Innovators in immunotherapy, precision drug discovery, monoclonal antibodies, and diagnostic and therapeutic technologies have joined TMC's Accelerator for Cancer Therapeutics. Photo courtesy TMC.

Texas Medical Center Innovation has named more than 50 health care innovators to the fifth cohort of its Accelerator for Cancer Therapeutics (ACT).

The group specializes in immunotherapy, precision drug discovery, monoclonal antibodies, and diagnostic and therapeutic technologies, according to a statement from TMC.

During the nine-month ACT program, participants will enjoy access to a network of mentors, grant-writing support, chemistry resources, and the entrepreneur-in-residence program. The program is designed to equip participants with the ability to secure investments, develop partnerships, and advance the commercialization of cancer therapeutics in Texas.

“With over 35 million new cancer cases predicted by 2050, the urgency to develop safer, more effective, and personalized treatments cannot be overstated,” Tom Luby, chief innovation officer at Texas Medical Center, said in a news release.

Members of the new cohort are:

  • Alexandre Reuben, Kunal Rai, Dr. Cassian Yee, Dr. Wantong Yao, Dr. Haoqiang Ying, Xiling Shen, and Zhao Chen, all of the University of Texas MD Anderson Cancer Center
  • Dr. Andre Catic and Dr. Martin M. Matzuk, both of the Baylor College of Medicine
  • Cynthia Hu and Zhiqiang An, both of UTHealth Houston
  • Christopher Powala, Aaron Sato, and Mark de Souza, all of ARespo Biopharma
  • Daniel Romo, Dr. Susan Bates, and Ken Hull, all of Baylor University
  • Eugene Sa & Minseok Kim, both of CTCELLS
  • Gomika Udugamasooriya and Nathaniel Dawkins, both of the University of Houston
  • Dr. Hector Alila of Remunity Therapeutics
  • Iosif Gershteyn and Victor Goldmacher, both of ImmuVia
  • João Seixas, Pedro Cal, and Gonçalo Bernardes, all of TargTex
  • Ken Hsu and Yelena Wetherill, both of the University of Texas at Austin
  • Luis Martin and Dr. Alberto Ocaña, both of C-Therapeutics
  • Dr. Lynda Chin, Dr. Keith Flaherty, Dr. Padmanee Sharma, James Allison, and Ronan O’Hagan, all of Project Crest/Apricity Health
  • Michael Coleman and Shaker Reddy, both of Metaclipse Therapeutics
  • Robert Skiff and Norman Packard, both of 3582.ai
  • Rolf Brekken, Uttam Tambar, Ping Mu, Su Deng, Melanie Rodriguez, and Alexander Busse, all of UT Southwestern Medical Center
  • Ryan Swoboda and Maria Teresa Sabrina Bertilaccio, both of NAVAN Technologies
  • Shu-Hsia Chen and Ping-Ying Pan, both of Houston Methodist
  • Thomas Kim, Philipp Mews, and Eyal Gottlieb, all of ReEngage Therapeutics
The ACT launched in 2021 and has had 77 researchers and companies participate. The group has collectively secured more than $202 million in funding from the NIH, CPRIT and venture capital, according to TMC.
UH physics professor Donna Stokes and Allison Master, an assistant professor in the UH College of Education, were recognized by the Biden Administration for excellence in STEM fields. Photos courtesy UH.

2 Houston professors earn prestigious presidential awards for excellence in STEM

Big Wins

Allison Master, an assistant professor at the University of Houston, is the first from the college to be awarded the Presidential Early Career Award for Scientists and Engineers.

Master, who works in the Department of Psychological, Health and Learning Sciences at the UH College of Education, is one of 400 scientists and engineers to receive the honor from the Biden administration. The award recognizes those who “show exceptional potential for leadership early in their research careers,” according to a statement.

“This award speaks volumes about Allison’s dedication, ingenuity and innovation in educational sciences,” Diane Z. Chase, UH senior vice president for academic affairs and provost, said in a news release. “Her groundbreaking work embodies the university’s commitment to advancing knowledge, fostering equity in education and shaping a brighter future for students and educators alike.”

Master’s research in the Identity and Academic Motivation Lab at UH involves how societal stereotypes contribute to gender gaps in motivation to pursue STEM. Her study also explored ways to counter the stereotypes through educational strategies that make students feel that they belong, what drives children’s interest in STEM and the role of social connections. Her efforts resulted in millions of dollars in grants from the U.S. Department of Education’s Institute of Education Sciences, the National Science Foundation, and other organizations, according to UH.

Established by President Bill Clinton in 1996, PECASE recognizes innovative and far-reaching developments in science and technology, expands awareness of careers in STEM fields, enhances connections between research and its impacts on society, and highlights the importance of science and technology for our nation’s future.

“This is something that was on my radar, sort of like a ‘pie in the sky’ dream that it would be amazing to win it, but I didn’t know if it could ever be possible,” Master said. “I am very grateful to the University of Houston for providing such a supportive environment for innovation, collaboration and meaningful research that made this achievement possible.”

In addition to Master’s honor, the White House also recently recognized UH physics professor Donna Stokes for outstanding mentoring in STEM disciplines with the Presidential Awards for Excellence in Science, Mathematics and Engineering Mentoring.

Stokes’ previous awards include the UH Teaching Excellence Award, the 2023 UH Honors College Outstanding Fellowship Mentorship Award, the 2011 UH Provost Academic Advising and Mentoring Award, a National Science Foundation Career Award, and a National Research Council Post-Doctoral Associateship Award. The National Science Foundation manages the PAESMEM awards, and the White House Office of Science and Technology Policy selects honorees.

PAESMEM award recipients will receive $10,000 and the opportunity to attend professional development events in Washington, D.C.

“Spotlighting STEM educators, researchers and mentors is important to demonstrate the critical role they play in developing and encouraging students to pursue STEM degrees and careers,” Stokes said in a news release. “It is imperative to have STEM educators who can foster the next generation of scientists to address local and national scientific challenges.”
Baylor College of Medicine, Texas A&M and University of Houston researchers have designed SPACe, a new open-source image analysis platform. Photo via Getty Images

Texas universities develop innovative open-source platform for cell analysis

picture this

What do labs do when faced with large amounts of imaging data? Powerful cloud computing systems have long been the answer to that question, but a new riposte comes from SPACe.

That’s the name of a new open-source image analysis platform designed by researchers at Baylor College of Medicine, Texas A&M University and the University of Houston.

SPACe, or Swift Phenotypic Analysis of Cells, was created to be used on standard computers that even small labs can access, meaning cellular analysis using images produced through cell painting has a lower barrier to entry than ever before.

“The pharmaceutical industry has been accustomed to simplifying complex data into single metrics. This platform allows us to shift away from that approach and instead capture the full diversity of cellular responses, providing richer, more informative data that can reveal new avenues for drug development,” Michael Mancini, professor of molecular and cellular biology and director of the Gulf Coast Consortium Center for Advanced Microscopy and Image Informatics co-located at Baylor College of Medicine and TAMU Institute for Bioscience and Technology.

SPACe is not only accessible because of its less substantial computational needs. Because the platform is open-source, it’s available to anyone who needs it. And it can be used by academic and pharmaceutical researchers alike.

“The platform allows for the identification of non-toxic effects of drugs, such as alterations in cell shape or effects on specific organelles, which are often overlooked by traditional assays that focus largely on cell viability,” says Fabio Stossi, currently a senior scientist with St. Jude Children’s Research Hospital, the lead author who was at Baylor during the development of SPACe.

The platform is a better means than ever of analyzing thousands of individual cells through automated imaging platforms, thereby better capturing the variability of biological processes. Through that, SPACe allows scientists an enhanced understanding of the interactions between drugs and cells, and does it on standard computers, translating to scientists performing large-scale drug screenings with greater ease.

"This tool could be a game-changer in how we understand cellular biology and discover new drugs. By capturing the full complexity of cellular responses, we are opening new doors for drug discovery that go beyond toxicity,” says Stossi.

And the fact that it’s open-source allows scientists to access SPACe for free right now. Researchers interested in using the platform can access it through Github at github.com/dlabate/SPACe. This early version could already make waves in research, but the team also plans to continually improve their product with the help of collaborations with other institutions.

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

UH researchers develop breakthrough material to boost efficiency of sodium-ion batteries

eyes on clean energy

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

------

This article originally appeared on EnergyCapital.

Competing virtually against 145 teams from 34 countries, the students, known as The Dream Team, won third place for their plan to address energy poverty in Egypt and Turkey. Photo courtesy of UH

Houston university students earn top honors at global energy-poverty competition

Winner, winner

A student-led team from the University of Houston and Texas A&M University took home top prizes at last month's Switch Energy Alliance Case Competition.

Competing virtually against 145 teams from 34 countries, the students, known as The Dream Team, won third place for their plan to address energy poverty in Egypt and Turkey. They were awarded $5,000 in prize money.

The competition challenges student teams to solve real-world energy problems to "drive progress towards a sustainable and equitable energy future," according to the Switch competition's website.

“The Switch competition tackles major issues that we often don’t think about on a daily basis in the United States, so it is a really interesting and tough challenge to solve,” Sarah Grace Kimberly, a senior finance major at UH and member of the team, said in a statement from the university

Kimberly was joined by Pranjal Sheth, a fellow senior finance major at UH, and Nathan Hazlett, a finance graduate student at TAMU with a bachelor’s degree in petroleum engineering.

The Dream Team developed a 10-year plan to address Egypt and Turkey's energy poverty that would create 200,000 jobs, reduce energy costs and improve energy access in rural areas. Its major components included:

  • Developing rooftop and utility-scale solar farms and solar canopies over irrigation canals
  • Expanding wind power capacity by taking advantage of high wind speeds in the Gulf of Suez and Western Desert
  • Deploying cost-efficient technologies along the Nile for rural electrification

“People in the United States should be extremely thankful for the infrastructure and systems that allow us to thrive with power, food and water,” Sheth said in the statement. “Texas went through Winter Storm Uri in 2021—people were without electricity for weeks, and lives were lost. It still comes up in conversations, but certain regions of the world, developing nations, live that experience almost every day. We need to make that a larger part of the conversation and work to help them.”

Team Quwa, a team of four students from the University of Texas at Austin, took home second place and $7,000 in prize money.

“This journey was both intellectually enriching and personally fulfilling,” Mohamed Awad, a PhD candidate at the Hildebrand Department of Petroleum and Geosystems Engineering, said in a statement from UT. “Through the case competition, we had an opportunity to contribute meaningful ideas to address a critical global issue.”

Team Energy Nexus from India earned the top prize and took home $10,000, according to a release from Switch.

Switch Energy Alliance is an Austin-based non-profit that's focused on energy education. The Switch competition began in 2020. Teams of three to four students create a presentation and 15-minute video. The top five teams present their case studies live and answer questions before a panel of judges.

More than 3,200 students from 55 countries have competed over the years. Click here to watch the 2024 final round.

------

This article originally ran on EnergyCapital.

A new study on Mars is shining a light on the Earth's own climate mysteries. Image via UH.edu

Houston scientists create first profile of Mars’ radiant energy budget, revealing climate insights on Earth

RESEARCH FINDINGS

Scientists at the University of Houston have found a new understanding of climate and weather on Mars.

The study, which was published in a new paper in AGU Advances and will be featured in AGU’s science magazine EOS, generated the first meridional profile of Mars’ radiant energy budget (REB). REB represents the balance or imbalance between absorbed solar energy and emitted thermal energy across latitudes. An energy surplus can lead to global warming, and a deficit results in global cooling, which helps provide insights to Earth's atmospheric processes too. The profile of Mars’ REB influences weather and climate patterns.

The study was led by Larry Guan, a graduate student in the Department of Physics at UH's College of Natural Sciences and Mathematics under the guidance of his advisors Professor Liming Li from the Department of Physics and Professor Xun Jiang from the Department of Earth and Atmospheric Sciences and other planetary scientists. UH graduate students Ellen Creecy and Xinyue Wang, renowned planetary scientists Germán Martínez, Ph.D. (Houston’s Lunar and Planetary Institute), Anthony Toigo, Ph.D. (Johns Hopkins University) and Mark Richardson, Ph.D. (Aeolis Research), and Prof. Agustín Sánchez-Lavega (Universidad del País, Vasco, Spain) and Prof. Yeon Joo Lee (Institute for Basic Science, South Korea) also assisted in the project.

The profile of Mars’ REB is based on long-term observations from orbiting spacecraft. It offers a detailed comparison of Mars’ REB to that of Earth, which has shown differences in the way each planet receives and radiates energy. Earth shows an energy surplus in the tropics and a deficit in the polar regions, while Mars exhibits opposite behavioral patterns.

The surplus is evident in Mars’ southern hemisphere during spring, which plays a role in driving the planet’s atmospheric circulation and triggering the most prominent feature of weather on the planet, global dust storms. The storms can envelop the entire planet, alter the distribution of energy, and provide a dynamic element that affects Mars’ weather patterns and climate.

The research team is currently examining long-term energy imbalances on Mars and how it influences the planet’s climate.

“The REB difference between the two planets is truly fascinating, so continued monitoring will deepen our understanding of Mars’ climate dynamics,” Li says in a news release.

The global-scale energy imbalance on Earth was recently discovered, and it contributes to global warming at a “magnitude comparable to that caused by increasing greenhouse gases,” according to the study. Mars has an environment that differs due to its thinner atmosphere and lack of anthropogenic effects.

“The work in establishing Mars’ first meridional radiant energy budget profile is noteworthy,” Guan adds. “Understanding Earth’s large-scale climate and atmospheric circulation relies heavily on REB profiles, so having one for Mars allows critical climatological comparisons and lays the groundwork for Martian meteorology.”

------

This article originally ran on EnergyCapital.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

World's largest student startup competition names teams for 2025 Houston event

ready, set, pitch

The Rice Alliance for Technology and Entrepreneurship has announced the 42 student-led teams worldwide that will compete in the 25th annual Rice Business Plan Competition this spring.

The highly competitive event, known as one of the world’s largest and richest intercollegiate student startup challenges, will take place April 10–12 at Houston's The Ion. Teams in this year's competition represent 34 universities from four countries, including one team from Rice.

Graduate student-led teams from colleges or universities around the world will present their plans before more than 300 angel, venture capital, and corporate investors to compete for more than $1 million in prizes. Last year, top teams were awarded $1.5 million in investment and cash prizes.

The 2025 invitees include:

  • 3rd-i, University of Miami
  • AG3 Labs, Michigan State University
  • Arcticedge Technologies, University of Waterloo
  • Ark Health, University of Chicago
  • Automatic AI, University of Mississippi and University of New Orleans
  • Bobica Bars, Rowan University
  • Carbon Salary, Washington University in St. Louis
  • Carmine Minerals, California State University, San Bernardino
  • Celal-Mex, Monterrey Institute of Technology and Higher Education
  • CELLECT Laboratories, University of Waterloo
  • ECHO Solutions, University of Houston
  • EDUrain, University of Missouri-St. Louis
  • Eutrobac, University of California, Santa Cruz
  • FarmSmart.ai, Louisiana State University
  • Fetal Therapy Technologies, Johns Hopkins University
  • GreenLIB Materials, University of Ottawa
  • Humimic Biosystems, University of Arkansas
  • HydroHaul, Harvard University
  • Intero Biosystems, University of Michigan
  • Interplay, University of Missouri-Kansas City
  • MabLab, Harvard University
  • Microvitality, Tufts University
  • Mito Robotics, Carnegie Mellon University
  • Motmot, Michigan State University
  • Mud Rat, University of Connecticut
  • Nanoborne, University of Texas at Austin
  • NerView Surgical, McMaster University
  • NeuroFore, Washington University in St. Louis
  • Novus, Stanford University
  • OAQ, University of Toronto
  • Parthian Baattery Solutions, Columbia University
  • Pattern Materials, Rice University
  • Photon Queue, University of Illinois, Urbana-Champaign
  • re.solution, RWTH Aachen University
  • Rise Media, Yale University
  • Rivulet, University of Cambridge and Dartmouth College
  • Sabana, Carnegie Mellon University
  • SearchOwl, Case Western Reserve University
  • Six Carbons, Indiana University
  • Songscription, Stanford University
  • Watermarked.ai, University of Illinois, Urbana-Champaign
  • Xatoms, University of Toronto

This year's group joins more than 868 RBPC alums that have raised more than $6.1 billion in capital with 59 successful exits, according to the Rice Alliance.

Last year, Harvard's MesaQuantum, which was developing accurate and precise chip-scale clocks, took home the biggest sum of $335,000. While not named as a finalist, the team secured the most funding across a few prizes.

Protein Pints, a high-protein, low-sugar ice cream product from Michigan State University, won first place and the $150,000 GOOSE Capital Investment Grand Prize, as well as other prizes, bringing its total to $251,000.

Tesla recalling more than 375,000 vehicles due to power steering issue

Tesla Talk

Tesla is recalling more than 375,000 vehicles due to a power steering issue.

The recall is for certain 2023 Model 3 and Model Y vehicles operating software prior to 2023.38.4, according to the National Highway Traffic Safety Administration.

The printed circuit board for the electronic power steering assist may become overstressed, causing a loss of power steering assist when the vehicle reaches a stop and then accelerates again, the agency said.

The loss of power could required more effort to control the car by drivers, particularly at low speeds, increasing the risk of a crash.

Tesla isn't aware of any crashes, injuries, or deaths related to the condition.

The electric vehicle maker headed by Elon Musk has released a free software update to address the issue.

Letters are expected to be sent to vehicle owners on March 25. Owners may contact Tesla customer service at 1-877-798-3752 or the NHTSA at 1-888-327-4236.

Houston space tech companies land $25 million from Texas commission

Out Of This World

Two Houston aerospace companies have collectively received $25 million in grants from the Texas Space Commission.

Starlab Space picked up a $15 million grant, and Intuitive Machines gained a $10 million grant, according to a Space Commission news release.

Starlab Space says the money will help it develop the Systems Integration Lab in Webster, which will feature two components — the main lab and a software verification facility. The integration lab will aid creation of Starlab’s commercial space station.

“To ensure the success of our future space missions, we are starting with state-of-the-art testing facilities that will include the closest approximation to the flight environment as possible and allow us to verify requirements and validate the design of the Starlab space station,” Starlab CEO Tim Kopra said in a news release.

Starlab’s grant comes on top of a $217.5 million award from NASA to help eventually transition activity from the soon-to-be-retired International Space Station to new commercial destinations.

Intuitive Machines is a space exploration, infrastructure and services company. Among its projects are a lunar lander designed to land on the moon and a lunar rover designed for astronauts to travel on the moon’s surface.

The grants come from the Space Commission’s Space Exploration and Aeronautics Research Fund, which recently awarded $47.7 million to Texas companies.

Other recipients were:

  • Cedar Park-based Firefly Aerospace, which received $8.2 million
  • Brownsville-based Space Exploration Technologies (SpaceX), which received $7.5 million
  • Van Horn-based Blue Origin, which received $7 million

Gwen Griffin, chair of the commission, says the grants “will support Texas companies as we grow commercial, military, and civil aerospace activity across the state.”

State lawmakers established the commission in 2023, along with the Texas Aerospace Research & Space Economy Consortium, to bolster the state’s space industry.