Houston hospitals and universities have been granted millions from the CPRIT to advance cancer research and bring leading scientists to the state. Photo by Dwight C. Andrews/Greater Houston Convention and Visitors Bureau.

Rice University has recruited a prominent Swedish cancer researcher thanks to a $6 million grant from the Cancer Prevention and Research Institute of Texas.

It’s among $68 million in research grants recently awarded by the state agency, and six recruitment grants totaling $16 million to bring leading cancer researchers to Texas.

A news release from the Cancer Prevention and Research Institute of Texas (CPRIT) describes Pernilla Wittung-Stafshede of the Chalmers University of Technology in Gothenburg, Sweden, as “an accomplished and highly gifted biophysical scientist tackling complicated biological questions regarding the role of metals and metal dysregulation in various diseases. She pioneered a new research field around the role of metal ions in the folding and function of metalloproteins.”

Metalloproteins account for nearly half of all proteins in biology, according to the National Institutes of Health. They “catalyze some of the most difficult and yet important functions in [nature], such as photosynthesis and water oxidation,” the federal agency says.

Wittung-Stafshede, a professor of chemical biology and life sciences at Chalmers, is a former professor at Rice.

Aside from the money for Wittung-Stafshede, Houston recruitment grants also went to:

  • University of Texas M.D. Anderson Cancer Center: $2 million to recruit Rosalie Griffin of the Mayo Clinic
  • Baylor College of Medicine: $2 million to recruit Dr. Nipun Verma of the Yale University School of Medicine
  • Baylor College of Medicine: $2 million to recruit Xin “Daniel” Gao of Harvard University and the Massachusetts Institute of Technology

In Houston, cancer research grants were given to:

  • Baylor College of Medicine: $7.8 million
  • M.D. Anderson Cancer Center: $20.7 million
  • Rice University: $ 1 million
  • University of Houston: $1.2 million
  • University of Texas Health Science Center at Houston: $4.5 million

“The awards … represent the depth and diversity of CPRIT funding for cancer research in Texas,” says Kristen Doyle, CEO of CPRIT. “These grants develop new approaches to preventing, diagnosing, treating, and surviving cancer for all Texans.”

See the full list of awards here.

MD Anderson Cancer Center received $3 million to establish a new genomics research hub. Photo by F. Carter Smith/Courtesy of MD Anderson

Houston hospital to establish genomics research hub as part of CPRIT's $60M round of grants

coming soon

Houston’s University of Texas MD Anderson Cancer Center will create a genomics research hub thanks to a nearly $3 million award from the Cancer Prevention and Research Institute of Texas, or CPRIT.

“This groundbreaking facility will have a profound impact on cancer research, and improving the diagnosis and treatment of cancer patients in Texas,” says CPRIT.

CPRIT gave the monetary award to Nicholas Navin, a professor at MD Anderson and at the biomedical sciences school within the University of Texas Health Science Center at Houston (UTHealth Houston).

The new facility will specialize in advanced spatial genomics, which creates a three-dimensional “atlas” that’s been dubbed “the Google Map of the human body,” according to CPRIT.

“Spatial genomics is an exciting new field that allows cancer researchers to directly connect the images of cells and their tissue structures with genomic data while preserving the spatial context,” CPRIT explains. “This provides the researchers with the ability to see exactly where distinct types of cells are located within a tumor, and determine the genes and proteins they are expressing.”

Until recently, most genomic technologies such as DNA and RNA sequencing required scientists to “grind up” tumor tissues to extract molecules for analysis, according to CPRIT.

“This process means losing the complex composition of the different cell types and their spatial arrangement within the tumor, which makes it difficult to understand the complex environment of cancer cells,” the institute adds.

MD Anderson’s new genomics hub will feature tissue processing, slide imaging, spatial genomics technologies, and spatial data analysis methods for cancer researchers within the Texas Medical Center and around the state.

In other CPRIT funding news, three local medical institutions received a total of $8 million for recruitment of four cancer researchers.

MD Anderson received half of the $8 million from CPRIT. The money will go toward bring aboard:

  • Hojong Yoon. Yoon, recipient of a $2 million scholar recruitment award, is a postdoctoral student at the Cambridge, Massachusetts-based Broad Institute. The institute, affiliated with Harvard University and MIT, is a research organization. Yoon’s research focuses on targeted cancer therapy.
  • Marianna Trakala. Trakala, recipient of a $2 million scholar recruitment award, is a postdoctoral researcher at MIT’s Koch Institute for Integrative Cancer Research. She is studying how small conditional RNA (scRNA) causes a response that triggers activation of the immune system and elimination of cancer cells from tissue.

The Baylor College of Medicine and the University of Texas Health Science Center at Houston (UTHealth Houston) each received one $2 million scholar recruitment award:

  • Louai Labanieh, a postdoctoral researcher at Stanford University’s Parker Institute for Cancer Immunotherapy, is joining the Baylor College of Medicine. Labanieh’s research involves engineering next-generation cells to improve cancer immunotherapy.
  • Yanjun Sun, a neuroscientist who is a postdoctoral scholar at Stanford, is joining UTHealth Houston.

In all, CPRIT recently doled out more than $60 million for cancer-fighting efforts around the state. Aside from the Baylor College of Medicine, MD Anderson, and UTHealth Houston, Rice University and Texas Southern University received CPRIT funding.

“By supporting the vital core facilities that researchers need, funding groundbreaking research, and deepening the bench of clinical trial investigators, CPRIT is fulfilling the promise central to our mission: We are helping Texans conquer cancer,” says Kristen Doyle, CEO of CPRIT.

The new collaborative hub will foster research into cell therapies, artificial intelligence, nanotechnologies, and more. Photo via tmc.edu

Houston health care leaders announce new hub for cancer-fighting bioengineering

team work

Two Houston organizations recently announced a new hub that will focus on developing cell therapies, nanotechnologies, cancer vaccines, artificial intelligence, and molecular imaging.

Rice University and The University of Texas MD Anderson Cancer Center have teamed up to “drive industry growth and advance life-saving technologies” through the newly established Cancer Bioengineering Collaborative, according to a news release announcing the initiative.

The collaboration between the two institutions includes fundamental and translational cancer research, developing new technologies for cancer detection and therapy, and securing external funding in support of further research and training.

Leading the hub will be Rice researcher and Cancer Prevention and Research Institute of Texas (CPRIT) scholar Gang Bao and MD Anderson’s Dr. Jeffrey Molldrem.

“There is tremendous potential in bringing together experts in engineering and cancer as part of this focused, collaborative framework that is truly unique, not only owing to the complementary nature of the respective strengths but also because this is the first formal joint research initiative of its kind between the two institutions,” says Bao, department chair and Foyt Family Professor of Bioengineering, professor of chemistry, materials science and nanoengineering and mechanical engineering, in the release.

The joint effort will also host monthly seminars focused on cancer bioengineering, annual retreats to highlight research and international leaders in cancer and bioengineering, and also a seed grant program to fund research projects in the early stages of development.

“From fundamental discoveries in cancer science, tumor immunology and patient care to innovative engineering advances in drug delivery systems, nanostructures and synthetic biology, there is great potential for enabling cross-disciplinary collaboration to develop new technologies and approaches for detecting, monitoring and treating cancer,” Molldrem, chair of Hematopoietic Biology & Malignancy at MD Anderson, says in the release. “Our goal is to bridge the gap between bioengineering and cancer research to create transformative solutions that significantly improve patient outcomes.”

Dr. Jeff Molldrem (left) and Gang Bao will lead the new collaborative hub. Photo via MD Anderson

The grants, which are between $2 million to $6 million each, are earmarked for recruitment of prominent researchers. Photo via Getty Images

Houston health care institutions receive $22M to attract top recruits

coming to Hou

Houston’s Baylor College of Medicine has received a total of $12 million in grants from the Cancer Prevention & Research Institute of Texas to attract two prominent researchers.

The two grants, which are $6 million each, are earmarked for recruitment of Thomas Milner and Radek Skoda. The Cancer Prevention & Research Institute of Texas (CPRIT) announced the grants May 14.

Milner, an expert in photomedicine for surgery and diagnostics, is a professor of surgery and biomedical engineering at the Beckman Laser Institute & Medical Clinic at the University of California, Irvine and the university’s Chao Family Comprehensive Cancer Center

In 2013, Milner was named Inventor of the Year by the University of Texas at Austin. At the time, he was a professor of biomedical engineering at UT. One of his major achievements is co-development of the MasSpec Pen, a handheld device that identifies cancerous tissue within 10 seconds during surgical procedures.

Skoda is a professor of molecular medicine in the Department of Biomedicine at the University of Basel and the University Hospital Basel, both in Switzerland. He specializes in developing treatments for myeloproliferative neoplasms, which are a group of blood diseases including leukemia.

Other recruitment grants provided by the institute to Houston-area organizations are:

  • $4 million for recruitment of Susan Bullman to the University of Texas M.D. Anderson Cancer Center. She was an assistant professor at Seattle’s Fred Hutchinson Cancer Center, where she studied the connection between microbes and cancer.
  • $4 million for recruitment of Oren Rom to the University of Texas M.D. Anderson Cancer Center. Rom is an assistant professor of pathology and translational pathobiology at Louisiana State University Shreveport.
  • Nearly $2 million for recruitment of Lauren Hagler to conduct RNA cancer biology at Texas A&M University. She is a postdoctoral scholar in biochemistry at Stanford University.

The institute also awarded grants to five companies in the Houston area:

  • $4.7 million to 7 Hills Pharma for development of immunotherapies to treat cancer and prevent infectious diseases.
  • $4.5 million to Indapta Therapeutics for the Phase 1 trial of a cell therapy for treatment of multiple myeloma and non-Hodgkin’s lymphoma.
  • $2.75 million to Bectas Therapeutics for development of antibodies and biomarkers to overcome a type of resistance T-cell checkpoint therapy.
  • $2.69 million to MS Pen Technologies for development of technology that differentiates between normal tissue and cancerous tissue during surgery.
  • $2.58 million to Crossbridge Bio for development of an antibody-drug combination to treat certain solid tumors.
The funds will support the clinical evaluation of a therapeutic antibody that targets acute lymphoblastic leukemia, one of the most common childhood cancers. Photo via Getty Images

Houston startup scores $12M grant to support clinical evaluation of cancer-fighting drug

fresh funding

Allterum Therapeutics, a Houston biopharmaceutical company, has been awarded a $12 million product development grant from the Cancer Prevention and Research Institute of Texas (CPRIT).

The funds will support the clinical evaluation of a therapeutic antibody that targets acute lymphoblastic leukemia (ALL), one of the most common childhood cancers.

However, CEO and President Atul Varadhachary, who's also the managing director of Fannin Innovation, tells InnovationMap, “Our mission has grown much beyond ALL.”

The antibody, called 4A10, was invented by Scott Durum PhD and his team at the National Cancer Institute (NCI). Licensed exclusively by Allterum, a company launched by Fannin, 4A10 is a novel immunotherapy that utilizes a patient’s own immune system to locate and kill cancer cells.

Varadhachary explained that while about 80 percent of patients afflicted with ALL have the B-cell version, the other 20 percent suffer from T-cell ALL.

“Because the TLL population is so small, there are really no approved, effective drugs for it. The last drug that was approved was 18 or 19 years ago,” the CEO-scientist said. 4A10 addresses this unmet need, but also goes beyond it.

Because 4A10 targets CD127, also known as the interleukin-7 receptor, it could be useful in the treatment of myriad cancers. In fact, the receptor is expressed not just in hematological cancers like ALL, but also solid tumors like breast, lung, and colorectal cancers. There’s also “robust data,” according to Varadhachary for the antibody’s success against B-cell ALL, as well as many other cancers.

“Now what we're doing in parallel with doing the development for ALL is that we're continuing to do additional preclinical work in these other indications, and then at some point, we will raise a series A financing that will allow us to expand markets into things which are much more commercially attractive,” Varadhachary explains.

Why did they go for the less commercially viable application first? As Varadhachary put it, “The Fannin model is to allow us to go after areas which are major unmet medical needs, even if they are not necessarily as attractive on a commercial basis.”

But betting on a less common malady could have a bigger payoff than the Allterum team originally expected.

Before the new CPRIT grant, Allterum’s funding included a previous seed grant from CPRIT of $3 million. Other funds included an SBIR grant from NCI, as well as another NCI program called NExT, which deals specifically with experimental therapies.

“To get an antibody from research into clinical testing takes about $10 million,” Varadhachary says. “It's an expensive proposition.”

With this, and other nontraditional financing, the company was able to take what Varadhachary called “a huge unmet medical need but a really tiny commercial market” and potentially help combat a raft of other childhood cancers.

“That's our vision. It's not economically hugely attractive, but we think it's important,” says Varadhachary.

Atul Varadhachary is the managing director of Fannin Innovation. Photo via LinkedIn

Several Houston organizations have received millions from the Cancer Prevention and Research Institute of Texas. Photo via tmc.edu

Texas organization grants $68.5M to Houston institutions for recruitment, research

cha-ching

Three prominent institutions in Houston will be able to snag a trio of high-profile cancer researchers thanks to $12 million in new funding from the Cancer Prevention and Research Institute of Texas.

The biggest recruitment award — $6 million — went to the University of Texas MD Anderson Center to lure researcher Xiling Shen away from the Terasaki Institute for Biomedical Innovation in Los Angeles.

Shen is chief scientific officer at the nonprofit Terasaki Institute. His lab there studies precision medicine, including treatments for cancer, from a “systems biology perspective.”

He also is co-founder and former CEO of Xilis, a Durham, North Carolina-based oncology therapy startup that raised $70 million in series A funding in 2021. Before joining the institute in 2021, the Stanford University graduate was an associate professor at Duke University in Durham.

Shen and Xilis aren’t strangers to MD Anderson.

In 2023, MD Anderson said it planned to use Xilis’ propriety MicroOrganoSphere (MOS) technology for development of novel cancer therapies.

“Our research suggests the MOS platform has the potential to offer new capabilities and to improve the efficiency of developing innovative drugs and cell therapies over current … models, which we hope will bring medicines to patients more quickly,” Shen said in an MD Anderson news release.

Here are the two other Cancer Prevention and Research Institute of Texas (CPRIT) awards that will bring noted cancer researchers to Houston:

  • $4 million to attract David Sarlah to Rice University from the University of Illinois, where he is an associate professor of chemistry. Sarlah’s work includes applying the principles of chemistry to creation of new cancer therapies.
  • $2 million to lure Vishnu Dileep to the Baylor College of Medicine from the Massachusetts Institute of Technology (MIT), where he is a postdoctoral fellow. His work includes the study of cancer genomes.

CPRIT also handed out more than $56.5 million in grants and awards to seven institutions in the Houston area. Here’s the rundown:

  • MD Anderson Cancer Center — Nearly $25.6 million
  • Baylor College of Medicine — Nearly $11.5 million
  • University of Texas Health Science Center at Houston — More than $6 million
  • Rice University — $4 million
  • University of Texas Medical Branch at Galveston — More than $3.5 million
  • Methodist Hospital Research Institute — More than $3.3 million
  • University of Houston — $1.4 million

Dr. Pavan Reddy, a CPRIT scholar who is a professor at the Baylor College of Medicine and director of its Dan L Duncan Comprehensive Cancer Care Center, says the CPRIT funding “will help our investigators take chances and explore bold ideas to make innovative discoveries.”

The Houston-area funding was part of nearly $99 million in grants and awards that CPRIT recently approved.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas Republicans are pushing to move NASA headquarters to Houston

space city

Two federal lawmakers from Texas are spearheading a campaign to relocate NASA’s headquarters from Washington, D.C., to the Johnson Space Center in Houston’s Clear Lake area. Houston faces competition on this front, though, as lawmakers from two other states are also vying for this NASA prize.

With NASA’s headquarters lease in D.C. set to end in 2028, U.S. Sen. Ted Cruz, a Texas Republican, and U.S. Rep. Brian Babin, a Republican whose congressional district includes the Johnson Space Center, recently wrote a letter to President Trump touting the Houston area as a prime location for NASA’s headquarters.

“A central location among NASA’s centers and the geographical center of the United States, Houston offers the ideal location for NASA to return to its core mission of space exploration and to do so at a substantially lower operating cost than in Washington, D.C.,” the letter states.

Cruz is chairman of the Senate Committee on Commerce, Science, and Transportation; and Babin is chairman of the House Committee on Science, Space, and Technology. Both committees deal with NASA matters. Twenty-five other federal lawmakers from Texas, all Republicans, signed the letter.

In the letter, legislators maintain that shifting NASA’s headquarters to the Houston area makes sense because “a seismic disconnect between NASA’s headquarters and its missions has opened the door to bureaucratic micromanagement and an erosion of [NASA] centers’ interdependence.”

Founded in 1961, the $1.5 billion, 1,620-acre Johnson Space Center hosts NASA’s mission control and astronaut training operations. More than 12,000 employees work at the 100-building complex.

According to the state comptroller, the center generates an annual economic impact of $4.7 billion for Texas, and directly and indirectly supports more than 52,000 public and private jobs.

In pitching the Johnson Space Center for NASA’s HQ, the letter points out that Texas is home to more than 2,000 aerospace, aviation, and defense-related companies. Among them are Elon Musk’s SpaceX, based in the newly established South Texas town of Starbase; Axiom Space and Intuitive Machines, both based in Houston; and Firefly Aerospace, based in the Austin suburb of Cedar Park.

The letter also notes the recent creation of the Texas Space Commission, which promotes innovation in the space and commercial aerospace sectors.

Furthermore, the letter cites Houston-area assets for NASA such as:

  • A strong business environment.
  • A low level of state government regulation.
  • A cost of living that’s half of what it is in the D.C. area.

“Moving the NASA headquarters to Texas will create more jobs, save taxpayer dollars, and reinvigorate America’s space agency,” the letter says.

Last November, NASA said it was hunting for about 375,000 to 525,000 square feet of office space in the D.C. area to house the agency’s headquarters workforce. About 2,500 people work at the agency’s main offices. NASA’s announcement set off a scramble among three states to lure the agency’s headquarters.

Aside from officials in Texas, politicians in Florida and Ohio are pressing NASA to move its headquarters to their states. Florida and Ohio both host major NASA facilities.

NASA might take a different approach, however. “NASA is weighing closing its headquarters and scattering responsibilities among the states, a move that has the potential to dilute its coordination and influence in Washington,” Politico reported in March.

Meanwhile, Congressional Delegate Eleanor Holmes Norton, a Democrat who represents D.C., introduced legislation in March that would prohibit relocating a federal agency’s headquarters (including NASA’s) away from the D.C. area without permission from Congress.

“Moving federal agencies is not about saving taxpayer money and will degrade the vital services provided to all Americans across the country,” Norton said in a news release. “In the 1990s, the Bureau of Land Management moved its wildfire staff out West, only to move them back when Congress demanded briefings on new wildfires.”

Houston research breakthrough could pave way for next-gen superconductors

Quantum Breakthrough

A study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston humanoid robotics startup inks new deal to deploy its rugged robots

big deal

Houston-based Persona AI announced the expansion of its operations at the Ion and a major milestone in deploying its humanoid robots.

The company will establish a state-of-the-art development center in the prominent corner suite on the first floor of the Ion, and is slated to begin expansion in June.

“We chose the Ion because it’s more than just a building — it’s a thriving innovation ecosystem,” CEO Nicolaus Radford said in a news release. “This is where Houston’s tech future is being built. It’s a convergence point for the people, energy, and ideas that power our mission to redefine human-machine collaboration. For an industrial, AI-driven robotics company, there’s no better place to scale than in the heart of Houston.”

Persona AI’s new development center will be located in the suite utilized by the Ion Prototyping Lab, managed by TXRX Labs. The IPL will transition its operations to the expanded TXRX facility in the East End Maker Hub, which will allow the lab to grow its team and meet increased demand.

At the start of the year, Persona AI closed $25 million in pre-seed funding. Earlier this month, the company announced a memorandum of understanding with HD Korea Shipbuilding & Offshore Engineering, HD Hyundai Robotic, and Korean manufacturing firm Vazil Company to create and deploy humanoid robots for complex welding tasks in shipyards.

The project will deliver prototype humanoids by the end of 2026, with field testing and full commercial deployment scheduled to begin in 2027.

"As heavy industry faces growing labor constraints—especially in high-risk trades like welding—the need for rugged, autonomous humanoid robots is more urgent than ever,” Radford added in a separate statement. “This partnership with HD Hyundai and Vazil is more than symbolic—deploying to the shipyard is one of the largest real-world proving grounds for Persona's tough, humanoid robots.”