Baylor College of Medicine, Texas A&M and University of Houston researchers have designed SPACe, a new open-source image analysis platform. Photo via Getty Images

What do labs do when faced with large amounts of imaging data? Powerful cloud computing systems have long been the answer to that question, but a new riposte comes from SPACe.

That’s the name of a new open-source image analysis platform designed by researchers at Baylor College of Medicine, Texas A&M University and the University of Houston.

SPACe, or Swift Phenotypic Analysis of Cells, was created to be used on standard computers that even small labs can access, meaning cellular analysis using images produced through cell painting has a lower barrier to entry than ever before.

“The pharmaceutical industry has been accustomed to simplifying complex data into single metrics. This platform allows us to shift away from that approach and instead capture the full diversity of cellular responses, providing richer, more informative data that can reveal new avenues for drug development,” Michael Mancini, professor of molecular and cellular biology and director of the Gulf Coast Consortium Center for Advanced Microscopy and Image Informatics co-located at Baylor College of Medicine and TAMU Institute for Bioscience and Technology.

SPACe is not only accessible because of its less substantial computational needs. Because the platform is open-source, it’s available to anyone who needs it. And it can be used by academic and pharmaceutical researchers alike.

“The platform allows for the identification of non-toxic effects of drugs, such as alterations in cell shape or effects on specific organelles, which are often overlooked by traditional assays that focus largely on cell viability,” says Fabio Stossi, currently a senior scientist with St. Jude Children’s Research Hospital, the lead author who was at Baylor during the development of SPACe.

The platform is a better means than ever of analyzing thousands of individual cells through automated imaging platforms, thereby better capturing the variability of biological processes. Through that, SPACe allows scientists an enhanced understanding of the interactions between drugs and cells, and does it on standard computers, translating to scientists performing large-scale drug screenings with greater ease.

"This tool could be a game-changer in how we understand cellular biology and discover new drugs. By capturing the full complexity of cellular responses, we are opening new doors for drug discovery that go beyond toxicity,” says Stossi.

And the fact that it’s open-source allows scientists to access SPACe for free right now. Researchers interested in using the platform can access it through Github at github.com/dlabate/SPACe. This early version could already make waves in research, but the team also plans to continually improve their product with the help of collaborations with other institutions.

Colossal Biosciences specializes in genetic engineering technology designed to bring back extinct animals or protect various species. Photo courtesy Colossal Biosciences

Biosciences startup becomes Texas' first decacorn after latest funding

Colossal News

A Dallas-based biosciences startup whose backers include millionaire investors from Austin and Dallas has reached decacorn status — a valuation of at least $10 billion — after hauling in a series C funding round of $200 million, the company announced this month. Colossal Biosciences is reportedly the first Texas startup to rise to the decacorn level.

Colossal, which specializes in genetic engineering technology designed to bring back or protect various species, received the $200 million from TWG Global, an investment conglomerate led by billionaire investors Mark Walter and Thomas Tull. Walter is part owner of Major League Baseball’s Los Angeles Dodgers, and Tull is part owner of the NFL’s Pittsburgh Steelers.

Among the projects Colossal is tackling is the resurrection of three extinct animals — the dodo bird, Tasmanian tiger and woolly mammoth — through the use of DNA and genomics.

The latest round of funding values Colossal at $10.2 billion. Since launching in 2021, the startup has raised $435 million in venture capital.

In addition to Walter and Tull, Colossal’s investors include prominent video game developer Richard Garriott of Austin and private equity veteran Victor Vescov of Dallas. The two millionaires are known for their exploits as undersea explorers and tourist astronauts.

Aside from Colossal’s ties to Dallas and Austin, the startup has a Houston connection.

The company teamed up with Baylor College of Medicine researcher Paul Ling to develop a vaccine for elephant endotheliotropic herpesvirus (EEHV), the deadliest disease among young elephants. In partnership with the Houston Zoo, Ling’s lab at the Baylor College of Medicine has set up a research program that focuses on diagnosing and treating EEHV, and on coming up with a vaccine to protect elephants against the disease. Ling and the BCMe are members of the North American EEHV Advisory Group.

Colossal operates research labs Dallas, Boston and Melbourne, Australia.

“Colossal is the leading company working at the intersection of AI, computational biology, and genetic engineering for both de-extinction and species preservation,” Walter, CEO of TWG Globa, said in a news release. “Colossal has assembled a world-class team that has already driven, in a short period of time, significant technology innovations and impact in advancing conservation, which is a core value of TWG Global.”

Well-known genetics researcher George Church, co-founder of Colossal, calls the startup “a revolutionary genetics company making science fiction into science fact.”

“We are creating the technology to build de-extinction science and scale conservation biology,” he added, “particularly for endangered and at-risk species.”

Baylor College of Medicine received $3.5 million to expand its telehealth platform to improve genomic diagnostics and care for critically ill newborns in underserved neonatal intensive care units in West and South Texas. Photo by Tim Bish on Unsplash

Houston med school lands $3.5M grant to rollout genetic telehealth platform for underserved newborns

money moves

Baylor College of Medicine received $3.5 million to help hospitals in Texas better care for and diagnose some of the state's most vulnerable patients.

The funds come from the National Human Genome Research Institute for the Making Genomics Accessible to Newborns in Texas, or MAGNET, program. They'll be used to adapt BCM's Consultagene telehealth platform to be used in underserved neonatal intensive care units in West and South Texas, according to a statement.

Families in this region of the state currently can travel up to 300 miles to reach the nearest in-state geneticist, according to MAGNET. The program aims to help close that gap through BCM's established remote consultation service. Investigators also plan to create educational videos in English and Spanish to educate providers and patient caregivers on genetic diagnoses.

“Only 20 years ago, less than 3 percent of genetic conditions in newborns could be molecularly diagnosed,” Dr. Brendan Lee, co-principal investigator and professor and chair of the Department of Molecular and Human Genetics and Robert and Janice McNair Endowed Chair in Molecular and Human Genetics at BCM, says in a statement. “Today, with routine genomic tests at academic medical centers, more than one-third of these cases can be diagnosed with state-of-the-art approaches. Unfortunately, many babies born at smaller hospitals lack access to genetic evaluation and testing, remain undiagnosed and are unable to benefit from early personalized medical treatment.”

BCM has already used Consultagene to improve care for children with rare diseases at the Texas-Mexico border. In this latest program, BCM will develop a consortium of partners at underserved NICUs in the area. On-site providers will be trained on genomic medicine and creating personalized treatments for patients with genetic diseases. Baylor researchers will also study the program's impact from the perspectives of the patients, families, and providers.

“By studying how access to advanced genomics services affects critically ill newborns and those involved in their care, the MAGNET program seeks to develop best practices for implementing cost-effective, comprehensive genomic platforms like Consultagene in under-resourced settings. Understanding how best to implement programs like this can inform broader efforts to close gaps in healthcare access and equity,” Dr. Stacey Pereira, associate professor in the Center for Medical Ethics and Health Policy at Baylor and co-principal investigator, adds.

The MAGNET program is focused on finding ways to use low-cost whole genome and RNA sequencing technologies to better diagnose sick newborns in Level III and Level IV NICUs in Texas.

This fall, Baylor secured $50 million in donations to construct the Lillie and Roy Cullen Tower to house its School of Medicine and the School of Health Professions. It's set for completion next year.

Rice University, Baylor College of Medicine, and Houston Methodist have awarded a total of $50,000 to two projects. Photo by Brandon Martin/Rice University

Houston organizations issue seed grants to fuel AI-driven equity, digital health innovation

fresh funding

Three Houston organizations have doled out seed grants for research initiatives focused on digital health and equity.

Rice University's Educational and Research Initiatives for Collaborative Health (ENRICH) office — in partnership with Baylor College of Medicine and the Houston Methodist Academic Institute — has awarded a total of $50,000 to two projects. BCM and Rice announced three other grants earlier this year.

The seed grants were deployed earlier this year at the Health Equity Workshop from Rice’s Digital Health Initiative and chaired by Momona Yamagami, an assistant professor of electrical and computer engineering at Rice.

“To achieve equitable health outcomes, a comprehensive approach is essential — one that spans all phases of digital health from technology design and development to implementation, dissemination and long-term sustainability,” says Ashutosh Sabharwal, who leads the Digital Health Initiative and serves as Rice’s Ernest Dell Butcher Professor of Engineering and a professor of electrical and computer engineering, in a news release.

Both the workshop and the grant opportunity help to allow collaboration between researchers and health care providers working on health equity research across disciplines.

“This seed grant not only fosters interdisciplinary collaborations between Rice University and the Texas Medical Center but also enables us to leverage our combined knowledge to enhance innovations in health equity and digital health, ultimately creating impactful solutions for improving patient care,” adds Sharon Pepper, executive director of ENRICH.

The two projects receiving funding, according to Rice's release, include:

  • Evaluating Equity and Community-Level Vulnerabilities in the Use of Generative Artificial Intelligence-based Symptom Checkers for Self-diagnosis — Using AI-based symptom checkers, the project aims to mitigate vulnerabilities for patients using and improve data precision specifically when it comes to patients' social and cultural differences.
  • Al-Driven ECG Analysis for Equitable Cardiovascular Risk Assessment and Prevention: Leveraging Transformer Models and Big Data to Reduce Health Disparities — Also backed by AI, this project will harness the untapped potential of electrocardiogram data for improving cardiovascular risk assessment, hopefully reducing cost and invasiveness of the standard practice of care.
CellChorus announced that the company, along with The University of Houston, has been awarded up to $2.5 million in funding. Photo via Getty Images

University of Houston-founded company secures $2.5M in NIH grant funding

all in the timing

You could say that the booming success of Houston biotech company CellChorus owes very much to auspicious TIMING. Those six letters stand for Time-lapse Imaging Microscopy In Nanowell Grids, a platform for dynamic single-cell analysis.

This week, CellChorus announced that the company, along with The University of Houston, has been awarded up to $2.5 million in funding from the National Center for Advancing Translational Sciences (NCATS) at the National Institute of Health. A $350,000 Phase I grant is already underway. Once predetermined milestones are achieved, this will lead to a two-year $2.1 million Phase II grant.

The TIMING platform was created by UH Single Cell Lab researchers Navin Varadarajan and Badri Roysam. TIMING generates high-throughput in-vitro assays that quantitatively profile interactions between cells on a large scale, particularly what happens when immune cells confront target cells. This has been especially useful in the realm of immuno-oncology, where it has demonstrated its power in designing novel therapies, selecting lead candidates for clinical trials and evaluating the potency of manufactured cells.

“By combining AI, microscale manufacturing and advanced microscopy, the TIMING platform yields deep insight into cellular behaviors that directly impact human disease and new classes of therapeutics,” says Rebecca Berdeaux, chief scientific officer at CellChorus. “The generous support of NCATS enables our development of computational tools that will ultimately integrate single-cell dynamic functional analysis of cell behavior with intracellular signaling events.”

Houston’s CellChorus Innovation Lab supports both the further development of TIMING and projects for early-access customers. Those customers include top-25 biopharmaceutical companies, venture-backed biotechnology companies, a leading comprehensive cancer center and a top pediatric hospital, says CEO Daniel Meyer.

CellChorus’s publications include papers written in collaboration with researchers from the Baylor College of Medicine, Houston Methodist, MD Anderson, Texas Children’s Hospital, the University of Texas and UTHealth in journals including Nature Cancer, Journal of Clinical Investigation and The Journal for ImmunoTherapy of Cancer.

The new Small Business Technology Transfer (STTR) award will specifically support the development of a scalable integrated software system conceived with the goal of analyzing cells that are not fluorescently labeled. This label-free analysis will be based on new AI and machine learning (ML) models trained on tens of millions of images of cells.

“This is an opportunity to leverage artificial intelligence methods for advancing the life sciences,” says Roysam. “We are especially excited about its applications to advancing cell-based immunotherapy to treat cancer and other diseases.”

The Houston-born-and-bred company couldn’t have a more appropriate home, says Meyer.

“Houston is a premier location for clinical care and the development of biotechnology and life sciences technologies. In particular, Houston has established itself as a leader in the development and delivery of immune cell-based therapies,” the CEO explains. “As a spin-out from the Single Cell Lab at the University of Houston, we benefit from working with world-class experts at local institutions.”

In May, the company received a similar $2.5 million SBIR grant from NCATS at the NIH. Also this summer, CellChorus's technology was featured in Nature Cancer.

The tower, set for completion in 2026, will be the new home of the School of Medicine and the School of Health Professions. Rendering courtesy of SLAM Architecture

Rising Houston health care tower secures $50M in donations

fresh funding

Houston’s Baylor College of Medicine has received more than $50 million in donations for construction of the Lillie and Roy Cullen Tower.

The tower, originally announced last year and set for completion in 2026, will be the new home of the School of Medicine and the School of Health Professions.

The new contributions are:

  • $25 million from The Brown Foundation.
  • $16 million from The DeBakey Medical Foundation, adding to $12 million that already was pledged.
  • $10 million from the Sarofim Foundation, matching a previous $10 million commitment from the late Fayez Sarofim.

“Thanks to tremendous support from the community, we have raised almost $150 million in philanthropy for the new state-of-the-art home for the School of Medicine and School of Health Professions. Cullen Tower isn’t just an investment in infrastructure, but an investment in the health and well-being of future generations,” Dr. Paul Klotman, president, CEO, and executive dean at the Baylor College of Medicine, says in a news release.

The 503,000-square-foot Lillie and Roy Cullen Tower is the first phase of Baylor’s planned Health Sciences Park, an 800,000-square-foot project that will combine medical education and research at a site next to Baylor Medicine and Baylor St. Luke’s Medical Center.

In recognition of The DeBakey Medical Foundation’s increased commitment to Cullen Tower and additional funding for the Michael E. DeBakey Department of Surgery, the Baylor College of Medicine will name the park the Michael E. DeBakey Health Sciences Park. It will encompass the new Cullen Tower, another research tower to be built in the future, a building that links the two towers, and the existing Jamail Specialty Care Center.

“The comprehensive scope of the park — combining spaces for education, research, and clinical care — is a fitting tribute to Dr. DeBakey’s contributions to Baylor and the field of health care. The Cullen Tower embodies his legacy of excellence, which will inspire further generations of Baylor students to strive for greatness while advancing medical knowledge and providing compassionate care to patients,” says Dr. H. David Short III, president of the DeBakey foundation.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

The Ion names new coworking partner for Houston innovation hub

Where to Work

Rice University subsidiary Rice Real Estate Co. has tapped coworking company Industrious as the new operator of the Ion’s 86,000-square-foot coworking space in Midtown. Industrious replaces WeWork-owned Common Desk in that role.

The Ion, owned by Rice Real Estate and located at 4201 Main St., is a 266,000-square-foot office building and innovation hub in the 16-acre Ion District.

Features of the coworking space include private suites and offices, dedicated desks, phone booths and conference rooms. In 2022, Common Desk said it was expanding the space by 28,000 square feet, bringing it to the current size.

“(Industrious’) unparalleled expertise in delivering quality, hospitality-driven workspaces complements our vision of creating a world-class ecosystem where entrepreneurs, corporations, and academia converge to drive innovation forward,” Ken Jett, president of Rice Real Estate, said in a statement.

Natalie Levine, senior manager of real estate at Industrious, says her company will work with Rice Real Estate “to continue to position the Ion as an invaluable contributor to the growth of Houston’s innovation community.”

Dallas-based commercial real estate services company CBRE said Jan. 14 that it had agreed to acquire Industrious in a deal valued at $400 million.

The Ion is Industrious’ second location in Houston. The company’s other local coworking space is at 1301 McKinney St.

Office tenants at the Ion include Occidental Petroleum, Fathom Fund, Activate, Carbon Clean, Microsoft and Chevron Technology Ventures.

Texas ranks among the 5 best states to start a business in 2025

Best for Biz

As one of the largest states in the U.S., it's no surprise Texas is big on business and entrepreneurship. Now the state is earning new praise among WalletHub's 2025 list of "Best & Worst States to Start a Business."

The Lone Star State claimed the No. 4 spot in the report's rankings, proving that Texas is in a much better business shape than it was last year when it earned No. 8 in WalletHub's annual report.

The study compared all 50 states across 25 metrics to determine the best places to start, grow, and find success with a new business. Factors that were considered include the number of startups per capita, job growth rates, financing accessibility measures, labor costs and corporate tax rates.

The three states to outperform Texas in the 2025 report are Florida (No. 1), Georgia (No. 2), and Utah (No. 3). Idaho rounded out the top five.

Across the study's three main categories, Texas performed the best in the "business environment" category, earning No. 1 nationally. This section compares the states based on five-year business survival rates, average business revenues growth and more.

Texas ranked No. 12 in the nationwide comparison of "access to resources" – which covers working age population growth, venture investment amounts per capita and other means – and earned a fair No. 34 in the report's "business costs" ranking.

But Texas can still do better with its business friendliness to reclaim a top-three overall ranking, which the state last earned in 2023.

WalletHub analyst Chip Lupo said in the report that it is imperative for potential new business owners to establish their enterprise in a place that can maximize their ability to succeed.

"Around half of all new businesses don’t survive five years, so the idea of becoming a business owner can be daunting, especially with the current high cost of living," Lupo said. "The best states have low corporate tax rates, strong economies, an abundance of reliable workers, easy access to financing and affordable real estate. On top of that, you’ll need to make sure you start in a place with an engaged customer base, if you’re operating locally."

Houston has also proven to be at the top of the destination list for entrepreneurs who are looking for their next venture.

The top 10 best states to start a new business in 2025 are:

  • No. 1 – Florida
  • No. 2 – Georgia
  • No. 3 – Utah
  • No. 4 – Texas
  • No. 5 – Idaho
  • No. 6 – Oklahoma
  • No. 7 – Nevada
  • No. 8 – Colorado
  • No. 9 – Arizona
  • No. 10 – Kentucky
---

This story originally appeared on our sister site, CultureMap.