A startup and a nonprofit makerspace have rallied to create PPE, or personal protective equipment, for local hospitals. Getty Images

In the span of one day, the founders of Houston-based Lazarus 3D received calls from emergency room directors and physicians and vice presidents of hospitals explaining a dire need for personal protective equipment — like surgical masks and face shields — for medical professionals in the front lines of the battle against COVID-19.

"We stopped everything we were doing," says Jacques Zaneveld, co-founder of Lazarus, which makes 3D-printed human organs for surgeons to practice on. "We've moved 100 percent of our focus on developing PPE."

Now, Zaneveld with his co-founder, Smriti Agrawal Zaneveld, have manufacturing orders in for 700,000 surgical masks weekly and have designed a non-FDA approved face shield, which they have ordered a few million of. The duo has taken out a short-term loan to front the cost of the medical equipment and are now looking for the right customers to buy these new PPE products. All hospitals and medical professionals in need of supplies can head to Lazarus' website to request more info.

"Our personal feeling has been to do whatever we can do to build as many as possible," Jacques tells InnovationMap. "It's very stressful because I'm borrowing money that we don't have in order to set up these production lines."

On the other side of town, 3D printing nonprofit TXRX has reprogramed 30 of its 3D printers to make PPE. The nonprofit is working Memorial Hermann to quickly prototype and test items made with materials they can get their hands on.

The Center for Disease Control has relaxed some of the requirements for PPE in light of the crisis and shortage, and Roland von Kurnatowski, president at TX/RX Labs, says that has helped speed up their efforts. But, the biggest challenge, he says, has been to quickly get together a design and prototype for Memorial Hermann to give them feedback so that they can then produce the products.

"I think there are a lot of people out there producing devices, but I think the problem is there's not a lot of clarity around materials, quality, and acceptance. People are doing what they can with what they've got," says von Kurnatowski. "Our hope working with Memorial Hermann was to make sure we are devising and testing devices that are functional and appropriate.

TXRX is also relying on Memorial Hermann and others in the medical community to indicate which PPE devices are most needed. Currently, the nonprofit is printing 10,000 face shields for Memorial Hermann, but also has designs for N95 respirators, surgical masks, a positive air pressure respirator (or PAPR), Tyvek suit, and even a portable shield for the intubation process.

Von Kurnatowski says the Houston community can get involved by donating to TXRX's GoFundMe campaign. The 3D printing process is quick and local, but expensive and out of budget for hospitals, so TXRX is taking a loss on its products it is creating. The organization is also looking for people who might have 3D printing materials or experience to volunteer — TXRX has about 20 people working on this but hopes that number ramps up to 60 to 80 people helping out.

Crisis also brings the community together in their time of need — that's what Zaneveld says he sees happening.

"Everyone who is at all involved in the medical space in engineering in Houston is trying to put stuff out," Zaneveld says. "We're sharing information and trying to work together to support each other."

Human-tissue printing technology, blockchain networks, health care solutions, game-changing software — all this innovation and more is coming out of Houston startups. Courtesy photos

Editor's Picks: Top 10 Houston startup feature stories of 2019

2019 in review

Thousands of startups call Houston home. According to the Greater Houston Partnership's data, the Houston area added 11,700 firms between 2013 to 2018. And, if you consider Crunchbase's tally, at the end of 2018, Houston had over 1,400 tech startups on the investment tracking website's radar.

This past year, InnovationMap featured profiles on dozens of these Houston startups — from blockchain and software companies to startups with solutions in health care and oil and gas. Here are 10 that stood out throughout 2019.

Topl — a blockchain startup connecting every step of the way

Houston-based Topl can track almost anything using its blockchain technology. Getty Images

For Topl, 2019 was a year of laying the groundwork. In a January 2019 article on InnovationMap, Kim Raath, president of the Houston-based blockchain company, explained that Topl's mission originated out of the fact that 60 percent of the world lives on $10 a day — and it's in the poorest regions of the world where it's the hardest to get funding for a new business.

Raath says that in her experience backpacking and volunteering all around the world she learned that banks are too overwhelmed to evaluate these potential businesses. Topl has created a technology where banks can easily generate a report on these entrepreneurs that evaluates and makes a loan or investment recommendation on the business.

"We are a generation that wants a story," she says. "We want an origin, and don't want to be fooled. And, because you might be able to reduce the cost by having this transparency, you might be able to bring down the cost on both sides."

Later that year, the company closed a 20 percent oversubscribed $700,000 seed round. With the money, Topl will be able to grow its platforms, provide better product features, and increase marketing efforts. Topl's customers are drawn to the technology because of the business efficiency the blockchain adds to their supply chain, but they are also excited about how having this technology differentiates them from their competition. Raath says she's interested in growing Topl's ability to do joint marketing campaigns with their customers.

Incentifind — finding green incentives for commercial and residential building

Natalie Goodman founded Incentifind, which connects home builders and commercial developers with green incentives. Courtesy of Incentifind

When asked about the origin story of IncentiFind — a Houston-based startup that connects real estate developers and home builders with green construction incentives — founder Natalie Goodman doesn't mince words.

"We're a complete accident," Goodman tells InnovationMap in an interview in March. "I'm an architect. We didn't set out to have a startup."

IncentiFind's mission is to increase the amount of green developments and construction projects in the U.S. The company is equipped with a massive database of green incentives that are offered by utility, county, city, state and federal agencies. Many home builders or commercial developers don't take advantage of green incentives because they're simply not aware of them, Goodman says. Commercial developers can expect to spend around $1,500 with IncentiFind, while homeowners can expect to spend between $50 and $150.

Lazarus 3D — 3D printed organs to better train surgeons

Lazarus 3D is using 3D printing to help advance surgeons' skills. Photo via laz3d.com

It's pretty standard for surgeons in training to practice complicated surgeries on produce — slicing bananas open and sewing grapes back together. But for a pair of Baylor College of Medicine-educated doctors, that didn't seem like sufficient prep for working with living bodies; fruit surgery was not fruitful enough. In 2014, Drs. Jacques Zaneveld and Smriti Agrawal Zaneveld founded Lazarus3D to build a better training model — and layer by layer, they created models of abs and ribs and even hearts with a 3D printer.

"We adapted pre-existing 3D printing technology in a novel proprietary way that allows us to, overnight, build soft, silicone or hydrogel models of human anatomy," Jacques, who serves as CEO, tells InnovationMap in July. "They can be treated just like real tissue."

This year, the company grew to seven people and aims to expand even more to add to its sales and manufacturing teams. Having been funded mostly by friends and family investors, Lazarus3D plans enter its first equity round to raise $6 million, InnovationMap reported last summer.

Mental Health Match — connecting people to the right therapists

Ryan Schwartz realized online dating was easier than finding a therapist. He created a tool to change that. Courtesy of Mental Health Match

Nearly five years ago, Ryan Schwartz sat in a coffee shop in crisis mode. His mother had just died suddenly and he was struggling to find an appropriate therapist. Across the table, his friend sat making a profile on a dating app. Quickly, her endeavor was complete and she was ready to swipe right, but Schwartz was still on the hunt for mental help.

"In two minutes she could have a profile matching her with a partner potentially for the rest of her life and I was sitting there for hours and hours trying to find a therapist," he told InnovationMap in June. "I thought it should be easier to find a therapist than a life partner. That's what sent me on my journey."

That journey reached a watershed last month when Schwartz launched Mental Health Match, a website designed to pair patients with their ideal therapist. The idea gained traction as Schwartz described it to people he met and found that many said they had experienced similar difficulties in finding the right practitioner for their needs.

Grab — making ordering food at the airport easier

Houston-based Grab makes it so you're waiting in one less line at the airport. Getty Images

Most airport lines are unavoidable, but a Houston startup has cut out at least some of those lines with its mobile ordering app. Houston-based software company Grab was founded by Mark Bergsrud in 2015, who worked in senior leadership roles for almost 20 years at Continental Airlines and then United Airlines, following the merger. For Bergsrud, Grab feels like another major mobile game changer the industry experienced.

"I spent many years thinking about the travel experience and how to make it better and faster," Bergsrud told InnovationMap in July. "This feels like how mobile check in felt. There was a problem customers didn't know they had — check in wasn't that difficult anyway, but to be able to have that control, people love it."

Grab now has a presence in over 37 airports around the world, including Dallas and Austin though, ironically, not yet either of Houston's airports. Expansion is in the works for Grab, which closed a multimillion-dollar Series A round this year — London-based Collinson Group was the sole contributor.

NurseDash — An app that connects nurses to shifts

Houston-based NurseDash is the Uber of staffing nursing shifts in medical facilities. Photo via nursedash.com

Across the country, medical facilities are short on nurses. Agencies play a role in matchmaking nurses to open shifts, but agencies charge a high percentage for placement and lack transparency, says Andy Chen, former CFO for Nobilis Health Corporation. That's why he and Jakob Kohl created their app, NurseDash in 2017. The project manager for the app is in New York, but official headquarters in Houston's Galleria area, where a staff of five works with the team spread out around the world.

Since its debut, NurseDash has attracted 40 facilities in Houston, InnovationMap reported in May, including hospitals, surgery centers, and senior living, and about 400 nurses. Chen says he isn't sure just what to call his technology yet, but compares it to the ride hailing of Uber or Lyft and calls it "a virtual bulletin board."

Syzygy — hydrogen cells battery to minimize natural gas

Trevor Best, CEO of Syzygy Plasmonics, walked away from EarthX $100,000 richer. Photo via LinkedIn

A Houston technology company is doing something that, for many decades, wasn't thought to be possible. Syzygy Plasmonics is creating a hydrogen fuel cell technology that produces a cheaper source of energy that releases fewer carbon emissions. The hydrogen-fueled technology originated out of research done over two decades by two Rice University professors, Naomi Halas and Peter Nordlander.

Syzygy's technology, CEO Trevor Best told InnovationMap in August, is structured more like a battery than that of a combustion engine. Inside the technology, there are cells, lights, and mirrors making as bright as possible, which then spurs a reaction that creates energy. It has the potential to be cheaper — it's made with cheaper materials — and, of course, cleaner than traditional fueling technology with fewer carbon emissions released.

This new photocatalytic chemical reactor has the potential to shake up the industrial gas, chemical, and energy industries — something that hasn't gone unnoticed by investors. Syzygy just closed a $5.8 million Series A round, and the funds will allow for Syzygy to continue to develop its technology and grow its team. Best tells InnovationMap that he expects to launch a full-size pilot by the end of 2020 and is already in talks with potential clients who are interested in the technology for industrial purposes.

Volumetric — 3D printed human tissue

Houston researchers are commercializing their organ 3D printing technology. Jordan Miller/Rice University

There may come a time when you or someone you love is in need of a new pair of lungs. Or perhaps it's a liver. It's not a scenario anyone dreams of, but thanks to Houston company Volumetric, you may never end up on a waiting list. Instead, that organ is made to order and 3D printed using a mix of medical plastics and human cells.

And this possibility isn't necessarily in the distant future. On the cover of the May 3 issue of the journal Science, is a contraption that looks a bit like a futuristic beehive. It's a working air sac complete with blood vessels, the beginnings of a technology that is perhaps only a decade from being implanted in humans. And it was crafted on a 3D printer in Jordan Miller's lab at Rice University. Miller and his bioengineering graduate student Bagrat Grigoryan are primed to profit from their inventions.

In 2018, they started Volumetric Inc., a company that sells both the hydrogel solutions used for printing organs like theirs and the printers themselves. Touring Miller's lab in the Houston Medical Center is a visual timeline of his team's progress designing printers. The version being manufactured is a slick little number, small enough to fit under chemical exhaust hoods, but fitted with everything necessary to print living tissues. It's made and sold in cooperation with CellInk, a larger bioprinting company.

"Our technology is based on projection," Miller told InnovationMap in May. Specifically, it's stereolithography, a type of 3D printing that produces the finished product layer-by-layer. Shining colored light of the right intensity turns the polymers into a solid gel.

Voyager — Email-less communication tool for maritime shipping

Voyager, a Houston SaaS company, has received fresh funds to develop its bulk shipping software. Tom Fisk/Pexels

Houston software startup Voyager is making waves in its quest to improve efficiency — and stem billions of dollars in losses — in the maritime bulk-shipping business. Now, it's got some fresh capital to help it achieve that mission.

InnovationMap reported in August that Houston-based Voyager revealed it secured $1.5 million in seed funding from four investors from around the world: Austin-based ATX Venture Partners, Houston- and California-based Blue Bear Capital, New York City-based GreenHawk Capital, and Oman-based Phaze Ventures. Previous investors include Boulder, Colorado-based Techstars and Spring-based Knightsgate Ventures.

With its software-as-a-service offering, Voyager aims to modernize the workflows of operators in the maritime bulk-commodities industry. The company says its technology will become more vital as autonomous shipping and internet- and Internet of Things-enabled cargo vessels grow in popularity. Voyager's technology enables all communication tied to a shipment to be handled via its web dashboard and app, essentially creating a one-stop shop for people who need to track messages about maritime bulk shipments.

"With Voyager, what it allows companies to do is essentially have all of those counter parties working together in a shared environment to manage the voyage together — entirely email free," Matthew Costello, CEO, tells InnovationMap in December.

Galen Data — cloud-based platform for connecting medical devices to the internet

Houston-based Galen Data is growing its clientbase and just formed two new partnerships with medical device companies. Photo via galendata.com

Educated as an engineer, Chris DuPont has stepped outside his professional comfort zone to generate funding for his Houston-based startup, Galen Data Inc. DuPont's pool of technical contacts in Houston is "wide and deep," he says, but his pool of financial contacts had been shallow.

Overcoming obstacles in Houston's business waters, DuPont has raised two rounds of angel funding — he declines to say how much — that have enabled Galen Data to develop and market its cloud-based platform for connecting medical devices to the internet, including pacemakers and glucose monitors. DuPont is the startup's co-founder and CEO.

Galen Data's patent-pending technology lets medical device manufacturers tailor the cloud-based software to their unique needs. DuPont says his company's software is geared toward medical devices that are outside, not inside, hospitals and other healthcare facilities. He declines to divulge how many customers the startup has.

Hatched within Houston-based Tietronix Software Inc., DuPont's previous employer, Galen Data launched in 2016 but didn't roll out its first product until 2018. Galen Data's emergence comes as the market for internet-connected mobile health apps keeps growing. One forecast envisions the global space for mobile health exceeding $94 billion by 2023.

"We want to be at the forefront of that technology curve," DuPont tells InnovationMap in May. "We might be six months early, we might be a year early, but it's starting to happen."

This four Houstonians saw a need in their industries and — rather than accepting the status quo — found a solution. Courtesy photos

4 Houston innovators to know this week

Who's who

The crux of innovation is identifying a problem and using your skills to ideate a solution. Each of these four innovators had their "aha" moments that led to their research and development moments, and now to where they are today.

Smriti Agrawal Zaneveld and Jacques Zaneveld, founders of Lazarus 3D

Photo courtesy of Lazarus 3D

It seemed a little antiquated that surgeons were still practicing their techniques on various fruits. Baylor College of Medicine-educated Drs. Jacques Zaneveld and Smriti Agrawal Zaneveld founded Lazarus3D in 2014 to build a better training model — and layer by layer, they created models of abs and ribs and even hearts with a 3D printer.

"We adapted pre-existing 3D printing technology in a novel proprietary way that allows us to, overnight, build soft, silicone or hydrogel models of human anatomy," says Jacques, who serves as CEO. "They can be treated just like real tissue."

Read the full story here.

Guy de Carufel, founder and CEO of Cognitive Space

Photo courtesy of Guy du Carufel

Guy du Carufel knows that in just a matter of years, there will be so many satellites orbiting the early and collecting data, there's not going to be enough people to monitor them. And, frankly, people shouldn't have to. That's why du Carufel created an artificial intelligence-enabled, cloud-based technology that can track and manage each of these satellite clusters on behalf of the cluster's owner.

"We're currently at an inflection point where the satellite industry is expected to grow up to five folds in the next 10 years because of the large companies building up these satellites," du Carufel says. "There are around 2,000 satellites active right now, and that's expected to grow to over 10,000 in the next 10 years."

Read the full story here.

Jim Havelka, founder and CEO of InformAI

Photo courtesy of InformAI

Hospitals and medical centers can be tough places to keep track of data — but that doesn't have to be the case. Jim Havelka founded InformAI to help doctors and health care providers tap into their data to provide better diagnoses and preventative care.

"There were several things missing," says Havelka. "One was access to very large data sets, because it wasn't really until the last five or 10 years that digitalization of data, especially in the health care vertical became more widespread and available in a format that's usable. The second convergence was the technology, the ability to process very large data sets."

Lazarus 3D is using 3D printing to help advance surgeons' skills. Photo via laz3d.com

Houston company is using 3D printing to enhance surgeon training and prevent avoidable patient deaths

Practice makes perfect

It is no surprise that, when a company offered life-like bladders for medical training, Houston urologists jumped at the opportunity — many had to learn the surgery by operating on bell peppers.

This sort of produce practice is the traditional method for teaching surgeons. Before a doctor ever makes an incision on a living person, they'll practice surgery on food — slicing bananas open and sewing grapes back together.

But for a pair of Baylor College of Medicine-educated doctors, that didn't seem like sufficient prep for working with living bodies; fruit surgery was not fruitful enough. In 2014, Drs. Jacques Zaneveld and Smriti Agrawal Zaneveld founded Lazarus3D to build a better training model — and layer by layer, they created models of abs and ribs and even hearts with a 3D printer.

"We adapted pre-existing 3D printing technology in a novel proprietary way that allows us to, overnight, build soft, silicone or hydrogel models of human anatomy," says Jacques, who serves as CEO. "They can be treated just like real tissue."

This isn't 3D printing's foray in medicine. In 1999, doctors in North Carolina implanted the first 3D-printed bladder in human bodies — they covered the synthetic organs in the patients' cells so that their bodies accepted them. Since, researchers have continued to find uses for the technology in the field, printing other organs and making prosthetic limbs.

But the Lazarus3D founders felt like medical training was lagging behind. Even cadavers, which medical schools also use to prepare doctors for surgery, don't represent a healthy human body or the diseased state of a hospital patient, said Smriti, who works as the research director.

The pair turned their kitchen into a printing lab and set to work, creating life-like models of human organs. They didn't have to go far after their first successes to find potential buyers — they just went to Starbucks. In a coffeeshop in the heart of the Medical Center, they talked loudly about their product until the neighborhood doctors and researchers took interest and gathered around.

Over the next few years, the Lazarus3D team pooled resources and contacts and, a summer after opening, they moved out of their kitchen and into an office. They now are a Capital Factory portfolio company and have partnerships with Texas Children's, Baylor College of Medicine, MD Anderson Cancer Center, and others, providing organs for specialized training — and the more they expand, the more they're able to prepare doctors for invasive, sometimes dangerous procedures.

"There are over 400,000 deaths annually in the U.S. due to medical error," Smriti says. "Not all of them are due to surgical mistakes, but all of these, nonetheless, were preventable."

The models can also be used for explaining to patients in a visual way what surgeries they're about to receive — the black and grey smears on an MRI scan might not actually help a patient understand much about what a surgeon is going to do to their body. In 2018, Lazarus3D won a contest with NASA on the potential for 3D printing organs in space, so that major surgeries might be performed there. And the printed organs can also be used by researchers to safely develop new surgery methods.

This year, the company grew to seven people and aims to expand even more to add to its sales and manufacturing teams. Having been funded mostly by friends and family investors, Lazarus3D plans enter its first equity round this year. They're raising $6 million.

"Every generation in medicine, people look back at what was done before and think 'Man, that was barbaric,'" Jacques said. "Fifty years from now, we're going to look back and think, 'Man, back then we used to just give someone a patient to learn how to do physical skills on? That seems crazy.'"

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Overheard: Houston health care experts sound off on how tech and COVID-19 have affected the industry

eavesdropping in houston

There has been an undeniable paradigm shift in the health care industry due to COVID-19 as well as the growth of technology. A group of professionals sat down to discuss what in particular has changed for the industry as a whole as well as at local institutions.

At a panel for Venture Houston, a two-day conference put on by the HX Venture Fund on February 4th and 5th, a few health care professionals weighed in on all the changes to the industry for the startups, investors, corporations, and more who attended the virtual event. Here are some significant overheard moments from the virtual panel — Thinking Past a COVID World.

“For most of health care, this last year has been probably five years of rapid cycle re-innovation and movement forward — particularly in the digital realm.”

Marc Boom, president and CEO of Houston Methodist. From rapid adoption of telemedicine to developing a COVID-19 vaccine in less than a year, health care has seen rapid growth. However, there's fine tuning still needed, Boom continues.

"At the end of the day there's only so much we can do virtually," he adds.

“The most incredible thing was how the vaccines got developed so quickly.”

Chris Rizik, CEO of Renaissance Venture Partners. A large portion of the industry wasn't excited about RNA vaccines, but the COVID-19 vaccines might have changed some minds. It took 11 months to get it out into the world, but 10 of that was purely regulatory, he adds.

"One of the sustaining changes of the COVID-19 pandemic is I think RNA vaccines are here to stay."

​— Paul Klotman, executive dean of Baylor College of Medicine. Klotman adds that the vaccine's trials were so impressively quick because there were just so many COVID patients sick and eligible to enroll.

“I think one of the things the TMC institutions did really well was to decide really early on was to share data.”

Boom says, adding that the TMC represents around 70 percent of Houston's adults and around 90 percent of the city's pediatric patients. This opportunity for data is "one of the most robust sources of real-time data."

"Yes, you're going to compete clinically, but there's a lot of collaboration to be done especially during a pandemic," Boom says of the TMC's member organizations prioritizing collaboration with data sharing.

“Houston has done better than almost all major metropolitan areas because we have came together as a city and a community.”

Klotman says, adding that the vast patient base the TMC is key.

"There's a huge opportunity here for early biotech development," he says. "Because there are so many patients, there are huge opportunities to do new trials."

“The real challenge is for investors to be in tune to know what’s here to stay, and to invest around that."

Rizik says, adding that 2020 was the biggest year for health care investment with more money going into deals, rather than more deals occuring.

“We’re seeing a huge uptick in people interested in health professions, thanks to COVID.”

Boom says of the industry's workforce, which has usually been hard to recruit and grow.

“The medical school communities are all racing to change the way we teach and the kind of information we teach.”

Klotman says of the future of the workforce.

“Unlike most industries, technology is tended to be cumbersome in health care.

​— Boom says adding that new technology means added costs and slowed down processes that can't replace the human touch. Houston Methodist is looking for innovations that don't take health care professionals away from patients.

“If there’s anything this last year has shown us is that as fast as we thought we were going, we need to go faster. We’re excited to work with companies with great ideas.”

— Boom says of the future of tech in health care. "I think we're on a very transformational era in digital health right now — but there's a lot of work to be done still."

This Texas company is on a mission to the moon with $93 million NASA contract

SHOOT FOR THE MOON

A local aerospace company is over the moon about its latest endeavor: a NASA-funded project to deliver scientific payloads to the lunar surface.

NASA recently awarded rocket-maker Firefly Aerospace $93.3 million to deliver a suite of science and technology demonstrations and equipment to the moon in 2023. The award is part of a NASA initiative — and key to its moon-focused Artemis program — that enables the agency to tap commercial partners to quickly dispatch and land science and technology payloads on the moon.

As part of the deal, Firefly is responsible for what NASA calls "end-to-end delivery services," meaning the company will compile the NASA-sponsored and commercial payloads, weighing more than 200 pounds, launch them from Earth, land them on the moon using its Blue Ghost lander, which was designed and developed at Firefly's Cedar Park facility, and manage mission operations.

"Our team's collective experience resulted in a creative technical solution to meet the needs of all these payloads, with a strong emphasis on both lunar science return and customer service through each mission phase," says Will Coogan, Firefly's lunar lander chief engineer.

For Firefly, the mission supports the company's overall goal to become the leading space-transportation company in the U.S. The NASA award was publicized the same day Firefly announced a new board of directors and its plans to implement an internal restructuring of the company, namely designating specific business units dedicated to launchers and spacecraft, and expanding its government-relations team.

This is the first NASA award of its kind for Firefly, which is scheduled to deliver the goods to the moon's low-lying Crisium basin, enabling NASA to further investigate the lunar surface, all with the goal of preparing for future human missions to — and sustainable human presence on — the moon.

"The payloads we're sending as part of this delivery service span across multiple areas, from investigating the lunar soil and testing a sample capture technology, to giving us information about the moon's thermal properties and magnetic field," says Chris Culbert, manager of the Commercial Lunar Payload Services initiative at NASA's Johnson Space Center in Houston.

Firefly's Blue Ghost will land in an area of the Crisium basin known as Mare Crisium, a 300-mile-wide valley where NASA hopes to gain more understanding about the loose rock and soil, as well as the interaction of solar wind and Earth's magnetic field.

The lunar investigations will come shortly before NASA's planned missions to the moon and beyond. As part of its Artemis program, NASA aims to land the first woman and the next man on the moon by 2024, with the agency noting its partnerships with commercial companies like Firefly will help NASA "establish sustainable exploration by the end of the decade," then use that knowledge to "take the next giant leap: sending astronauts to Mars."

------

This article originally ran on CultureMap.

Houston expert: Winter storm Uri's devastation should be a reminder to prioritize innovative energy solutions

guest column

Texas has landed itself in the middle of a fierce debate following what's been considered one of the worst winter storm in recent history for the state.

Uri wreaked havoc as it rolled through regions that were wholly unprepared for the sudden temperature drops, single digit wind chills, and unusual precipitation (e.g. thundersnow in Galveston). Rolling power outages and water shortages affected more than 4.5 million Texans. Businesses like grocery stores and restaurants — unable to wash food or sanitize equipment or even turn on the lights, —closed throughout the ordeal, leaving many families without food, water, or power.

For most, this was an unprecedented experience. The majority of catastrophes in Texas are in the form of warm weather events like floods, hurricanes, or tornadoes, which means that even if power is lost, freezing is rarely an issue. Uri turned this upside down. ERCOT's failure to provide reliable energy for days on end led to families sleeping in devastatingly cold temperatures, further water shortage due to municipal water facilities failing, carbon monoxide deaths, disruption in vaccine rollouts, hospitals overrun with people needing to charge essential medical equipment, and much more. Uri highlighted in harrowing detail the domino effect that energy (and lack thereof) has on everything around it.

A single source of ERCOT's failure is hard to pinpoint. The cold led to production shut-ins, exacerbating the existing natural gas supply shortage and resulted in the RRC prioritizing "direct-to-consumer" natural gas delivery (i.e. to residences, hospitals, schools, etc.) over natural gas for the grid. Iced-over gas lines disrupted this flow even further. Freezing temperatures shut off some wind turbines and solar panels (if they were not already covered in snow). Coal and nuclear plants in Texas also shut down due to frozen instruments and equipment.

Thrown into sharp relief was the importance of consumer access to natural gas and other fossil fuels like propane. Most homes that had completely electrified (including my own) were ill-prepared to heat their homes without access to the grid or backup generators. Residential and community solar did little to alleviate this problem in many cases as lower technology configurations either froze, were not able to capture enough energy from a low-light environment, or were covered in snow. Having access to gas for heating or a propane stove was a lifeline for most folks.

But it's oversimplifying to say that the only solution to preventing another situation like this is continued or increased reliance on the oil and gas industry.

What last week ultimately demonstrated was the multitude of technology solutions that needs to scale up to provide us with the best energy reliability and availability.

It wasn't enough for our grid to have five potential generation sources – they all failed in different ways. But what if we incorporated more geothermal, which is more cold-weather resistant? What if we upgraded our solar panels to all have trackers or heating elements to prevent snow accumulation? What if our grid had access to larger scale energy storage? What if consumers had more access to off-grid distributed energy systems like generators, residential solar, geothermal pumps, or even just really large home batteries? What if we had predictive solutions that were able to detect when the non-winterized equipment would fail, days before they did? What if we could generate power from fossil fuels without dangerous emissions like carbon monoxide?

All of these technologies and more are being created and developed in our energy innovation ecosystem today, and many in Houston. What we're building towards is diversity of our energy system — but not just diversity of source — which is often the focus – but diversity of energy transportation, energy delivery, and energy consumption. Energy choice is about being able to, as a consumer, have a variety of options available to you such that in extenuating circumstances like winter storms or other catastrophes, there is no need to depend on any single configuration.

In a state like Texas, which is not only the largest oil and gas producer but also the largest wind energy producer and soon to be home to the largest solar project in the US, innovation should and will happen across all energy types and systems. Uri can teach us about the importance of the word all and how critical it is to encourage startups and technology development to develop stronger energy choice. Texas is the perfect home for all of this — and our state's rather embarrassing failure around Uri should be exactly the kind of reminder we need to keep encouraging this paradigm.

------

Deeana Zhang is the director of energy technology at Houston-based Tudor, Pickering, Holt & Co.