial to evaluate monoclonal antibody therapy for treatment of mild and moderate cases of COVID-19.

Fannin Innovation Studio holds exclusive licensing for Allterum's antibody therapy, developed at the National Cancer Institute. Aside from the cancer institute, Allterum's partners in advancing this technology include the Therapeutic Alliance for Children's Leukemia, Baylor College of Medicine, Texas Children's Hospital, Children's Oncology Group, and Leukemia & Lymphoma Society.

Although many pediatric patients with ALL respond well to standard chemotherapy, some patients continue to grapple with the disease. In particular, patients whose T-cell ALL has returned don't have effective standard therapies available to them. Similarly, patients with one type of B-cell ALL may not benefit from current therapies. Allterum's antibody therapy is designed to effectively treat those patients.

Later this year, Allterum plans to seek FDA approval to proceed with concurrent first- and second-phase clinical trials for its immunotherapy, says Dr. Atul Varadhachary, managing partner of Fannin Innovation Studio, and president and CEO of Allterum. The cash Allterum has on hand now will go toward pretrial work. That will include the manufacturing of the antibody therapy by Japan's Fujifilm Diosynth Biotechnologies, which operates a facility in College Station.

"The process of making a monoclonal antibody ready to give to patients is actually quite expensive," says Varadhachary, adding that Allterum will need to raise more money to carry out the clinical trials.

The global market for monoclonal antibody therapies is projected to exceed $350 billion by 2027, Fortune Business Insight says. The continued growth of these products "is expected to be a major driver of overall biopharmaceutical product sales," according to a review published last year in the Journal of Biomedical Science.

One benefit of these antibody therapies, delivered through IV-delivered infusions, is that they tend to cause fewer side effects than chemotherapy drugs, the American Cancer Society says.

"Monoclonal antibodies are laboratory-produced molecules engineered to serve as substitute antibodies that can restore, enhance or mimic the immune system's attack on cancer cells. They are designed to bind to antigens that are generally more numerous on the surface of cancer cells than healthy cells," the Mayo Clinic says.

Varadhachary says that unlike chemotherapy, monoclonal antibody therapy takes aim at specific targets. Therefore, monoclonal antibody therapy typically doesn't broadly harm healthy cells the way chemotherapy does.

Allterum's clinical trials initially will involve children with ALL, he says, but eventually will pivot to children and adults with other kinds of cancer. Varadhachary believes the initial trials may be the first cancer therapy trials to ever start with children.

"Our collaborators are excited about that because, more often than not, the cancer drugs for children are ones that were first developed for adults and then you extend them to children," he says. "We're quite pleased to be able to do something that's going to be important to children."

Three health and tech research projects coming out of the Houston area have received grants to continue their work. Getty Images

These 3 Houston-area researchers receive millions in grants for ongoing innovation projects

Research roundup

Money makes the world go 'round, and that's certainly the case with research projects. Grants are what drives research at academic institutions across the country and fuel the next great innovations.

These three projects coming out of Houston-area universities were all granted multimillion-dollar sums in order to continue their health tech, cancer-prevention, and even electric vehicle battery research projects,

University of Houston's $3.2 million grant for its next-generation micro CT scan

Associate professor of physics Mini Das developed a better way to approach CT scans. Photo via uh.edu

In an effort to improve imaging and lower radiation, Mini Das, associate professor of physics at the University of Houston, is moving the needle on introducing the next generation of micro computed tomography (CT) imaging. Das recently received a five-year, $3.2 million grant from the National Institute of Biomedical Imaging and Bioengineering to help move along her work in this field.

"This has the potential to transform the landscape of micro-CT imaging," says Das in a news release.

Das is responsible for developing the theory, instrumentation and algorithms for spectral phase-contrast imaging (PCI) that allows for lower radiation with higher image details, according to the release.

"Current X-ray and CT systems have inherent contrast limitations and dense tissue and cancer can often look similar. Even if you increase the radiation dose, there is a limit to what you can see. In addition, image noise becomes significant when increasing resolution to see fine details, often desirable when scanning small objects," says Das.

Rice University researcher's $2.4 million grant to advance on car batteries

This company’s machine learning programs are making driving in Houston safer — and cheaper

A Rice University scientist is looking to optimize car batteries. Pexels

A Rice University scientist is working toward improving batteries for electric vehicles. Materials scientist Ming Tang and his colleagues — backed by a $2.4 million grant from the United States Advanced Battery Consortium — are working on a project led by Worcester Polytechnic Institute (WPI) in Massachusetts, which will run for 36 months and will focus on low-cost and fast-charging batteries.

"Traditional battery electrodes are prepared by the slurry casting method and usually have uniform porosity throughout the electrode thickness," says Tang, an assistant professor of materials science and nanoengineering, in a news release. "However, our earlier modeling study shows that an electrode could have better rate performance by having two or more layers with different porosities.

"Now with the Missouri University of Science and Technology and WPI developing a new dry printing method for battery electrode fabrication, such layered electrodes can be manufactured relatively easily," he said. Tang's group will use modeling to optimize the structural parameters of multilayer electrodes to guide their fabrication.

The academics will also work with a manufacturer, Microvast, that will assemble large-format pouch cells using layered electrodes and evaluate the electrochemical performance against the program goals, according to the release.

"The public/private partnership is critical to steer the research performed at universities," Tang says. "It helps us understand what matters most to commercial applications and what gaps remain between what we have and what is needed by the market. It also provides valuable feedback and gives the project access to the state-of-the-art commercial battery fabrication and testing capabilities."


Texas A&M faculty member's $5 million grant for cancer research

Tanmay Lele of Texas A&M University is looking at how cells react to mechanical forces in cancer. Photo via tamu.edu

Tanmay Lele, a new faculty member in Texas A&M University's Department of Biomedical Engineering, received a $5 million Recruitment of Established Investigators grant from the Cancer Prevention and Research Institute of Texas (CPRIT) in May to research how cancer progresses.

More specifically, Lele's research focuses on mechanobiology and how cells sense external mechanical forces as well as how they generate mechanical forces, and how these mechanical forces impact cell function, according to a news release from A&M.

"The nuclei in normal tissue have smooth surfaces, but over time the surfaces of cancer nuclei become irregular in shape," Lele says in the release. "Now, why? Nobody really knows. We're still at the tip of the iceberg at trying to figure this problem out. But nuclear abnormalities are ubiquitous and occur in all kinds of cancers — breast, prostate and lung cancers."

Lele will work from two laboratories — one in College Station and one in the Texas A&M Health Science Center's Institute of Biosciences & Technology in Houston. THe will collaborate with Dr. Michael Mancini and Dr. Fabio Stossi from Baylor College of Medicine.

"Like any other basic field, we are trying to make discoveries with the hope that they will have long-term impacts on human health," Lele says.

Five Houston research centers have received funds from the Cancer Prevention and Research Institute of Texas in its most recent round of grants. Photo by Dwight C. Andrews/Greater Houston Convention and Visitors Bureau

Houston cancer-fighting researchers granted over $30 million from statewide organization

just granted

The Cancer Prevention and Research Institute of Texas has again granted millions to Texas institutions. Across the state, cancer-fighting scientists have received 55 new grants totaling over $78 million.

Five Houston-area institutions — Baylor College of Medicine, the University of Houston, The University of Texas Medical Branch at Galveston, The University of Texas Health Science Center at Houston, and the The University of Texas MD Anderson Cancer Center — have received around $30 million of that grand total.

"These awards reflect CPRIT's established priorities to invest in childhood cancer research, address population and geographic disparities, and recruit top cancer research talent to our academic institutions," says Wayne Roberts, CPRIT CEO, in a news release. "I'm excited about all the awardees, particularly those in San Antonio, a region that continues expand their cancer research and prevention prowess. San Antonio is poised to have an even greater impact across the Texas cancer-fighting ecosystem."

Four grants went to new companies that are bringing new technologies to the market. Two companies with a presence in Houston — Asylia Therapeutics and Barricade Therapeutics Corp. — received grants in this category.

Last fall, CPRIT gave out nearly $136 million to Texas researchers, and, to date, the organization has granted $2.49 billion to Texas research institutions and organizations.

Here's what recent grants were made to Houston institutions.

Baylor College of Medicine

  • $900,000 granted for Feng Yang's research in targeting AKT signaling in MAPK4-high Triple Negative Breast Cancer (Individual Investigator Award)
  • $897,527 Hyun-Sung Lee's research for Spatial Profiling of Tumor-Immune Microenvironment by Multiplexed Single Cell Imaging Mass Cytometry (Individual Investigator Award)
  • $899,847 for Joshua Wythe's research in targeting Endothelial Transcriptional Networks in GBM (Individual Investigator Award)

University of Houston

  • $890,502 for Matthew Gallagher's research in Transdiagnostic Cognitive Behavioral Therapy for Smokers With Anxiety and Depression (Individual Investigator Research Award for Prevention and Early Detection)
  • $299,953 for Lorraine Reitzel's research in Taking Texas Tobacco Free Through a Sustainable Education/Training Program Designed for Personnel Addressing Tobacco Control in Behavioral Health Settings (Dissemination of CPRIT-Funded Cancer Control Interventions Award)

The University of Texas Medical Branch at Galveston

  • $1,993,096 for Abbey Berenson's research in maximizing opportunities for HPV vaccination in medically underserved counties of Southeast Texas (Expansion of Cancer Prevention Services to Rural and Medically Underserved Populations)

The University of Texas Health Science Center at Houston

  • $900,000 for Melissa Aldrich's research on "Can Microsurgeries Cure Lymphedema? An Objective Assessment" (Individual Investigator Award)
  • $900,000 for John Hancock's research in KRAS Spatiotemporal Dynamics: Novel Therapeutic Targets (Individual Investigator Award)
  • $900,000 for Nami McCarty's research in targeting Multiple Myeloma Stem Cell Niche (Individual Investigator Award)
  • $1.96 million for Paula Cuccaro's research in Expanding "All for Them": A comprehensive school-based approach to increase HPV vaccination through public schools (Expansion of Cancer Prevention Services to Rural and Medically Underserved Populations)

The University of Texas MD Anderson Cancer Center

  • $900,000 for Laurence Court's research in Artificial Intelligence for the Peer Review of Radiation Therapy Treatments
  • $900,000 for John deGroot's research in targeting MEK in EGFR-Amplified Glioblastoma (Individual Investigator Award)
  • $900,000 for Don Gibbons's research in Investigating the Role ofCD38 as a Mechanism of Acquired Resistance to Immune Checkpoint Inhibitors in Lung Cancer (Individual Investigator Award)
  • $900,000 for John Heymach's research in Molecular Features Impacting Drug Resistance in Atypical EGFR Exon 18 and Exon 20 Mutant NSCLC and the Development of Novel Mutant- Selective Inhibitors (Individual Investigator Award)
  • $900,000 for Zhen Fan's research in Development of a Novel Strategy for Tumor Delivery of MHC-I-Compatible Peptides for Cancer Immunotherapy (Individual Investigator Award)
  • $900,000 for Jin Seon Im's research in off the shelf, Cord-Derived iNK T cells Engineered to Prevent GVHD and Relapse After Hematopoietic Stem Cell Transplantation (Individual Investigator Award)
  • $900,000 for Jae-il Park's research in CRAD Tumor Suppressor and Mucinous Adenocarcinoma (Individual Investigator Award)
  • $900,000 for Helen Piwnica-Worms's research in Single-Cell Evaluation to Identify Tumor-stroma Niches Driving the Transition from In Situ to Invasive Breast Cancer (Individual Investigator Award)
  • $898,872 for Kunal Rai's research in Heterogeneity of Enhancer Patterns in Colorectal Cancers- Mechanisms and Therapy (Individual Investigator Award)
  • $900,000 for Ferdinandos Skoulidis's research in Elucidating Aberrant Splicing-Induced Immune Pathway Activation in RBMl0-Deficient KRAS-Mutant NSCLC and Harnessing Its Potential for Precision Immunotherapy (Individual Investigator Award)
  • $887,713 for Konstantin Sokolov's research in High-Sensitivity 19F MRI for Clinically Translatable Imaging of Adoptive NK Cell Brain Tumor Therapy (Individual Investigator Award)
  • $900,000 for Liuqing Yang's research in Adipocyte-Producing Noncoding RNA Promotes Liver Cancer Immunoresistance (Individual Investigator Award)
  • $1.44 million for Eugenie Kleinerman's research in Doxorubicin-Induced Cardiotoxicity: Defining Blood and Echocardiogram Biomarkers in a Mouse Model and AYA Sarcoma Patients for Evaluating Exercise Interventions (Individual Investigator Award for Cancer in Children and Adolescents)
  • $2.4 million for Arvind Dasari's research in Circulating Tumor DNA- Defined Minimal Residual Disease in Colorectal Cancer (Individual Investigator Research Award for Clinical Translation)
  • Targeting Alterations of the NOTCH! Pathway in Head and Neck Squamous Cell Carcinoma (HNSCC)(Faye Johnson) - $1.2 million (Individual Investigator Research Award for Clinical Translation)
  • $2.07 million for Florencia McAllister's research in Modulating the Gut- Tumor Microbial Axis to Reverse Pancreatic Cancer Immunosuooression (Individual Investigator Research Award for Clinical Translation)
  • $2 million to recruit Eric Smith, MD, PhD, to The University of Texas MD Anderson Cancer Center from Memorial Sloan Kettering Cancer Center (Recruitment of First-Time, Tenure-Track Faculty Members Award)
  • $2 million for Karen Basen-Engquist's research in Active Living After Cancer: Combining a Physical Activity Program with Survivor Navigation (Expansion of Cancer Prevention Services to Rural and Medically Underserved Populations)


Seed Awards for Product Development Research

  • Houston and Boston-based Asylia Therapeutics's Jeno Gyuris was granted $3 million for its development of a Novel Approach to Cancer Immunotherapy by Targeting Extracellular Tumor- derived HSP70 to Dendritic Cells
  • Houston-based Barricade Therapeutics Corp.'s Neil Thapar was granted $3 million for its development of a First-In-Class Small Molecule, TASIN, for Targeting Truncated APC Mutations for the Treatment of Colorectal Cancer (CRC)
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

New report shows surge in startup activity in Houston and across Texas

by the numbers

Houston and the rest of Texas are experiencing a boom in the creation of startups.

One barometer of growth in startup activity: The Houston metro area saw a 92 percent rise from 2024 to 2025 in the number of account applications submitted to Bluevine, a banking platform for small businesses.

New data from Bluevine also shows healthy year-over-year growth in account applications submitted by entrepreneurs in Texas’ three other major metros:

  • 242 percent growth in the San Antonio area
  • 153 percent growth in the Austin area
  • 28 percent growth in Dallas-Fort Worth

Further evidence of Texas’ uptick in business creation comes from a new state-by-state analysis of U.S. Census Bureau data by digital mailbox provider iPostal1.

From 2019 to 2024, the number of new business applications jumped 60 percent in Texas, according to the iPostal1 analysis. Wyoming tops the list, with a five-year growth rate of 216 percent.

“The U.S. has no shortage of ambition, but opportunity isn’t spread evenly,” says Jeff Milgram, founder and CEO of iPostal1. “In states like New York, Florida, and Texas, entrepreneurship is booming — people are starting businesses, taking risks, and finding opportunity.”

“Other states are still catching up,” Milgram adds. “Sometimes it’s access to funding, sometimes local policy, or just the confidence that new ventures will be supported.”

Women own many of the new businesses sprouting in Texas, according to a new analysis of 2024-25 data from the U.S. Small Business Administration. The analysis, done by SimpleTiger, a marketing agency for software-as-a-service (SaaS), shows Texas ranks eighth for the highest concentration of women entrepreneurs (109 per 1,000 female residents) among all states. That rate is three percent higher than the national average.

“Women entrepreneurs are no longer a side story in small business growth; they’re a leading indicator of where local economies are expanding next,” SimplyTiger says. “When women-owned business density is high, it usually signals stronger access to customers, networks, and startup pathways that make it easier to launch and keep going.”

In a December news release, Gov. Greg Abbott highlights Texas’ nation-leading job gains over the past 12 months, driven by employers small and large.

“From innovative startups to Fortune 500 corporations, job-creating businesses invest with confidence in Texas,” Abbott says. “With our strong and growing workforce, we will continue to expand career and technical training programs for better jobs and bigger paycheck opportunities for more Texans.”

Houston poised to add 30,900 new jobs in 2026, forecast says

jobs forecast

Buoyed by the growing health care sector, the Houston metro area will add 30,900 jobs in 2026, according to a new forecast from the Greater Houston Partnership.

The report predicts the Houston area’s health care sector will tack on 14,000 jobs next year, which would make it the No. 1 industry for local job growth. The 14,000 health care jobs would represent 45 percent of the projected 30,900 new jobs. In the job-creation column, the health care industry is followed by:

  • Construction: addition of 6,100 jobs in 2026
  • Public education: Addition of 5,800 jobs
  • Public administration: Addition of 5,000 jobs

At the opposite end of the regional workforce, the administrative support services sector is expected to lose 7,500 jobs in 2026, preceded by:

  • Manufacturing: Loss of 3,400 jobs
  • Oil-and-gas extraction: Loss of 3,200 jobs
  • Retail: Loss of 1,800 jobs

“While current employment growth has moderated, the outlook remains robust and Houston’s broader economic foundation remains strong,” GHP president and CEO Steve Kean said in the report.

“Global companies are choosing to invest in Houston — Eli Lilly, Foxconn, Inventec, and others — because they believe in our workforce and our long-term trajectory,” Kean added. “These commitments reinforce that Houston is a place where companies can scale and where our economy continues to demonstrate its resilience as a major engine for growth and opportunity. These commitments and current prospects we are working on give us confidence in the future growth of our economy.”

The Greater Houston Partnership says that while the 30,900-job forecast falls short of the region’s recent average of roughly 50,000 new jobs per year, it’s “broadly in line with the muted national outlook” for employment gains anticipated in 2026.

“Even so, Houston’s young, skilled workforce and strong pipeline of major new projects should help offset energy sector pressures and keep regional growth on pace with the nation,” the report adds.

The report says that even though the health care sector faces rising insurance costs, which might cause some people to delay or skip medical appointments, and federal changes in Medicare and Medicaid, strong demographic trends in the region will ensure health care remains “a key pillar of Houston’s economy.”

As for the local oil-and-gas extraction industry, the report says fluctuations and uncertainty in the global oil-and-gas market will weigh on the Houston sector in 2026. Furthermore, oil-and-gas layoffs partly “reflect a longer-term trend as companies in the sector move toward greater efficiency using fewer workers to produce similar volumes,” according to the report.

Construction underway on first-of-its-kind 3D-printed community in Houston

Building a Sustainable Future

Houston is putting itself front-and-center to help make sustainable, affordable housing a reality for 80 homeowners in an innovative scalable housing community. Developer Cole Klein Builders has partnered with HiveASMBLD to pioneer what’s touted as the world’s first large-scale, one-of-a-kind, affordable housing development using 3D printing technology — merging robotics, design, and sustainability.

Located across from Sterling Aviation High School, near Hobby Airport, Zuri Gardens will offer 80 two-bedroom, two-bathroom homes of approximately 1,360 square feet, situated in a park-like setting that includes walking trails and a community green space.

Homes in Zuri Gardens will hit the market in early summer of 2026. Final pricing has yet to be determined, but Cole Klein Builders expects it to be in the mid-to-high 200s.

Interestingly, none of the homes will offer garages or driveways, which the developer says will provide a cost savings of $25,000-$40,000 per home. Instead of parking for individual units, 140 parking spaces will be provided.

Each two-story home is comprised of a ground floor printed by HiveASMBLD, using a proprietary low-carbon cement alternative by Eco Material Technologies that promises to enhance strength and reduce CO2 emissions. The hybrid homes will have a second floor built using engineered wood building products by LP Building Solutions. Overall, the homes are designed to be flood, fire, and possibly even tornado-proof.

The "Zuri" in Zuri Gardens is the Swahili word for “beautiful,” a choice that is fitting considering that the parks department will be introducing a five acre park to the project — with 3D-printed pavilions and benches — plus, a three-acre farm is located right across the street. The Garver Heights area is classified as a food desert, which means that access to fresh food is limited. Residents will have access to the farm’s fresh produce, plus opportunities to participate in gardening and nutrition workshops.

zuri gardens 3d-printed housing community First large-scale affordable housing project of 3D-printed homes rises in Houston Zuri Gardens is getting closer to completion. Courtesy rendering

Cole Klein Builders created Zuri Gardens in partnership with the Houston Housing Community Development Department, who provided infrastructure reimbursements for the roads, sewer lines, and water lines. In return, CKB agreed to push the purchase prices for the homes as low as possible.

Zuri Gardens also received $1.8 million dollars from the Uptown Tourism Bond, 34 percent of which must be used with minority-owned small businesses. Qualified buyers must fit a certain area of median income according to HUD guidelines, and homes must be owner-occupied at all times. Zuri Gardens already has an 800-person waitlist.

“They’re trying to bridge that gap to make sure there is a community for the homebuyers who need it — educators, law enforcement, civil workers, etc.,” Cole Klein Builders’ co-principal Vanessa Cole says. “You have to go through a certification process with the housing department to make sure that your income is in alignment for this community. It has been great, and everyone has been really receptive.”

Cole has also brought insurance underwriters to visit the site and to help drive premiums below regular rates for Houston homeowners, as claim risks for one of the 3D homes are extremely low.

Tim Lankau, principal at HiveASMBLD, notes that the 3D hybrid design allows for a more traditional appearance, while having the benefits of a concrete structure: “That’s where the floodwaters would go, that’s where you can hide when there’s a tornado, and that’s where termites would eat. So you get the advantages of it while having a traditionally-framed second floor.”

It’s important to note that Zuri Gardens is not located in a flood prone area, nor did it flood during Hurricane Harvey — being flood-proof is merely a perk of a cement house. The concrete that Eco Material Technologies developed is impervious. The walls are printed into hollow forms, which house rebar, plumbing, and accessible conduits for things like electrical lines and smart house features. Those walls are then filled with a foamcrete product that expands to form a “monolithic concrete wall.”

David McNitt, of Eco Material Technologies, explains that his proprietary concrete is made of PCV, and contains zero Portland cement. Instead, McNitt’s cement is made from coal ash and is 99 percent green (there are a few chemicals added to the ash). Regardless, it’s made from 100 percent waste products.

“This is a product that has really been landfilled before,” says McNitt. “It’s coal ash, and it’ll set within 8-10 minutes. It’s all monolithic, and one continuous pour — it’s literally all one piece.”

Eco Material Technologies’ concrete product is impressively durable. A traditional cinderblock wall will crush at around 800 psi, while this material crushes at about 8,000 psi.

“It’s ten times stronger than a cinderblock wall that can withstand hurricanes,” claims McNitt. “I don’t think you’d even notice a hurricane. It’ll be really quiet inside, too — so you won’t get interrupted during your hurricane party. It’s way over-engineered, it really is.”

The second story is built using weatherproof and eco-friendly products by LP Building Solutions. Their treated, engineered wood products come with a 50 year warranty, and their radiant barrier roof decking product blocks 97% of UV rays, and keeps attic temperatures 30° cooler than traditional building materials. These materials, combined with the concrete first floor, will keep heating and cooling costs low — something the folks at HiveASMBLD refer to as “thermal mass performance.”

---

This article originally appeared on CultureMap.com.