Researchers from Baylor College of Medicine and the University of Houston have developed a new blood-filtering machine that poses fewer risks to pediatric patients with hyperleukocytosis. Photo courtesy UH.

A team of Houston researchers has developed a new microfluidic device aimed at making treatments safer for children with hyperleukocytosis, a life-threatening hematologic emergency often seen in patients with leukemia.

Dr. Fong Lam, an associate professor of pediatrics at Baylor College of Medicine and a pediatric intensive care physician at Texas Children’s Hospital, partnered with Sergey Shevkoplyas, a professor of biomedical engineering at UH, on the device that uses a large number of tiny channels to quickly separate blood cells by size in a process called controlled incremental filtration, according to a news release from UH.

They tested whether performing cell separation with a high-throughput microfluidic device could alleviate the limitations of traditional conventional blood-filtering machines, which pose risks for pediatric patients due to their large extracorporeal volume (ECV), high flow rates and tendency to cause significant platelet loss in the patient. The results of their study, led by Mubasher Iqbal, a Ph.D. candidate in biomedical engineering at UH, were published recently in the journal Nature Communications.

“Continuously and efficiently separating leukocytes from recirculating undiluted whole blood — without device clogging and cell activation or damage — has long been a major challenge in microfluidic cell separation,” Shevkoplyas said in a news release. “Our study is the first to solve this problem.”

Hyperleukocytosis is a condition that develops when the body has an extremely high number of white blood cells, which in many cases is due to leukemia. According to the release, up to 20 percent to 30 percent of patients with acute leukemia develop hyperleukocytosis, and this places them at risk for potentially fatal complications.

The new device utilizes tiny channels—each about the width of a human hair—to efficiently separate blood cells through controlled incremental filtration. According to Lam, the team was excited that the new device could operate at clinically relevant flow rates.

The device successfully removed approximately 85 percent of large leukocytes and 90 percent of leukemic blasts from undiluted human whole blood without causing platelet loss or other adverse effects. It also operates with an ECV that’s about 1/70th of conventional leukapheresis machines, which makes it particularly suitable for infants and small children.

“Overall, our study suggests that microfluidics leukapheresis is safe and effective at selectively removing leukocytes from circulation, with separation performance sufficiently high to ultimately enable safe leukapheresis in children,” Shevkoplyas said in the release.

The study was led by Abdul Latif Khan, pictured here. Courtesy photo

UH study uncovers sustainable farming methods for hemp production

growth plan

A new University of Houston study of hemp microbes can potentially assist scientists in creating special mixtures of microbes to make hemp plants produce more CBD or have better-quality fibers.

The study, led by Abdul Latif Khan, an assistant professor of biotechnology at the Cullen College of Engineering Technology Division, was published in the journal Scientific Reports from the Nature Publishing Group. The team also included Venkatesh Balan, UH associate professor of biotechnology at the Cullen College of Engineering Technology Division; Aruna Weerasooriya, professor of medicinal plants at Prairie View A&M University; and Ram Ray, professor of agronomy at Prairie View A&M University.

The study examined microbiomes living in and around the roots (rhizosphere) and on the leaves (phyllosphere) of four types of hemp plants. The team at UH compared how these microorganisms differ between hemp grown for fiber and hemp grown for CBD production.

“In hemp, the microbiome is important in terms of optimizing the production of CBD and enhancing the quality of fiber,” Khan said in a news release. “This work explains how different genotypes of hemp harbor microbial communities to live inside and contribute to such processes. We showed how different types of hemp plants have their own special groups of tiny living microbes that help the plants grow and stay healthy.”

The study indicates that hemp cultivation can be improved by better understanding these distinct microbial communities, which impact growth, nutrient absorption, stress resilience, synthesis and more. This could help decrease the need for chemical inputs and allow growers to use more sustainable agricultural practices.

“Understanding these microorganisms can also lead to more sustainable farming methods, using nature to boost plant growth instead of relying heavily on chemicals,” Ahmad, the paper’s first author and doctoral student of Khan’s, said the news release.

Other findings in the study included higher fungal diversity in leaves and stems, higher bacterial diversity in roots and soil, and differing microbiome diversity. According to UH, CBD-rich varieties are currently in high demand for pharmaceutical products, and fiber-rich varieties are used in industrial applications like textiles.

Dr. Bernard Harris logged 437 hours in space and was the first Black astronaut to walk in space. Photo courtesy University of Houston.

Houstonian and first Black astronaut to walk in space named to Hall of Fame

out of this world

University of Houston alumnus Dr. Bernard Harris, who was the first Black astronaut to walk in space, is being inducted into the Astronaut Hall of Fame.

The induction ceremony will be held May 31 at the Kennedy Space Center Visitor Complex in Cape Canaveral, Florida.

“Being inducted into the Astronaut Hall of Fame is a tremendous honor, made even more special by the fact that it comes from my peers,” Harris says in a UH news release. “This recognition isn’t just about my accomplishments. It is also a testament to the teamwork and dedication of everyone who shared this amazing journey with me along the way.”

Harris and former astronaut Peggy Whitson, who spent more time in space than any other woman, will join 109 other astronauts inducted into the Hall of Fame. The Astronaut Scholarship Foundation selects the honorees.

Harris, a Texas native who spent much of his childhood in Houston and San Antonio, earned a bachelor’s degree in biology from UH in 1978 and went on to medical school. After completing his residency at the Mayo Clinic and a fellowship at NASA’s Ames Research Center, he joined NASA as a clinical scientist and flight surgeon. He was chosen for the astronaut training program in 1990 and became an astronaut a year later.

In 1993, Harris flew his first mission on Space Shuttle Columbia, during which he conducted research and experiments in physical and life sciences. During his second mission, on Space Shuttle Discovery in 1995, Harris became the first Black astronaut to walk in space. In total, Harris logged 437 hours in space and traveled over 7 million miles.

After leaving NASA, Harris founded the Houston-based investment firm Vesalius Ventures to support emerging medical technology and devices. He also focuses on philanthropy through The Harris Foundation, a Houston-based nonprofit that empowers socially and economically disadvantaged students and communities.

“Space exploration has always been about pushing boundaries, inspiring future generations and proving that the impossible is achievable,” Harris says. “I am grateful for the opportunities that I have been given, and I hope to continue empowering others to reach for the stars.”

Houston hospitals and universities have been granted millions from the CPRIT to advance cancer research and bring leading scientists to the state. Photo by Dwight C. Andrews/Greater Houston Convention and Visitors Bureau.

Texas institute grants $12M to bring leading cancer researchers to Houston

cha-ching

Rice University has recruited a prominent Swedish cancer researcher thanks to a $6 million grant from the Cancer Prevention and Research Institute of Texas.

It’s among $68 million in research grants recently awarded by the state agency, and six recruitment grants totaling $16 million to bring leading cancer researchers to Texas.

A news release from the Cancer Prevention and Research Institute of Texas (CPRIT) describes Pernilla Wittung-Stafshede of the Chalmers University of Technology in Gothenburg, Sweden, as “an accomplished and highly gifted biophysical scientist tackling complicated biological questions regarding the role of metals and metal dysregulation in various diseases. She pioneered a new research field around the role of metal ions in the folding and function of metalloproteins.”

Metalloproteins account for nearly half of all proteins in biology, according to the National Institutes of Health. They “catalyze some of the most difficult and yet important functions in [nature], such as photosynthesis and water oxidation,” the federal agency says.

Wittung-Stafshede, a professor of chemical biology and life sciences at Chalmers, is a former professor at Rice.

Aside from the money for Wittung-Stafshede, Houston recruitment grants also went to:

  • University of Texas M.D. Anderson Cancer Center: $2 million to recruit Rosalie Griffin of the Mayo Clinic
  • Baylor College of Medicine: $2 million to recruit Dr. Nipun Verma of the Yale University School of Medicine
  • Baylor College of Medicine: $2 million to recruit Xin “Daniel” Gao of Harvard University and the Massachusetts Institute of Technology

In Houston, cancer research grants were given to:

  • Baylor College of Medicine: $7.8 million
  • M.D. Anderson Cancer Center: $20.7 million
  • Rice University: $ 1 million
  • University of Houston: $1.2 million
  • University of Texas Health Science Center at Houston: $4.5 million

“The awards … represent the depth and diversity of CPRIT funding for cancer research in Texas,” says Kristen Doyle, CEO of CPRIT. “These grants develop new approaches to preventing, diagnosing, treating, and surviving cancer for all Texans.”

See the full list of awards here.

Houston's Birol Dindoruk, Megan Robertson, Francisco Robles Hernandez and Allison Post have been named senior members of the National Academy of Inventors. Photos courtesy UH and THI.

4 Houston innovators join prestigious group of inventors as senior members

top honor

Houston is home to four new senior members of the National Academy of Inventors.

To be eligible to be an NAI Senior Member, candidates must be active faculty, scientists and administrators from NAI member institutions that have demonstrated innovation and produced technologies that have “brought, or aspire to bring, real impact on the welfare of society,” according to the NAI. The members have also succeeded in patents, licensing and commercialization, and educating and mentoring.

The University of Houston announced that three professors were selected to join the prestigious NAI list of senior members. UH now has 39 faculty members on the NAI list.

“We congratulate these three esteemed colleagues on being named NAI Senior Members,” Ramanan Krishnamoorti, vice president for energy and innovation at UH, said in a news release. “This recognition is a testament to their dedication, research excellence and pursuit of real-world impact by knowledge and technologies. Their achievements continue to elevate the University as a leader in innovation and entrepreneurship.”

UH’s new senior members include:

  • Birol Dindoruk, the American Association of Drilling Engineers Endowed Professor of Petroleum Engineering and Chemical and Biomolecular Engineering at the Cullen College of Engineering. He is known for his research in carbon capture and storage, fluid-rock interactions and hydrogen storage. He holds three patents.
  • Megan Robertson, the Neal R. Amundson professor of chemical and biomolecular engineering at UH’s Cullen College of Engineering. She is developing new polymers and groundbreaking strategies for recycling and reusing plastics. Robertson currently has three patents and two more patent applications pending.
  • Francisco Robles Hernandez, a professor of mechanical engineering technology at the UH College of Technology. He holds four patents, and several others are under review. His work focuses on carbon materials, including pioneering work with graphene and designs with steel and aluminum used in automotives and railroads.

“As an inventor, this is one of the highest honors you can be awarded, so I am very proud to receive it,” Robles Hernandez said in a news release. “UH has been instrumental in supporting my research and innovation efforts, but it’s the creativity of the students here that makes it successful.”

Allison Post, associate director of electrophysiology research and innovations and manager of innovation partnerships at the Texas Heart Institute at Baylor College of Medicine, also made the list.

Post was recognized for her work in biomedical engineering and commitment to advancing cardiovascular care through innovations. Post is the youngest member to be inducted this year.

Other notable Texas honorees include Emma Fan from the University of Texas, Arum Han from Texas A&M and Panos Shiakolas at UT Arlington.

In 2024, Edward Ratner, a computer information systems lecturer in the Department of Information Science Technology at the University of Houston’s Cullen College of Engineering, and Omid Veiseh, a bioengineer at Rice University and director of the Biotech Launch Pad, were named NAI fellows.

The Senior Member Induction Ceremony will honor the 2025 class at NAI’s Annual Conference June 23-26 in Atlanta, Georgia.
A team of researchers at the University of Houston is working to develop a new treatment for Rhabdomyosarcoma, an aggressive cancer with a higher incidence in young children. Photo via Getty Images.

UH research team receives grant to fight aggressive pediatric cancer

cancer research

Researchers at the University of Houston have received a $3.2 million grant from the National Institutes of Health to help find innovative ways to treat Rhabdomyosarcoma, or RMS.

According to a statement from the university, RMS is a malignant soft tissue sarcoma that has a higher incidence in young children and is responsible for 8 percent of pediatric cancer cases with a relatively low survival rate.

One way UH is working on the issue is by studying how and why RMS cells, which are found most often in muscle tissue, divide uncontrollably without ever maturing into normal muscle cells. The researchers aim to tackle a target inside RMS cells known as TAK1, which plays a key role in regulating cell growth.

“By targeting TAK1, we aim to stop the cancer at its source and help the cells develop normally,” Ashok Kumar, the Else and Philip Hargrove Endowed Professor of Drug Discovery at the UH College of Pharmacy and director of the Institute of Muscle Biology and Cachexia, said in a news release. “This approach could lead to new and better treatments for RMS.”

According to UH, preliminary results demonstrated that TAK1 is highly activated in embryonal RMS cells, which are found in younger children; alveolar RMS cells, which are found in older children and teens; and human RMS samples. This suggests that the protein plays a major role in the development of this form of cancer.

The team still aims to uncover how the protein helps RMS cancer grow and plans to evaluate how blocking TAK1 can be used as a therapeutic.

“Blocking TAK1, either by changing the genes (genetic approaches) or using drugs (pharmacological approaches), can stop certain harmful behaviors in cancer cells,” Kumar added. “This was tested both in lab-grown cells and in living models, showing that TAK1 is a key target to control RMS cancer’s spread and aggressiveness, and inhibits tumor formation.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston XR training company lands $5.8M contract with Air Force

taking flight

The U.S. Air Force’s AFWERX innovation arm has picked Houston-based HTX Labs to provide AI-enabled immersive training for workers who maintain Boeing KC-135 refueling tankers.

HTX Labs, an extended reality (XR) company and provider of immersive training programs for U.S. armed forces, will receive as much as $5.8 million in military funding for this project.

The new initiative comes on the heels of HTX Labs completing the second phase of a virtual KC-135 maintenance training program in partnership with Mildenhall, a Royal Air Force station in England. HTX Labs received Small Business Innovation Research (SBIR) funding for the second-phase project.

Under the new initiative, part of its EMPACT training platform, HTX Labs will develop a virtual AI-powered classroom for workers who maintain the KC-135’s F108 engine. In conjunction with this project, HTX Labs will collaborate with the Maine Air National Guard’s 101st Air Refueling Wing Maintenance Squadron on improving EMPACT.

Major Ryan Wing of the Maine Air National Guard says KC-135 maintenance workers “have limited opportunities to perform some of the more complex aircraft and engine repairs in a training environment. Providing immersive training to our warfighters is essential to ensuring mission readiness.”

In January, HTX Labs tapped Brian Reece as vice president of strategic accounts for the Air Force. In this role, he oversees HTX Labs’ relationship with this military branch. Reece is a retired Air Force colonel.

In 2022, Dallas-based Cypress Growth Capital invested $3.2 million in HTX Labs, which was founded in 2017.

5 Rice University-founded startups named finalists ahead of prestigious pitch competition

student founders

Five student-founded startups have been named finalists for Rice University's prestigious pitch competition, hosted by Rice University’s Liu Idea Lab for Innovation and Entrepreneurship later this month

The teams will compete for a share of $100,000 in equity-free funding at the H. Albert Napier Rice Launch Challenge (NRLC), a venture competition that features Rice University's top student-founded startups. The competition is open to undergraduate, graduate, and MBA students at Rice.

Finalists will pitch their five-minute pitch before the Rice entrepreneurship community, followed by a Q&A from a panel of judges, at Rice Memorial Center Tuesday, April 22.

The first-place team will receive $50,000 in equity-free funding, with other prizes and awards ranging from $25,000 to $1,000. Apart from first-, second- and third-place prizes, NRLC will also name winners in categories like the Outstanding Achievement in Artificial Intelligence Prize, the Outstanding Achievement in Climate Solutions Prize, and the Audience Choice Award.

Here are the five startups founded by Rice students are heading to the finals.

Haast Autonomous

Haast Autonomous is building unmanned, long-range VTOL aircraft with cold storage to revolutionize organ transport—delivering life-saving medical supplies roof-to-roof faster, safer, and more efficiently than current systems.

Founders: Jason Chen, Ege Halac, Santiago Brent

Kinnections

Kinnections' Glove is a lightweight, wearable device that uses targeted vibrations to reduce tremors and improve motor control in Parkinson’s patients.

Founders: Emmie Casey, Tomi Kuye

Labshare

Labshare is an AI-powered web app that streamlines lab inventory and resource sharing, reducing waste and improving efficiency by connecting neighboring labs through a centralized, real-time platform.

Founders: Julian Figueroa Jr, John Tian, Mingyo Kang, Arnan Bawa, Daniel Kuo

SteerBio

SteerBio’s LymphGuide is a patented, single-surgery hydrogel solution that restores lymphatic function by promoting vessel growth and reducing rejection, offering a transformative, cost-effective treatment for lymphedema.

Founders: Mor Sela Golan, Martha Fowler, Alvaro Moreno Lozano

Veloci

Veloci Running creates innovative shoes that eliminate the trade-off between foot pain and leg tightness, empowering runners to train comfortably and reduce injury risk.

Founders: Tyler Strothman

Last year, HEXASpec took home first place for its inorganic fillers that improve heat management for the semiconductor industry. The team also won this year's Energy Venture Day and Pitch Competition during CERAWeek in the TEX-E student track.

Dow aims to power Texas manufacturing complex with next-gen nuclear reactors

clean energy

Dow, a major producer of chemicals and plastics, wants to use next-generation nuclear reactors for clean power and steam at a Texas manufacturing complex instead of natural gas.

Dow's subsidiary, Long Mott Energy, applied Monday to the U.S. Nuclear Regulatory Commission for a construction permit. It said the project with X-energy, an advanced nuclear reactor and fuel company, would nearly eliminate the emissions associated with power and steam generation at its plant in Seadrift, Texas, avoiding roughly 500,000 metric tons of planet-warming greenhouse gas emissions annually.

If built and operated as planned, it would be the first U.S. commercial advanced nuclear power plant for an industrial site, according to the NRC.

For many, nuclear power is emerging as an answer to meet a soaring demand for electricity nationwide, driven by the expansion of data centers and artificial intelligence, manufacturing and electrification, and to stave off the worst effects of a warming planet. However, there are safety and security concerns, the Union of Concerned Scientists cautions. The question of how to store hazardous nuclear waste in the U.S. is unresolved, too.

Dow wants four of X-energy's advanced small modular reactors, the Xe-100. Combined, those could supply up to 320 megawatts of electricity or 800 megawatts of thermal power. X-energy CEO J. Clay Sell said the project would demonstrate how new nuclear technology can meet the massive growth in electricity demand.

The Seadrift manufacturing complex, at about 4,700 acres, has eight production plants owned by Dow and one owned by Braskem. There, Dow makes plastics for a variety of uses including food and beverage packaging and wire and cable insulation, as well as glycols for antifreeze, polyester fabrics and bottles, and oxide derivatives for health and beauty products.

Edward Stones, the business vice president of energy and climate at Dow, said submitting the permit application is an important next step in expanding access to safe, clean, reliable, cost-competitive nuclear energy in the United States. The project is supported by the Department of Energy’s Advanced Reactor Demonstration Program.

The NRC expects the review to take three years or less. If a permit is issued, construction could begin at the end of this decade, so the reactors would be ready early in the 2030s, as the natural gas-fired equipment is retired.

A total of four applicants have asked the NRC for construction permits for advanced nuclear reactors. The NRC issued a permit to Abilene Christian University for a research reactor and to Kairos Power for one reactor and two reactor test versions of that company's design. It's reviewing an application by Bill Gates and his energy company, TerraPower, to build an advanced reactor in Wyoming.

X-energy is also collaborating with Amazon to bring more than 5 gigawatts of new nuclear power projects online across the United States by 2039, beginning in Washington state. Amazon and other tech giants have committed to using renewable energy to meet the surging demand from data centers and artificial intelligence and address climate change.

---

This story appeared on our sister site, EnergyCapitalHTX.com.