Innovators in immunotherapy, precision drug discovery, monoclonal antibodies, and diagnostic and therapeutic technologies have joined TMC's Accelerator for Cancer Therapeutics. Photo courtesy TMC.

Texas Medical Center Innovation has named more than 50 health care innovators to the fifth cohort of its Accelerator for Cancer Therapeutics (ACT).

The group specializes in immunotherapy, precision drug discovery, monoclonal antibodies, and diagnostic and therapeutic technologies, according to a statement from TMC.

During the nine-month ACT program, participants will enjoy access to a network of mentors, grant-writing support, chemistry resources, and the entrepreneur-in-residence program. The program is designed to equip participants with the ability to secure investments, develop partnerships, and advance the commercialization of cancer therapeutics in Texas.

“With over 35 million new cancer cases predicted by 2050, the urgency to develop safer, more effective, and personalized treatments cannot be overstated,” Tom Luby, chief innovation officer at Texas Medical Center, said in a news release.

Members of the new cohort are:

  • Alexandre Reuben, Kunal Rai, Dr. Cassian Yee, Dr. Wantong Yao, Dr. Haoqiang Ying, Xiling Shen, and Zhao Chen, all of the University of Texas MD Anderson Cancer Center
  • Dr. Andre Catic and Dr. Martin M. Matzuk, both of the Baylor College of Medicine
  • Cynthia Hu and Zhiqiang An, both of UTHealth Houston
  • Christopher Powala, Aaron Sato, and Mark de Souza, all of ARespo Biopharma
  • Daniel Romo, Dr. Susan Bates, and Ken Hull, all of Baylor University
  • Eugene Sa & Minseok Kim, both of CTCELLS
  • Gomika Udugamasooriya and Nathaniel Dawkins, both of the University of Houston
  • Dr. Hector Alila of Remunity Therapeutics
  • Iosif Gershteyn and Victor Goldmacher, both of ImmuVia
  • João Seixas, Pedro Cal, and Gonçalo Bernardes, all of TargTex
  • Ken Hsu and Yelena Wetherill, both of the University of Texas at Austin
  • Luis Martin and Dr. Alberto Ocaña, both of C-Therapeutics
  • Dr. Lynda Chin, Dr. Keith Flaherty, Dr. Padmanee Sharma, James Allison, and Ronan O’Hagan, all of Project Crest/Apricity Health
  • Michael Coleman and Shaker Reddy, both of Metaclipse Therapeutics
  • Robert Skiff and Norman Packard, both of 3582.ai
  • Rolf Brekken, Uttam Tambar, Ping Mu, Su Deng, Melanie Rodriguez, and Alexander Busse, all of UT Southwestern Medical Center
  • Ryan Swoboda and Maria Teresa Sabrina Bertilaccio, both of NAVAN Technologies
  • Shu-Hsia Chen and Ping-Ying Pan, both of Houston Methodist
  • Thomas Kim, Philipp Mews, and Eyal Gottlieb, all of ReEngage Therapeutics
The ACT launched in 2021 and has had 77 researchers and companies participate. The group has collectively secured more than $202 million in funding from the NIH, CPRIT and venture capital, according to TMC.
Baylor College of Medicine, Texas A&M and University of Houston researchers have designed SPACe, a new open-source image analysis platform. Photo via Getty Images

Texas universities develop innovative open-source platform for cell analysis

picture this

What do labs do when faced with large amounts of imaging data? Powerful cloud computing systems have long been the answer to that question, but a new riposte comes from SPACe.

That’s the name of a new open-source image analysis platform designed by researchers at Baylor College of Medicine, Texas A&M University and the University of Houston.

SPACe, or Swift Phenotypic Analysis of Cells, was created to be used on standard computers that even small labs can access, meaning cellular analysis using images produced through cell painting has a lower barrier to entry than ever before.

“The pharmaceutical industry has been accustomed to simplifying complex data into single metrics. This platform allows us to shift away from that approach and instead capture the full diversity of cellular responses, providing richer, more informative data that can reveal new avenues for drug development,” Michael Mancini, professor of molecular and cellular biology and director of the Gulf Coast Consortium Center for Advanced Microscopy and Image Informatics co-located at Baylor College of Medicine and TAMU Institute for Bioscience and Technology.

SPACe is not only accessible because of its less substantial computational needs. Because the platform is open-source, it’s available to anyone who needs it. And it can be used by academic and pharmaceutical researchers alike.

“The platform allows for the identification of non-toxic effects of drugs, such as alterations in cell shape or effects on specific organelles, which are often overlooked by traditional assays that focus largely on cell viability,” says Fabio Stossi, currently a senior scientist with St. Jude Children’s Research Hospital, the lead author who was at Baylor during the development of SPACe.

The platform is a better means than ever of analyzing thousands of individual cells through automated imaging platforms, thereby better capturing the variability of biological processes. Through that, SPACe allows scientists an enhanced understanding of the interactions between drugs and cells, and does it on standard computers, translating to scientists performing large-scale drug screenings with greater ease.

"This tool could be a game-changer in how we understand cellular biology and discover new drugs. By capturing the full complexity of cellular responses, we are opening new doors for drug discovery that go beyond toxicity,” says Stossi.

And the fact that it’s open-source allows scientists to access SPACe for free right now. Researchers interested in using the platform can access it through Github at github.com/dlabate/SPACe. This early version could already make waves in research, but the team also plans to continually improve their product with the help of collaborations with other institutions.

Colossal Biosciences specializes in genetic engineering technology designed to bring back extinct animals or protect various species. Photo courtesy Colossal Biosciences

Biosciences startup becomes Texas' first decacorn after latest funding

Colossal News

A Dallas-based biosciences startup whose backers include millionaire investors from Austin and Dallas has reached decacorn status — a valuation of at least $10 billion — after hauling in a series C funding round of $200 million, the company announced this month. Colossal Biosciences is reportedly the first Texas startup to rise to the decacorn level.

Colossal, which specializes in genetic engineering technology designed to bring back or protect various species, received the $200 million from TWG Global, an investment conglomerate led by billionaire investors Mark Walter and Thomas Tull. Walter is part owner of Major League Baseball’s Los Angeles Dodgers, and Tull is part owner of the NFL’s Pittsburgh Steelers.

Among the projects Colossal is tackling is the resurrection of three extinct animals — the dodo bird, Tasmanian tiger and woolly mammoth — through the use of DNA and genomics.

The latest round of funding values Colossal at $10.2 billion. Since launching in 2021, the startup has raised $435 million in venture capital.

In addition to Walter and Tull, Colossal’s investors include prominent video game developer Richard Garriott of Austin and private equity veteran Victor Vescov of Dallas. The two millionaires are known for their exploits as undersea explorers and tourist astronauts.

Aside from Colossal’s ties to Dallas and Austin, the startup has a Houston connection.

The company teamed up with Baylor College of Medicine researcher Paul Ling to develop a vaccine for elephant endotheliotropic herpesvirus (EEHV), the deadliest disease among young elephants. In partnership with the Houston Zoo, Ling’s lab at the Baylor College of Medicine has set up a research program that focuses on diagnosing and treating EEHV, and on coming up with a vaccine to protect elephants against the disease. Ling and the BCMe are members of the North American EEHV Advisory Group.

Colossal operates research labs Dallas, Boston and Melbourne, Australia.

“Colossal is the leading company working at the intersection of AI, computational biology, and genetic engineering for both de-extinction and species preservation,” Walter, CEO of TWG Globa, said in a news release. “Colossal has assembled a world-class team that has already driven, in a short period of time, significant technology innovations and impact in advancing conservation, which is a core value of TWG Global.”

Well-known genetics researcher George Church, co-founder of Colossal, calls the startup “a revolutionary genetics company making science fiction into science fact.”

“We are creating the technology to build de-extinction science and scale conservation biology,” he added, “particularly for endangered and at-risk species.”

Baylor College of Medicine received $3.5 million to expand its telehealth platform to improve genomic diagnostics and care for critically ill newborns in underserved neonatal intensive care units in West and South Texas. Photo by Tim Bish on Unsplash

Houston med school lands $3.5M grant to rollout genetic telehealth platform for underserved newborns

money moves

Baylor College of Medicine received $3.5 million to help hospitals in Texas better care for and diagnose some of the state's most vulnerable patients.

The funds come from the National Human Genome Research Institute for the Making Genomics Accessible to Newborns in Texas, or MAGNET, program. They'll be used to adapt BCM's Consultagene telehealth platform to be used in underserved neonatal intensive care units in West and South Texas, according to a statement.

Families in this region of the state currently can travel up to 300 miles to reach the nearest in-state geneticist, according to MAGNET. The program aims to help close that gap through BCM's established remote consultation service. Investigators also plan to create educational videos in English and Spanish to educate providers and patient caregivers on genetic diagnoses.

“Only 20 years ago, less than 3 percent of genetic conditions in newborns could be molecularly diagnosed,” Dr. Brendan Lee, co-principal investigator and professor and chair of the Department of Molecular and Human Genetics and Robert and Janice McNair Endowed Chair in Molecular and Human Genetics at BCM, says in a statement. “Today, with routine genomic tests at academic medical centers, more than one-third of these cases can be diagnosed with state-of-the-art approaches. Unfortunately, many babies born at smaller hospitals lack access to genetic evaluation and testing, remain undiagnosed and are unable to benefit from early personalized medical treatment.”

BCM has already used Consultagene to improve care for children with rare diseases at the Texas-Mexico border. In this latest program, BCM will develop a consortium of partners at underserved NICUs in the area. On-site providers will be trained on genomic medicine and creating personalized treatments for patients with genetic diseases. Baylor researchers will also study the program's impact from the perspectives of the patients, families, and providers.

“By studying how access to advanced genomics services affects critically ill newborns and those involved in their care, the MAGNET program seeks to develop best practices for implementing cost-effective, comprehensive genomic platforms like Consultagene in under-resourced settings. Understanding how best to implement programs like this can inform broader efforts to close gaps in healthcare access and equity,” Dr. Stacey Pereira, associate professor in the Center for Medical Ethics and Health Policy at Baylor and co-principal investigator, adds.

The MAGNET program is focused on finding ways to use low-cost whole genome and RNA sequencing technologies to better diagnose sick newborns in Level III and Level IV NICUs in Texas.

This fall, Baylor secured $50 million in donations to construct the Lillie and Roy Cullen Tower to house its School of Medicine and the School of Health Professions. It's set for completion next year.

Rice University, Baylor College of Medicine, and Houston Methodist have awarded a total of $50,000 to two projects. Photo by Brandon Martin/Rice University

Houston organizations issue seed grants to fuel AI-driven equity, digital health innovation

fresh funding

Three Houston organizations have doled out seed grants for research initiatives focused on digital health and equity.

Rice University's Educational and Research Initiatives for Collaborative Health (ENRICH) office — in partnership with Baylor College of Medicine and the Houston Methodist Academic Institute — has awarded a total of $50,000 to two projects. BCM and Rice announced three other grants earlier this year.

The seed grants were deployed earlier this year at the Health Equity Workshop from Rice’s Digital Health Initiative and chaired by Momona Yamagami, an assistant professor of electrical and computer engineering at Rice.

“To achieve equitable health outcomes, a comprehensive approach is essential — one that spans all phases of digital health from technology design and development to implementation, dissemination and long-term sustainability,” says Ashutosh Sabharwal, who leads the Digital Health Initiative and serves as Rice’s Ernest Dell Butcher Professor of Engineering and a professor of electrical and computer engineering, in a news release.

Both the workshop and the grant opportunity help to allow collaboration between researchers and health care providers working on health equity research across disciplines.

“This seed grant not only fosters interdisciplinary collaborations between Rice University and the Texas Medical Center but also enables us to leverage our combined knowledge to enhance innovations in health equity and digital health, ultimately creating impactful solutions for improving patient care,” adds Sharon Pepper, executive director of ENRICH.

The two projects receiving funding, according to Rice's release, include:

  • Evaluating Equity and Community-Level Vulnerabilities in the Use of Generative Artificial Intelligence-based Symptom Checkers for Self-diagnosis — Using AI-based symptom checkers, the project aims to mitigate vulnerabilities for patients using and improve data precision specifically when it comes to patients' social and cultural differences.
  • Al-Driven ECG Analysis for Equitable Cardiovascular Risk Assessment and Prevention: Leveraging Transformer Models and Big Data to Reduce Health Disparities — Also backed by AI, this project will harness the untapped potential of electrocardiogram data for improving cardiovascular risk assessment, hopefully reducing cost and invasiveness of the standard practice of care.
CellChorus announced that the company, along with The University of Houston, has been awarded up to $2.5 million in funding. Photo via Getty Images

University of Houston-founded company secures $2.5M in NIH grant funding

all in the timing

You could say that the booming success of Houston biotech company CellChorus owes very much to auspicious TIMING. Those six letters stand for Time-lapse Imaging Microscopy In Nanowell Grids, a platform for dynamic single-cell analysis.

This week, CellChorus announced that the company, along with The University of Houston, has been awarded up to $2.5 million in funding from the National Center for Advancing Translational Sciences (NCATS) at the National Institute of Health. A $350,000 Phase I grant is already underway. Once predetermined milestones are achieved, this will lead to a two-year $2.1 million Phase II grant.

The TIMING platform was created by UH Single Cell Lab researchers Navin Varadarajan and Badri Roysam. TIMING generates high-throughput in-vitro assays that quantitatively profile interactions between cells on a large scale, particularly what happens when immune cells confront target cells. This has been especially useful in the realm of immuno-oncology, where it has demonstrated its power in designing novel therapies, selecting lead candidates for clinical trials and evaluating the potency of manufactured cells.

“By combining AI, microscale manufacturing and advanced microscopy, the TIMING platform yields deep insight into cellular behaviors that directly impact human disease and new classes of therapeutics,” says Rebecca Berdeaux, chief scientific officer at CellChorus. “The generous support of NCATS enables our development of computational tools that will ultimately integrate single-cell dynamic functional analysis of cell behavior with intracellular signaling events.”

Houston’s CellChorus Innovation Lab supports both the further development of TIMING and projects for early-access customers. Those customers include top-25 biopharmaceutical companies, venture-backed biotechnology companies, a leading comprehensive cancer center and a top pediatric hospital, says CEO Daniel Meyer.

CellChorus’s publications include papers written in collaboration with researchers from the Baylor College of Medicine, Houston Methodist, MD Anderson, Texas Children’s Hospital, the University of Texas and UTHealth in journals including Nature Cancer, Journal of Clinical Investigation and The Journal for ImmunoTherapy of Cancer.

The new Small Business Technology Transfer (STTR) award will specifically support the development of a scalable integrated software system conceived with the goal of analyzing cells that are not fluorescently labeled. This label-free analysis will be based on new AI and machine learning (ML) models trained on tens of millions of images of cells.

“This is an opportunity to leverage artificial intelligence methods for advancing the life sciences,” says Roysam. “We are especially excited about its applications to advancing cell-based immunotherapy to treat cancer and other diseases.”

The Houston-born-and-bred company couldn’t have a more appropriate home, says Meyer.

“Houston is a premier location for clinical care and the development of biotechnology and life sciences technologies. In particular, Houston has established itself as a leader in the development and delivery of immune cell-based therapies,” the CEO explains. “As a spin-out from the Single Cell Lab at the University of Houston, we benefit from working with world-class experts at local institutions.”

In May, the company received a similar $2.5 million SBIR grant from NCATS at the NIH. Also this summer, CellChorus's technology was featured in Nature Cancer.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas startup's lunar lander aces moon touchdown with special delivery for NASA

Touchdown

A private lunar lander carrying a drill, vacuum and other experiments for NASA touched down on the moon Sunday, the latest in a string of companies looking to kickstart business on Earth's celestial neighbor ahead of astronaut missions.

Firefly Aerospace’s Blue Ghost lander descended from lunar orbit on autopilot, aiming for the slopes of an ancient volcanic dome in an impact basin on the moon’s northeastern edge of the near side.

Confirmation of successful touchdown came from the company's Mission Control outside Austin, Texas, following the action some 225,000 miles away.

“You all stuck the landing. We’re on the moon,” Firefly’s Will Coogan, chief engineer for the lander, reported.

An upright and stable landing makes Firefly — a startup founded a decade ago — the first private outfit to put a spacecraft on the moon without crashing or falling over. Even countries have faltered, with only five claiming success: Russia, the U.S., China, India and Japan.

A half hour after landing, Blue Ghost started to send back pictures from the surface, the first one a selfie somewhat obscured by the sun's glare. The second shot included the home planet, a blue dot glimmering in the blackness of space.

Two other companies’ landers are hot on Blue Ghost’s heels, with the next one expected to join it on the moon later this week.

Blue Ghost — named after a rare U.S. species of fireflies — had its size and shape going for it. The squat four-legged lander stands 6-foot-6-inch tall and 11 feet wide, providing extra stability, according to the company.

Launched in mid-January from Florida, the lander carried 10 experiments to the moon for NASA. The space agency paid $101 million for the delivery, plus $44 million for the science and tech on board. It’s the third mission under NASA’s commercial lunar delivery program, intended to ignite a lunar economy of competing private businesses while scouting around before astronauts show up later this decade.

Firefly’s Ray Allensworth said the lander skipped over hazards including boulders to land safely. Allensworth said the team continued to analyze the data to figure out the lander's exact position, but all indications suggest it landed within the 328-foot target zone in Mare Crisium.

The demos should get two weeks of run time, before lunar daytime ends and the lander shuts down.

It carried a vacuum to suck up moon dirt for analysis and a drill to measure temperature as deep as 10 feet below the surface. Also on board: a device for eliminating abrasive lunar dust — a scourge for NASA’s long-ago Apollo moonwalkers, who got it caked all over their spacesuits and equipment.

On its way to the moon, Blue Ghost beamed back exquisite pictures of the home planet. The lander continued to stun once in orbit around the moon, with detailed shots of the moon's gray pockmarked surface. At the same time, an on-board receiver tracked and acquired signals from the U.S. GPS and European Galileo constellations, an encouraging step forward in navigation for future explorers.

The landing set the stage for a fresh crush of visitors angling for a piece of lunar business.

Another lander — a tall and skinny 15-footer built and operated by Houston-based Intuitive Machines — is due to land on the moon Thursday. It’s aiming for the bottom of the moon, just 100 miles from the south pole. That’s closer to the pole than the company got last year with its first lander, which broke a leg and tipped over.

Despite the tumble, Intuitive Machines' lander put the U.S. back on the moon for the first time since NASA astronauts closed out the Apollo program in 1972.

A third lander from the Japanese company ispace is still three months from landing. It shared a rocket ride with Blue Ghost from Cape Canaveral on Jan. 15, taking a longer, windier route. Like Intuitive Machines, ispace is also attempting to land on the moon for the second time. Its first lander crashed in 2023.

The moon is littered with wreckage not only from ispace, but dozens of other failed attempts over the decades.

NASA wants to keep up a pace of two private lunar landers a year, realizing some missions will fail, said the space agency's top science officer Nicky Fox.

“It really does open up a whole new way for us to get more science to space and to the moon," Fox said.

Unlike NASA’s successful Apollo moon landings that had billions of dollars behind them and ace astronauts at the helm, private companies operate on a limited budget with robotic craft that must land on their own, said Firefly CEO Jason Kim.

Kim said everything went like clockwork.

“We got some moon dust on our boots," Kim said.

Houston startup Nap Bar pivots with VR and big plans for growth

power nap

Houston’s Khaliah Guillory takes a 30-minute nap every day. She says this is how she’s so productive.

The habit also led to the founding of her white-glove, eco-friendly rest sanctuary business, Nap Bar.

Guillory launched the luxury sleep suites company back in 2019 to offer a unique rest experience with artificial intelligence integration for working professionals, entrepreneurs and travelers who needed a place to rest, recharge and rejuvenate. The company was named a Houston Innovation Awards finalist last year.

She says naps are backed by science. And by her professional network, too.

“Once I polled and surveyed my friends, most of them said that they also took naps during their lunch break, whether it be in their office or in their car,” says Guillory, former vice president of marketing strategy at Wells Fargo. “Once they overwhelmingly agreed that they would absolutely use a dedicated place for them to take naps if I created it, I got to work, and Nap Bar was born.”

Simply put, Guillory has effectively made it acceptable and, yes, even cool for working adults to take naps.

“I played D1 basketball at the University of Central Florida and that’s really where I learned the art of a power nap and the benefits of it,” Guillory says. “And I just continued to nap throughout my corporate career. So, in November of 2018, I retired from corporate America … I just knew I had a higher calling to do something else.”

Guillory first opened up shop in Rice Village as a beta test for her novel nap idea and it took off. She soon forged strategic partnerships with organizations like UT Health, where Nap Bar provided much-needed naps to postpartum mothers.

“Nap Bar showed what the benefits of a good nap was, specifically to postpartum moms in terms of mental stressors, productivity, and things of that nature,” Guillory says.

In November 2019, Guillory moved Nap Bar to The Galleria and says the business produced revenue from day one. However, in March 2020, she was forced to shut us down due to the COVID-19 pandemic.

“I promised myself that I was not going back to corporate America, so I pivoted. I moved forward by creating a better sleep box, with a vegan pillow mist and soy-based candle. I also became a certified sleep coach. And I just kept pivoting from there, reinventing Nap Bar as a company,” she says.

One pivot included adding a virtual reality sleep experience, MetaSnooze.

“MetaSnooze is a really cool technology that offers sleep therapy and relaxation that I curated myself,” Guillory says. “Basically, the user puts on the VR headset, and it escapes them. They're transported to places all over the country. For example, they're sitting in serene environments all the while listening to these rhythmic beats that are designed to help them release and relax. Visualizations have been scientifically proven to improve one’s mental health and mental stressors.”

Guillory initially rolled out MetaSnooze in 2020 at events like South by Southwest and kept improving the experience and building her business. By February 2024, she was curating a wellness experience at The Grammy Awards.

“That was huge for us,” Guillory says. “Being able to get feedback from the celebrities, with a handful of them even inquiring where they could purchase the headset. They were excited about the future of Nap Bar, so that was really, really cool.”

The widespread interest in Nap Bar has Guillory thinking big. She aims to expand to 30 locations in three years.

“When I say that, it sounds ambitious,” says Guillory. “It is, but I come from the school of thought that if you shoot for 30 and you get 25, no one's going to shake their finger at you for doing that, right? It's really aiming towards this big, hairy, audacious goal. I learned that in corporate America. So, what we're looking to do now is raise money like crazy.”

Guillory says she’s now looking to scale the business by partnering with like-minded investors with experience in the wellness space.

She envisions locations at national and international airports, which she says offer ripe scenarios for patrons needing to recharge. Additionally, Guillory wants to build on her initial partnership with UT Health by going onsite to curate rest experiences for patients, caregivers, faculty, staff, nurses and doctors. Colleges also offer an opportunity for growth.

“We’ve done some really cool pop-ups with the University of Houston, where we brought the rest experience on campus,” Guillory says. “That means we bring a portable, full-size, organic mattress with disposable sheets, as well as our virtual reality experience.”

Nap Bar will also serve companies, office buildings, and even sports venues, according to Guillory.

“We can literally go any and everywhere,” she says. “Our collected data suggests that we’ve just got to go where sleepy people are so that they can get restorative sleep.”

From a pricing standpoint, Nap Bar’s model is a dollar a minute. Depending on where the client is, the pop-up experience is based on a day rate or a half-day rate, starting at $4,000.

Add-ons include a full-size organic mattress or hosting a masseuse or massage therapist onsite.

With the Grammys already under her belt, Guillory would like to see Nap Bar utilized at the 2028 Olympics and build partnerships with other virtual reality companies to bring its licensed MetaSnooze software to the masses.

She also sees opportunities in athletic treatment, sleep apnea, and insomnia.

“We have done several studies with proven results that MetaSnooze has reduced mental stressors and anxiety,” Guillory says. “I'm excited about what the future holds for MetaSnooze. It definitely is a game-changer … We will continue to innovate sleep or provide sleep resources and tools in a very innovative way.”