SimpleSilo, created at Rice360, offers a low-cost, easy-to-source solution for infants born with gastroschisis. Photo courtesy Rice University

A team of engineers and pediatric surgeons led by Rice University’s Rice360 Institute for Global Health Technologies has developed a cost-effective treatment for infants born with gastroschisis, a congenital condition in which intestines and other organs are developed outside of the body.

The condition can be life-threatening in economically disadvantaged regions without access to equipment.

The Rice-developed device, known as SimpleSilo, is “simple, low-cost and locally manufacturable,” according to the university. It consists of a saline bag, oxygen tubing and a commercially available heat sealer, while mimicking the function of commercial silo bags, which are used in high-income countries to protect exposed organs and gently return them into the abdominal cavity gradually.

Generally, a single-use bag can cost between $200 and $300. The alternatives that exist lack structure and require surgical sewing. This is where the SimpleSilo comes in.

“We focused on keeping the design as simple and functional as possible, while still being affordable,” Vanshika Jhonsa said in a news release. “Our hope is that health care providers around the world can adapt the SimpleSilo to their local supplies and specific needs.”

The study was published in the Journal of Pediatric Surgery, and Jhonsa, its first author, also won the 2023 American Pediatric Surgical Association Innovation Award for the project. She is a recent Rice alumna and is currently a medical student at UTHealth Houston.

Bindi Naik-Mathuria, a pediatric surgeon at UTMB Health, served as the corresponding author of the study. Rice undergraduates Shreya Jindal and Shriya Shah, along with Mary Seifu Tirfie, a current Rice360 Global Health Fellow, also worked on the project.

In laboratory tests, the device demonstrated a fluid leakage rate of just 0.02 milliliters per hour, which is comparable to commercial silo bags, and it withstood repeated disinfection while maintaining its structure. In a simulated in vitro test using cow intestines and a mock abdominal wall, SimpleSilo achieved a 50 percent reduction of the intestines into the simulated cavity over three days, also matching the performance of commercial silo bags. The team plans to conduct a formal clinical trial in East Africa.

“Gastroschisis has one of the biggest survival gaps from high-resource settings to low-resource settings, but it doesn’t have to be this way,” Meaghan Bond, lecturer and senior design engineer at Rice360, added in the news release. “We believe the SimpleSilo can help close the survival gap by making treatment accessible and affordable, even in resource-limited settings.”
Innovators in immunotherapy, precision drug discovery, monoclonal antibodies, and diagnostic and therapeutic technologies have joined TMC's Accelerator for Cancer Therapeutics. Photo courtesy TMC.

TMC names 2025 cohort of cancer treatment innovators

ready to grow

Texas Medical Center Innovation has named more than 50 health care innovators to the fifth cohort of its Accelerator for Cancer Therapeutics (ACT).

The group specializes in immunotherapy, precision drug discovery, monoclonal antibodies, and diagnostic and therapeutic technologies, according to a statement from TMC.

During the nine-month ACT program, participants will enjoy access to a network of mentors, grant-writing support, chemistry resources, and the entrepreneur-in-residence program. The program is designed to equip participants with the ability to secure investments, develop partnerships, and advance the commercialization of cancer therapeutics in Texas.

“With over 35 million new cancer cases predicted by 2050, the urgency to develop safer, more effective, and personalized treatments cannot be overstated,” Tom Luby, chief innovation officer at Texas Medical Center, said in a news release.

Members of the new cohort are:

  • Alexandre Reuben, Kunal Rai, Dr. Cassian Yee, Dr. Wantong Yao, Dr. Haoqiang Ying, Xiling Shen, and Zhao Chen, all of the University of Texas MD Anderson Cancer Center
  • Dr. Andre Catic and Dr. Martin M. Matzuk, both of the Baylor College of Medicine
  • Cynthia Hu and Zhiqiang An, both of UTHealth Houston
  • Christopher Powala, Aaron Sato, and Mark de Souza, all of ARespo Biopharma
  • Daniel Romo, Dr. Susan Bates, and Ken Hull, all of Baylor University
  • Eugene Sa & Minseok Kim, both of CTCELLS
  • Gomika Udugamasooriya and Nathaniel Dawkins, both of the University of Houston
  • Dr. Hector Alila of Remunity Therapeutics
  • Iosif Gershteyn and Victor Goldmacher, both of ImmuVia
  • João Seixas, Pedro Cal, and Gonçalo Bernardes, all of TargTex
  • Ken Hsu and Yelena Wetherill, both of the University of Texas at Austin
  • Luis Martin and Dr. Alberto Ocaña, both of C-Therapeutics
  • Dr. Lynda Chin, Dr. Keith Flaherty, Dr. Padmanee Sharma, James Allison, and Ronan O’Hagan, all of Project Crest/Apricity Health
  • Michael Coleman and Shaker Reddy, both of Metaclipse Therapeutics
  • Robert Skiff and Norman Packard, both of 3582.ai
  • Rolf Brekken, Uttam Tambar, Ping Mu, Su Deng, Melanie Rodriguez, and Alexander Busse, all of UT Southwestern Medical Center
  • Ryan Swoboda and Maria Teresa Sabrina Bertilaccio, both of NAVAN Technologies
  • Shu-Hsia Chen and Ping-Ying Pan, both of Houston Methodist
  • Thomas Kim, Philipp Mews, and Eyal Gottlieb, all of ReEngage Therapeutics
The ACT launched in 2021 and has had 77 researchers and companies participate. The group has collectively secured more than $202 million in funding from the NIH, CPRIT and venture capital, according to TMC.
EndoQuest Robotics secured an Investigational Device Exemption from the FDA for its clinical study. Photo via Getty Images

FDA greenlights Houston surgery robotics company's unique technology

headed to clinical trials

A Houston surgical robotics company has gotten a Investigational Device Exemption from the FDA to go forward with human trials.

This news allows EndoQuest Robotics to begin its Prospective Assessment of a Robotic-Assisted Device in Gastrointestinal Medicine (PARADIGM) study, which will be conducted at leading United States health care facilities, including Brigham and Women’s Hospital (Boston), Mayo Clinic (Scottsdale), Cleveland Clinic (Cleveland), AdventHealth (Orlando), and HCA Healthcare (Houston). The study will include surgeries on 50 subjects, who will hopefully begin to enroll in January.

“The foundational thesis is we're trying to make sure that the world's largest medical center is also the world's largest med tech innovation center,” Eduardo Fonseca, interim CEO of EndoQuest Robotics, tells InnovationMap.

His company is well on its way to helping to assure that, through making history of its own. EndoQuest is behind the world's first Flexible Robotic Surgical System, a technology that may one day transform surgery as we know it.

The idea to use these novel robots for surgery came from Dr. Todd Wilson, a surgeon at UTHealth Houston, who spent his medical education, residency, and fellowship at the institution.

“I had really focused in my practice on trying to do everything possible to improve outcomes for patients,” Wilson explains. “And there seemed to be a pretty good correlation that the smaller the incisions or the fewer incisions, the better patients would do.”

The stumbling block? The necessary small incisions are difficult for human surgeons to make with current technology. But UTHealth was part of the solution.

“Right there in the University of Texas was a microsurgical lab where they were focusing on trying to develop robotics, but the application was still a little bit fuzzy,” Wilson says.

Using their innovations to solve Wilson’s problem turned out to be the start of the company now known as EndoQuest Robotics.

The first indication for the system is for colon lesions. But in the future it could be used for practically any minimally invasive surgery (MIS). That means that the robots could help to perform anything from a tonsillectomy to cholecystectomy (gallbladder removal) to non-invasive colorectal procedures, should those lesions prove to be cancerous.

According to Fonseca, last year was the first on record that there were more MIS, including laparoscopic and robotic surgeries, than conventional ones in the U.S. The time is right to forge ahead with the flexible robotic surgical system. Days ago, the EndoQuest team announced that its Investigational Device Exemption (IDE) application for its pivotal colorectal clinical study was approved by the FDA.

“Our end point is a device that can be mass-manufactured and very safe for patients and has a short learning curve, so therefore, we intend to learn a lot during these trials that will inform our ultimate design,” says Fonseca.

He adds that it’s a “brilliant” group of engineers that has set EndQuest apart, including both teams in Houston and in South Korea.

“We can move twice as fast as anyone else,” jokes engineer Jiwon Choi.

Despite the extra brain power provided by the South Korea engineers, Fonseca says that EndoQuest’s beginnings are “as much of a Houston story as you could find.”

UTHealth Houston has secured millions in grant funding — plus has reached a new milestone for one of its projects. Photo via utsystem.edu

Houston health care leader secures funding, milestones for latest initiatives across cancer, stroke, and more

news roundup

UTHealth Houston is making waves in many disciplines right now. From cancer to Alzheimer’s disease to stroke, the institution is improving outcomes for patients in new ways. Last week, UTHealth announced three exciting updates to its roster of accomplishments.

On October 8, UTHealth announced that it had received a $4.8 million grant from the National Cancer Institute, aimed at helping cancer survivors to continue their healing and enhancing primary care capacity. It will be put into action by UTHealth researchers working with eight community health centers around Texas that treat un- and underinsured patients. The initiative is called Project CASCADE, which stands for Community and Academic Synergy for Cancer Survivorship Care Delivery Enhancement.

“Project CASCADE focuses on how primary healthcare teams provide whole-person and coordinated care to underserved patients who have a history of cancer,” says Bijal Balasubramanian, professor of epidemiology and the Rockwell Distinguished Chair in Society and Health at UTHealth Houston School of Public Health, a multiple principal investigator of the study. “Primary care is uniquely suited to deliver whole-person and coordinated care for cancer survivors because, at its core, it prioritizes, personalizes and integrates healthcare for all conditions, not just the cancer.”

She continued by adding that 70 percent of cancer survivors live with other chronic conditions. The study will help by taking a holistic approach, rather than relegating people’s care to many different teams. Project CASCADE is one of only four National Cancer Institute-funded U01 grants that have been awarded to applicants focused on primary care for cancer survivors.

“Community health centers are the primary-care homes for patients who are underinsured or uninsured. In collaboration with community health center clinics, this study will develop a model of cancer survivorship care that can be disseminated and scaled up to be used across other health systems in Texas,” Balasubramanian says.

The intervention will use a designated care coordinator champion to oversee every aspect of patients’ health journey. Project ECHO will provide a backbone for treatment. That’s a telementoring strategy that improves primary care clinicians’ knowledge about post-cancer care, recognition and management of the effects of cancer and its treatments, and communication between oncologists and the primary care team. Project CASCADE is also a partnership between The University of Texas System institutions, including UT Southwestern Medical Center and The University of Texas MD Anderson Cancer Center.

The previous week, UTHealth made history by performing the first infusion in Houston of a newly FDA-approved drug, Kisunla, for the treatment of early symptomatic Alzheimer’s disease. The lucky recipient was 79-year-old Terrie Frankel. Though Kisunla is not a cure for Alzheimer’s, it has been noted to slow progress when administered early in the disease’s encroachment.

“Mrs. Frankel is the ideal patient for this treatment,” her doctor, David Hunter says. “We want to see patients as soon as they, or their family, notice the slightest trace of forgetfulness. The earlier the patient is in their Alzheimer’s disease, the more they benefit from treatments like Kisunla.”

UTHealth was one of the sites in the trial that charted the fact that Kisunla reduced amyloid plaques on average by 84 percent at 10 months after infusion. Frankel will receive her infusions monthly for the next 18 months, and her doctors will keep tabs on her progress with PET scans and use MRIs to scan for possible side effects. Next year, researchers will begin recruiting participants over the age of 55 with a family history of dementia, but no memory loss themselves, for a new trial, one of several currently working against Alzheimer’s that are taking place at UTHealth.

Stroke is no less of a worry to many patients. Last week, UTHealth received another grant that will improve the odds for patients who have had a stroke with the successful re-opening of a blocked vessel through endovascular surgery. The $2.5 million grant from the National Institute of Neurological Disorders and Stroke, part of the National Institutes of Health, will fund a five-year study that will include the creation of a machine-learning program that will be able to predict which stroke patients with large blood vessel blockages will benefit most from endovascular therapy.

The investigators will form a database of imaging and outcomes of patients whose blockages were successfully opened, called reperfusion, from three U.S. hospitals. This will allow them to identify clinical and imaging-based predictors of damage in the brain after reperfusion. From there, the deep-learning model will help clinicians to know which patients might go against the tenet that the sooner you treat a patient, the better.

“This is shaking our core of deciding who we treat, and when, and how, but also, how we are evaluating them? Our current methods of determining benefit with imaging are not good enough,” says principal investigator and associate professor in the Department of Neurology at McGovern Medical School at UTHealth Houston, Sunil Sheth.

And this is just some of the groundbreaking work taking place at UTHealth each day.

The UTHealth Houston School of Public Health, which operates out of three buildings currently, will consolidate all of its operations in the new building. Rendering courtesy of UTHealth

UTHealth Houston latest to break ground in Helix Park

under construction

UTHealth Houston School of Public Health broke ground Tuesday on a new tower in the Texas Medical Center's Helix Park.

The $229 million facility is slated to be open in time for the fall semester in 2026. It will be home to research laboratories, distance-learning technology, an auditorium, teaching kitchen, collaborative spaces, and classrooms and adds 350,000 square feet to TMC’s Helix Park, which has several projects underway.

The UTHealth Houston School of Public Health, which operates out of three buildings currently, will consolidate all of its operations in the new building at 1930 Old Spanish Trail. Disciplines taught in the new tower will include epidemiology, genetics, nutrition, health policy, data science, and health promotion.

According to a statement from UTHealth, the facility will allow the school to continue to grow as enrollment has increased 27 percent over the last five years.

“The new building reflects our bold thinking as we pioneer radical solutions for imminent and future public health challenges while giving our students the tools and resources to improve the health of Texas,” Eric Boerwinkle, dean of UTHealth School of Public Health, said in a statement.

Houston-based Kirksey Architecture and Detroit-based Smith Group designed the new 10-story building which incorporates sustainable design. The tower is slated to feature rainwater harvesting for irrigation, an upper-level terrace, holistic teaching garden and a building automation programming. A skybride over Old Spanish Trail will also connect the UTHealth Houston School of Public Health with a plaza that is shared with MD Anderson.

The new tower joins the 12-story Dynamic One project at TMC Helix Park, which is slated to open this year. It will be anchored by Baylor College of Medicine and is the first of the four buildings planned for the 37-acre, five-million-square-foot development, named for the shape of the park and walkway design at the center of the campus.

The TMC3 Collaborative Building will also be located within Helix Park, also slated to open this year. The 250,000-square-foot space will house research facilities for MD Anderson Cancer Center, the Texas A&M University Health Science Center, the University of Texas Health Science Center at Houston, and TMC, as well as VC firms and hedge funds. UTHealth is also slated to move into a portion of that building in September or October.

Helix Park will be one of four districts within the TMC, including the already operating TMC Medical Campus and the TMC Innovation Factory.

The TMC BioPort completes the list. The biomanufacturing and medical supplies distribution site is intended to create over 100,000 new job opportunities once completed.
The Cancer Prevention and Research Institute of Texas recently announced fresh funding for cancer researchers, and Houston organizations received more than 40 percent of it. Photo via Getty Images

Here's what Houston cancer researchers secured fresh funding from Texas nonprofit

grants incoming

The Cancer Prevention and Research Institute of Texas (CPRIT) has awarded around $40 million in grants to cancer researchers and cancer research institutions in the Houston area.

The Houston-area grants represent more than 40 percent of the statewide grants recently approved by Austin-based CPRIT.

The largest local grant, $6 million, went to Hongfang Liu and the University of Texas Health Science Center at Houston. The grant helped attract Liu to UTHealth Houston. She is a pioneer in biomedical informatics, an emerging field in cancer research.

Liu comes to Houston from the Mayo Clinic. At UTHealth Houston, she will be director of the Center for Translational Artificial Intelligence in Medicine within the School of Biomedical Informatics as well as vice president for learning health systems.

In a news release, Dr. Giuseppe Colasurdo, president of UTHealth Houston, says the recruitment of Lui “will strategically enhance the position of Texas as a national and international leader in data science, artificial intelligence, and informatics applications in the diagnosis, prevention, and treatment of cancer.”

Other CPRIT grant recipients at UTHealth Houston were:

  • Lara Savas — $2,499,492 for early detection and treatment of breast and cervical cancer among Latinas
  • Chao Hsing Yeh — $1,046,680 for an acupressure program to help patients manage cancer-related pain
  • Belinda Reininger — $999,254 for a lifestyle intervention program in South Texas
  • Paula Cuccaro — $449,959 for a targeted approach to boosting HPV vaccinations

What follows is a rundown of other CPRIT grant recipients in the Houston area.

University of Texas MD Anderson Cancer Center

  • Kenneth Hu — $2 million to recruit him as a first-time, tenure-track faculty member
  • Dr. Kelly Nelson — $1,998,196 to support a program for early detection of melanoma
  • Robert Volk — $1,988,211 for a lung cancer screening program
  • Jian Hu — $1.4 million for research into brain and spinal cord tumors in children
  • Die Zhang — $1,399,730 for research into cognitive issues caused by radiation treatment
  • Peng Wei — $1,199,994 for research into the evolution of bladder cancer
  • Boyi Gan — $1,050,000 for the study of cell death in breast cancer patients
  • Sue-Hwa Lin — $1,050,000 for a novel immunotherapy to treat the spread of prostate cancer to the bones
  • Joseph McCarty — $1,050,000 for research into invasive cells in patients with brain or spinal cord tumors
  • Cullen Taniguchi — $1,049,997 for the study of immune responses related to pancreatic cancer
  • Dr. Andrea Viale — $1,049,985 for the study of immune responses related to pancreatic cancer
  • Michael Curran —$1,049,905 for research into blocking DNA damage related to radiation therapy and immunotherapy
  • Wantong Yao — $1,049,854 for research into a novel therapy for pancreatic cancer
  • Eleonora Dondossola — $1,025,623 for the study of therapy resistance among certain patients with prostate or kidney cancer
  • Niki Zacharias Millward — $1,019,997 for the study of a type of kidney cancer that begins in the lining of small tubes inside the organ

Baylor College of Medicine

  • Xi Chen — $2 million for the study of immunotherapy resistance among some breast cancer patients
  • Melanie Bernhardt — $1,392,407 for research aimed at improving treatment of acute lymphoblastic leukemia in children
  • Pavel Sumazin — $1,371,733 for research into hepatocellular carcinoma, the most common type of liver cancer
  • Maksim Mamonkin — $1,050,000 for improving treatment of T-cell acute lymphoblastic leukemia and lymphoblastic lymphoma

University of Texas Medical Branch at Galveston

  • Ana Rodriguez — $2,257,898 for an HPV vaccination program in the Rio Grande Valley

Houston Methodist Research Institute

  • Ewan McRae — $1,999,977 to recruit him to Houston from the United Kingdom’s Cambridge University as an expert in RNA therapeutics

University of Houston

  • Lorraine Reitzel — $448,726 for lung cancer screening programs
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Mark Cuban calls AI ‘the greater democratizer’ for young entrepreneurs

eyes on AI

Texas billionaire Mark Cuban—whose investment portfolio includes Houston-based Holliball, a startup that makes and sells large inflatable holiday ornaments—believes AI is leveling the playing field for budding low-income entrepreneurs.

At the recent Clover x Shark Tank Summit in Las Vegas, the Shark Tank alum called AI “the greater democratizer.”

Cuban told Axios that free and low-cost AI tools enable disadvantaged teenagers to compete with seasoned professionals.

“Right now, if you’re a 14- to 18-year-old and you’re in not-so-good circumstances, you have access to the best professors and the best consultants,” Cuban said. “It allows people who otherwise would not have access to any resources to have access to the best resources in real time. You can compete with anybody.”

While Cuban believes AI is “the great democratizer” for low-income young people, low-income workers still face hurdles in navigating the AI landscape, according to Public Works Partners, an urban planning and consulting firm. The firm says access to AI among low-income workers may be limited due to cost, insufficient digital literacy and infrastructure gaps.

“Without adequate resources and training, these workers may struggle to adapt to AI-driven workplaces or access the educational opportunities necessary to acquire new skills,” Public Works Partners said.

Texas 2036, a public policy organization focused on the state’s future, reported in January AI jobs in Texas are projected to grow 27 percent over the next decade. The number 2036 refers to the year when Texas will celebrate its bicentennial.

As for the current state of AI, Cuban said he doesn’t think the economy is witnessing an AI bubble comparable to the dot-com bubble, which lasted from 1998 to 2000.

“The difference is, the improvement in technology basically slowed to a trickle,” Cuban said of the dot-com era. “We’re nowhere near the improvement in technology slowing to a trickle in AI.”

CPRIT hires MD Anderson official as chief cancer prevention officer

new hire

The Austin-based Cancer Prevention and Research Institute of Texas, which provides funding for cancer research across the state, has hired Ruth Rechis as its chief prevention officer. She comes to CPRIT from Houston’s University of Texas MD Anderson Cancer Center, where she led the Cancer Prevention and Control Platform.

Before joining MD Anderson, Rechis was a member of the executive leadership team at the Livestrong Foundation, an Austin-based nonprofit that supports people affected by cancer.

“Ruth has widespread connections throughout the cancer prevention community, both in Texas and across the nation,” CPRIT CEO Kristen Doyle said in a news release. “She is a long-term passionate supporter of CPRIT, and she is very familiar with our process, programs, and commitment to transparency. Ruth is a terrific addition to the team here at CPRIT.”

Rechis said that by collaborating with researchers, policymakers, public health leaders and community partners, CPRIT “can continue to drive forward proven prevention strategies that improve health outcomes, lower long-term costs, and create healthier futures for all.”

At MD Anderson, Rechis and her team worked with more than 100 organizations in Texas to bolster cancer prevention initiatives at clinics and community-based organizations.

Rechis is a longtime survivor of Hodgkin lymphoma, a type of cancer that affects the lymph nodes, which are part of a person’s immune system.