under construction

UTHealth Houston latest to break ground in Helix Park

The UTHealth Houston School of Public Health, which operates out of three buildings currently, will consolidate all of its operations in the new building. Rendering courtesy of UTHealth

UTHealth Houston School of Public Health broke ground Tuesday on a new tower in the Texas Medical Center's Helix Park.

The $229 million facility is slated to be open in time for the fall semester in 2026. It will be home to research laboratories, distance-learning technology, an auditorium, teaching kitchen, collaborative spaces, and classrooms and adds 350,000 square feet to TMC’s Helix Park, which has several projects underway.

The UTHealth Houston School of Public Health, which operates out of three buildings currently, will consolidate all of its operations in the new building at 1930 Old Spanish Trail. Disciplines taught in the new tower will include epidemiology, genetics, nutrition, health policy, data science, and health promotion.

According to a statement from UTHealth, the facility will allow the school to continue to grow as enrollment has increased 27 percent over the last five years.

“The new building reflects our bold thinking as we pioneer radical solutions for imminent and future public health challenges while giving our students the tools and resources to improve the health of Texas,” Eric Boerwinkle, dean of UTHealth School of Public Health, said in a statement.

Houston-based Kirksey Architecture and Detroit-based Smith Group designed the new 10-story building which incorporates sustainable design. The tower is slated to feature rainwater harvesting for irrigation, an upper-level terrace, holistic teaching garden and a building automation programming. A skybride over Old Spanish Trail will also connect the UTHealth Houston School of Public Health with a plaza that is shared with MD Anderson.

The new tower joins the 12-story Dynamic One project at TMC Helix Park, which is slated to open this year. It will be anchored by Baylor College of Medicine and is the first of the four buildings planned for the 37-acre, five-million-square-foot development, named for the shape of the park and walkway design at the center of the campus.

The TMC3 Collaborative Building will also be located within Helix Park, also slated to open this year. The 250,000-square-foot space will house research facilities for MD Anderson Cancer Center, the Texas A&M University Health Science Center, the University of Texas Health Science Center at Houston, and TMC, as well as VC firms and hedge funds. UTHealth is also slated to move into a portion of that building in September or October.

Helix Park will be one of four districts within the TMC, including the already operating TMC Medical Campus and the TMC Innovation Factory.

The TMC BioPort completes the list. The biomanufacturing and medical supplies distribution site is intended to create over 100,000 new job opportunities once completed.

Trending News

 
 

Promoted

A research team housed out of the newly launched Rice Biotech Launch Pad received funding to scale tech that could slash cancer deaths in half. Photo via Rice University

A research funding agency has deployed capital into a team at Rice University that's working to develop a technology that could cut cancer-related deaths in half.

Rice researchers received $45 million from the National Institutes of Health's Advanced Research Projects Agency for Health, or ARPA-H, to scale up development of a sense-and-respond implant technology. Rice bioengineer Omid Veiseh leads the team developing the technology as principal investigator.

“Instead of tethering patients to hospital beds, IV bags and external monitors, we’ll use a minimally invasive procedure to implant a small device that continuously monitors their cancer and adjusts their immunotherapy dose in real time,” he says in a news release. “This kind of ‘closed-loop therapy’ has been used for managing diabetes, where you have a glucose monitor that continuously talks to an insulin pump. But for cancer immunotherapy, it’s revolutionary.”

Joining Veiseh on the 19-person research project named THOR, which stands for “targeted hybrid oncotherapeutic regulation,” is Amir Jazaeri, co-PI and professor of gynecologic oncology at the University of Texas MD Anderson Cancer Center. The device they are developing is called HAMMR, or hybrid advanced molecular manufacturing regulator.

“Cancer cells are continually evolving and adapting to therapy. However, currently available diagnostic tools, including radiologic tests, blood assays and biopsies, provide very infrequent and limited snapshots of this dynamic process," Jazaeri adds. "As a result, today’s therapies treat cancer as if it were a static disease. We believe THOR could transform the status quo by providing real-time data from the tumor environment that can in turn guide more effective and tumor-informed novel therapies.”

With a national team of engineers, physicians, and experts across synthetic biology, materials science, immunology, oncology, and more, the team will receive its funding through the Rice Biotech Launch Pad, a newly launched initiative led by Veiseh that exists to help life-saving medical innovation scale quickly.

"Rice is proud to be the recipient of the second major funding award from the ARPA-H, a new funding agency established last year to support research that catalyzes health breakthroughs," Rice President Reginald DesRoches says. "The research Rice bioengineer Omid Veiseh is doing in leading this team is truly groundbreaking and could potentially save hundreds of thousands of lives each year. This is the type of research that makes a significant impact on the world.”

The initial focus of the technology will be on ovarian cancer, and this funding agreement includes a first-phase clinical trial of HAMMR for the treatment of recurrent ovarian cancer that's expected to take place in the fourth year of THOR’s multi-year project.

“The technology is broadly applicable for peritoneal cancers that affect the pancreas, liver, lungs and other organs,” Veiseh says. “The first clinical trial will focus on refractory recurrent ovarian cancer, and the benefit of that is that we have an ongoing trial for ovarian cancer with our encapsulated cytokine ‘drug factory’ technology. We'll be able to build on that experience. We have already demonstrated a unique model to go from concept to clinical trial within five years, and HAMMR is the next iteration of that approach.”

Trending News

 
 

Promoted