Game changer

Houston clean energy company closes $5.8M Series A and prepares to revolutionize the industry

Syzygy Plasmonics, which is creating a cleaner energy source that runs on hydrogen, closed a $5.8 million round. Photo via plasmonics.tech

A Houston technology company is doing something that, for many decades, wasn't thought to be possible. Syzygy Plasmonics is creating a hydrogen fuel cell technology that produces a cheaper source of energy that releases fewer carbon emissions.

The hydrogen-fueled technology originated out of research done over two decades by two Rice University professors, Naomi Halas and Peter Nordlander.

"There are rules in chemical engineering, and you can't break them, but we follow them in a different way," CEO Trevor Best tells InnovationMap. "What we're doing is fundamentally different. We're using light instead of heat to drive chemical reactions."

Syzygy's technology is structured more like a battery than that of a combustion engine. Inside the technology, there are cells, lights, and mirrors making as bright as possible, which then spurs a reaction that creates energy. It has the potential to be cheaper — it's made with cheaper materials — and, of course, cleaner than traditional fueling technology with fewer carbon emissions released.

This new photocatalytic chemical reactor has the potential to shake up the industrial gas, chemical, and energy industries — something that hasn't gone unnoticed by investors. Syzygy just closed a $5.8 million Series A round led by MIT's The Engine and Houston-based The GOOSE Society of Texas. Evok Innovations, a previous investor in the company, and angel investors from the Creative Destruction Lab also contributed to the round.

The funds will allow for Syzygy to continue to develop its technology and grow its team. Best tells InnovationMap that he expects to launch a full-size pilot by the end of 2020 and is already in talks with potential clients who are interested in the technology for industrial purposes.

"We're starting to solidify relationships and get customers ready," Best says.

Earlier this year, the company also received funding from the Department of Energy and from the National Science Foundation SBIR Program. The DOE tasked Syzygy with creating a reactor that transforms ammonia into hydrogen for fueling purposes. For the SBIR Program, the company is creating a reactor that processes carbon dioxide.

Trending News

Building Houston

 
 

Business and government leaders in the Houston area hope the region can become a hub for CCS activity. Photo via Getty Images

Three big businesses — Air Liquide, BASF, and Shell — have added their firepower to the effort to promote large-scale carbon capture and storage for the Houston area’s industrial ecosystem.

These companies join 11 others that in 2021 threw their support behind the initiative. Participants are evaluating how to use safe carbon capture and storage (CCS) technology at Houston-area facilities that provide energy, power generation, and advanced manufacturing for plastics, motor fuels, and packaging.

Other companies backing the CCS project are Calpine, Chevron, Dow, ExxonMobil, INEOS, Linde, LyondellBasell, Marathon Petroleum, NRG Energy, Phillips 66, and Valero.

Business and government leaders in the Houston area hope the region can become a hub for CCS activity.

“Large-scale carbon capture and storage in the Houston region will be a cornerstone for the world’s energy transition, and these companies’ efforts are crucial toward advancing CCS development to achieve broad scale commercial impact,” Charles McConnell, director of University of Houston’s Center for Carbon Management in Energy, says in a news release.

McConnell and others say CCS could help Houston and the rest of the U.S. net-zero goals while generating new jobs and protecting current jobs.

CCS involves capturing carbon dioxide from industrial activities that would otherwise be released into the atmosphere and then injecting it into deep underground geologic formations for secure and permanent storage. Carbon dioxide from industrial users in the Houston area could be stored in nearby onshore and offshore storage sites.

An analysis of U.S Department of Energy estimates shows the storage capacity along the Gulf Coast is large enough to store about 500 billion metric tons of carbon dioxide, which is equivalent to more than 130 years’ worth of industrial and power generation emissions in the United States, based on 2018 data.

“Carbon capture and storage is not a single technology, but rather a series of technologies and scientific breakthroughs that work in concert to achieve a profound outcome, one that will play a significant role in the future of energy and our planet,” says Gretchen Watkins, U.S. president of Shell. “In that spirit, it’s fitting this consortium combines CCS blueprints and ambitions to crystalize Houston’s reputation as the energy capital of the world while contributing to local and U.S. plans to help achieve net-zero emissions.”

Trending News