The Cancer Bioengineering Collaborative announced the projects that were selected for its first round of seed grants. Photo via Rice.edu

Five cancer-fighting research projects were named inaugural recipients of a new grant program founded by two Houston institutions.

Last summer, Rice University and The University of Texas MD Anderson Cancer Center announced they were teaming up to form the new Cancer Bioengineering Collaborative. The shared initiative, created to form innovative technologies and bioengineering approaches to improve cancer research, diagnosis and treatment, recently launched with an event at the TMC3 Collaborative Building in Helix Park.

At the gathering, the Cancer Bioengineering Collaborative announced the projects that were selected for its first round of seed grants.

  • “Enhancing CAR-T immunotherapy via precision CRISPR/Cas-based epigenome engineering of high value therapeutic gene targets,” led by Isaac Hilton, associate professor of biosciences and bioengineering at Rice and a Cancer Research and Prevention Institute of Texas (CPRIT) scholar; and Michael Green, associate professor of lymphoma/myeloma at MD Anderson.
  • “Nanocluster and KRAS inhibitor-based combination therapy for pancreatic ductal adenocarcinoma,” led by Linlin Zhang, assistant research professor of bioengineering at Rice; and Haoqiang Ying, associate professor of molecular and cellular oncology at MD Anderson.
  • “Engineering tumor-infiltrating fusobacteriumas a microbial cancer therapy,” led by Jeffrey Tabor, professor of bioengineering at Rice; and Christopher Johnston, associate professor of genomic medicine and director of microbial genomics within the Platform for Innovative Microbiome and Translational Research at MD Anderson.
  • “Preclinical study of nanoscale TRAIL liposomes as a neoadjuvant therapy for colorectal cancer liver metastasis,” led by Michael King, the E.D. Butcher Professor of Bioengineering at Rice, CPRIT scholar and special adviser to the provost on life science collaborations with the Texas Medical Center; and Xiling Shen, professor of gastrointestinal medical oncology at MD Anderson.
  • “Deciphering molecular mechanisms of cellular plasticity in MDS progression,” led by Ankit Patel, assistant professor of electrical and computer engineering at Rice and of neuroscience at Baylor College of Medicine; and Pavan Bachireddy, assistant professor of hematopoietic biology and malignancy and lymphoma/myeloma at MD Anderson.

The event was a who’s who of Houston-based cancer specialists. Speakers included our city’s favorite Nobel laureate, Jim Allison, director of the James P. Allison Institute, as well as MD Anderson’s vice president of research, Eyal Gottlieb. Attendees were welcomed by the leaders of the initiative, Rice’s Gang Bao and MD Anderson’s Jeffrey Molldrem.

“This collaborative initiative builds on the strong foundation of our existing relationship, combining Rice’s expertise in bioengineering, artificial intelligence and nanotechnology with MD Anderson’s unmatched insights in cancer care and research,” Rice’s president Reginald DesRoches says at the event. “This is a momentous occasion to advance cancer research and treatment with the innovative fusion of engineering and medicine.”

The collaboration is part of Rice’s 10-year strategic plan for leadership in health innovation, called “Momentous: Personalized Scale for Global Impact.” Its goals include a commitment to responsible use of cutting-edge AI.

“As both institutions continue to make breakthroughs every day, we hope this collaborative will enable us to tackle the complex challenges of cancer care and treatment more effectively, ultimately improving the lives of patients here in Houston and beyond," Carin Hagberg, senior vice president and chief academic officer at MD Anderson, adds. "Whether our researchers are working on the South Campus or within the hedges of Rice, this collaborative will strengthen each other’s efforts and push the boundaries of what is possible in cancer.”

MD Anderson's lab led by Nobel laureate James Allison has secured a $5 million donation. Photo courtesy of MD Anderson Cancer Center

Cancer-fighting Houston lab led by Nobel laureate receives $5M grant at annual event

supporting research

The James P. Allison Institute at The University of Texas MD Anderson Cancer Center scored a $5 million gift at its second annual symposium.

On behalf of Mayor John Whitmire, Oct. 10, 2024 was named “James P. Allison Institute Day,” and it was also the day that the TMC3 Collaborative Building in the Texas Medical Center’s Helix Park greeted 900 attendees for the scientific symposium, entitled “Immunotherapy in Space and Time: The Tumor Microenvironment.”

Allison, who won the Nobel Prize in 2018, leads his namesake institute that was founded in 2022 to advance translational and clinical within cancer to create new, synergetic therapies. In addition to his role as director of the institute, he is regental professor and chair of Immunology at MD Anderson.

At the symposium, Jack and Judi Johnson presented a $5 million gift to the Allison Institute on behalf of the David and Eula Wintermann Foundation, a private organization dedicated to funding the advancement of medical education and research. A longtime supporter of MD Anderson, the foundation’s donation will go towards recruitment and technology for the institute, as well help fund clinical trials.

The money will help support several researchers, who will be known as Wintermann Scholars. The chosen great minds run the gamut from early career scientists to world-renowned experts in fields including immunotherapy, genetics, cancer biology, data science, bioinformatics, spatial profiling or the microbiome.

It was clear to us that the work happening within the Allison Institute has the potential to transform the lives of so many patients,” said Johnson, president of the Wintermann Foundation. “Our hope is that, with our support, we can help close the distance from the lab to the clinic so the incredible advancements underway can sooner help more cancer patients and their families.”

But the attendees on Oct. 10 learned far more than that. They were treated to a conversation between Allison and Carolyn Bertozzi, also a Nobel laureate, moderated by Alice Park, a senior health correspondent at Time. Park also took part in a fireside chat with Allison institute leaders, joined by MD Anderson President Peter WT Pisters and Chief Scientific Officer Giulio Draetta. Additional sessions also included presentations from big names like Mark Dawson, Elizabeth Jaffee, and Philip Greenberg.

“Spatial biology is a rapidly expanding field that offers tremendous new insights into immunobiology that were not possible just a few short years ago. Understanding how immune cells interact with their neighbors and with tumor cells in space and time will enable us to bring forward new strategies to improve immunotherapy outcomes,” said Allison. “We are proud to host this annual symposium to advance the field, and we are extremely grateful for the support of the Wintermann Foundation to make new breakthroughs possible.”

The University of Texas MD Anderson Cancer Center was recognized for advancements in electronic functionality, AI and robotics. Photo via mdanderson.org

Houston hospital named among smartest in the nation

hi, tech

Houston hospitals are chock-full of smart people. But they’re also equipped with lots of “smart” technology. In fact, five local hospitals appear on Newsweek’s new list of the world’s best “smart” hospitals.

To compile the list, Newsweek teamed up with data provider Statista to rank the world’s top 330 hospitals for the use of smart technology. The ranking factors were electronic functionality, telemedicine, digital imaging, artificial intelligence (AI), and robotics.

The highest-ranked Houston hospital is the University of Texas MD Anderson Cancer Center, appearing at No. 6. The hospital was recognized for advancements in electronic functionality, AI and robotics.

“MD Anderson has a significant opportunity and a responsibility to our many stakeholders to create a digital ecosystem that promotes collaboration and advances scientific discovery to enhance patient outcomes,” David Jaffray, the cancer center’s chief technology and digital officer, said in a 2021 news release.

“Through our ongoing focus on enabling the use of new technologies to place quantitative data in context for our researchers,” Jaffray added, “we foster cutting-edge oncology data science to inform our cancer discovery research and to accelerate translation of our research findings into benefits for cancer patients.”

Ahead of MD Anderson on the list are:

  1. Mayo Clinic in Rochester, Minnesota.
  2. Cleveland Clinic in Cleveland.
  3. Massachusetts General Hospital in Boston.
  4. Johns Hopkins Hospital in Baltimore.
  5. Mount Sinai Hospital in New York City.

Other Houston hospitals on the list are:

  • Houston Methodist Hospital, No. 11.
  • Baylor St. Luke’s Medical Center, No. 105.
  • Texas Children’s Hospital, No. 197.
  • Memorial Hermann-Texas Medical Center, No. 266.
Fannin Partners and the University of Texas MD Anderson Cancer Center have teamed up to develop drugs based on Raptamer, the creation of Fannin company Radiomer Therapeutics. Photo via Getty Images

Exclusive: 2 Houston health care institutions team up to develop cancer-fighting treatments

collaboration station

Two Houston organizations announced a new collaboration in a major move for Houston’s biotech scene.

Fannin Partners and the University of Texas MD Anderson Cancer Center have teamed up to develop drugs based on Raptamer, the creation of Fannin company Radiomer Therapeutics.

“Raptamers combine antibody level affinities with desirable physical and pharmacokinetic properties, and a rapid path to clinic,” Dr. Atul Varadhachary, CEO of Radiomer Therapeutics and Fannin managing partner, Varadhachary, explained to InnovationMap in May. “We are deploying this unique platform to develop novel therapies against attractive first-in-class oncology targets.”

The pairing of Fannin and MD Anderson makes perfect sense. Researchers at the institution have already identified novel markers that they will target with both Raptamer-based drugs and radiopharmaceutical/radioligand therapies.

“MD Anderson and Fannin bring highly complementary capabilities to the identification of novel cancer targets and Raptamer-based drug discovery,” says Varadhachary in a press release. “Our collaboration will enable us to rapidly develop targeted therapeutics against novel targets, which we hope will offer hope to patients with progressive cancers.”

Early in this meeting of minds, researchers will focus on developing targeted radiopharmaceuticals — the Radiomers for which Varadhachary’s company is named — as well as targeted drug conjugates that utilize Raptamers. Raptamers are an innovative class of targeting vectors that combine a DNA oligonucleotide backbone with added peptide functionality, for oncology indications.

“We are committed to exceptional research that can help us further our understanding of cancer and develop impactful therapeutic options for patients in need,” says Timothy Heffernan, Ph.D., vice president and head of therapeutics discovery at MD Anderson. “Fannin’s Raptamer drug discovery platform represents an innovative new modality that offers the potential to enhance our portfolio of novel therapies, and we look forward to the opportunities ahead.”

Fannin and MD Anderson will design translational studies together and collaborate to select promising targets for drug discovery. This is a great deal for Fannin, which will retain commercialization rights for the assets that are developed. But MD Anderson won’t be left out; the institution is eligible to receive some payments based on the success of Radiomers and other Raptamer-based drugs developed through the collaboration.

Earlier this year, Varadhachary joined the Houston Innovators Podcast to discuss Fannin's innovation approach and contribution to medical development in Houston. Listen to the episode below.

AccessPath is a novel, affordable, slide-free pathology system that helps surgeons determine if they have completely removed tumors during surgery. Photo via Getty Images

Promising Houston cancer research project wins $18M grant

fresh funding

The Biden-Harris administration is deploying $150 million as a part of its Cancer Moonshot initiative, and a research team led by Rice University is getting a slice of that pie.

AccessPath is a novel, affordable, slide-free pathology system that helps surgeons determine if they have completely removed tumors during surgery. Rebecca Richards-Kortum, a Rice bioengineering professor and director of the Rice360 Institute for Global Health Technologies, is the lead PI on the project that is receiving up to $18 million over five years from the Advanced Research Projects Agency for Health (ARPA-H).

“Because of its low cost, high speed, and automated analysis, we believe AccessPath can revolutionize real-time surgical guidance, greatly expanding the range of hospitals able to provide accurate intraoperative tumor margin assessment and improving outcomes for all cancer surgery patients,” Richards-Kortum says in a news release.

The project is focused on two types of cancer, breast and head and neck cancer, and Ashok Veeraraghavan, chair of Rice’s Department of Electrical and Computer Engineering and a professor of electrical and computer engineering and computer science, is a co-PI and Tomasz Tkaczyk, a professor of bioengineering and electrical and computer engineering at Rice, is also a collaborator on the project.

AccessPath is addressing the challenge surgeons face of identifying the margin where tumor tissue ends and health tissue begins when removing tumors. The project not only hopes to provide a more exact solution but do so in an affordable way.

“Precise margin assessment is key to the oncologic success of any cancer operation,” adds Dr. Ana Paula Refinetti, an associate professor in the Department of Breast Surgical Oncology at The University of Texas MD Anderson Cancer Center and one of the lead surgeons PIs on the project. “The development of a new low-cost technology that enables immediate margin assessment could transform the landscape of surgical oncology — particularly in low-resource settings, reducing the number of repeat interventions, lowering cancer care costs and improving patient outcomes.”

The project optimizing margin identification with a fast-acting, high-resolution microscope, effective fluorescent stains for dying tumor margins, and artificial intelligence algorithms.

AccessPath is a collaboration between Rice and MD Anderson Cancer Center, other awardees in the grant include the University of Texas Health School of Dentistry, Duke University, Carnegie Mellon University and 3rd Stone Design.

“AccessPath is exactly the kind of life-changing research and health care innovation we are proud to produce at Rice, where we’re committed to addressing and solving the world’s most pressing medical issues,” Ramamoorthy Ramesh, Rice’s executive vice president for research, says in the release. “Partnering with MD Anderson on this vital work underscores the importance of such ongoing collaborations with our neighbors in the world’s largest medical center. I am thrilled for Rebecca and her team; it’s teamwork that makes discoveries like these possible.”

Rebecca Richards-Kortum, a Rice bioengineering professor and director of the Rice360 Institute for Global Health Technologies, is the lead PI on the project. Photo by Jeff Fitlow/Rice University

MD Anderson Cancer Center is still the best cancer-focused hospital in the U.S. and Texas. Photo by F. Carter Smith/courtesy of MD Anderson

Houston hospitals recognized as best in state, nation in annual report

better than all the rest

Houston’s University of Texas MD Anderson Cancer Center has retained its U.S. News & World Report crown as the best cancer hospital in the U.S.

In the same ranking, Houston Methodist Hospital once again came out on top as the best hospital in Texas. Last year, the hospital shared the top spot. Baylor St. Luke’s Medical Center ranked No. 4, followed by No. 5 Memorial Hermann Hospital.

The accolades appear in U.S. News2024-25 ranking of the country’s best hospitals. Each hospital also ranked among various specialties, such as orthopedics; cardiology, heart, and vascular surgery; cancer; and neurology and neurosurgery.

Since U.S. News introduced its annual hospital survey in 1990, MD Anderson has been ranked one of the two best U.S. hospitals for cancer care. It has maintained its No. 1 ranking for 10 consecutive years.

“At MD Anderson, our mission is clear: to end cancer,” Dr. Peter WT Pisters, president of MD Anderson, says in a news release. “This ranking reflects our relentless commitment to excellence in patient care, research, prevention, and education.”

MD Anderson also ranked highly in three specialties:

  • No. 2 for ear, nose, and throat.
  • No. 9 for urology.
  • No. 14 for gastroenterology and GI surgery.

“The consistent top national recognitions [that] MD Anderson receives for delivering compassionate, evidence-based care is a testament to our dedication to those we serve,” Pisters says.

Elsewhere at the Texas Medical Center, Houston Methodist Hospital was named the No. 1 hospital in Texas for the 13th year in a row. Also, it was lauded as one of the country’s 20 best hospitals for the eighth time.

Along with the general ranking, Houston Methodist Hospital scored high marks in 10 specialties. These include diabetes and endocrinology (No. 6), gastroenterology and GI surgery (No. 7), and pulmonology and lung surgery (No. 8).

Meanwhile, four Houston Methodist community hospitals ranked well in Texas:

  • Houston Methodist The Woodlands Hospital (No. 8).
  • Houston Methodist Sugar Land Hospital (No. 9).
  • Houston Methodist Baytown Hospital (tied at No. 18).
  • Houston Methodist Willowbrook Hospital (tied at No. 23).
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston space tech co. rolls out futuristic lunar rover for NASA's Artemis missions

to the moon

Houston-based space exploration company Intuitive Machines just unveiled its version of a lunar terrain vehicle that’s designed to be used by astronauts in NASA’s Artemis moon discovery program.

Intuitive Machine recently rolled out its RACER lunar terrain vehicle (LTV) at Space Center Houston. RACER stands for Reusable Autonomous Crewed Exploration Rover.

The rover can accommodate two astronauts and nearly 900 pounds of cargo. In addition, it can pull a trailer loaded with almost 1,800 pounds of cargo.

Intuitive Machines will retain ownership and operational capabilities that will enable remote operation of the LTV between Artemis missions for about 10 years.

NASA chose Intuitive Machines and two other companies to develop advanced LTV capabilities.

“The objective is to enable Artemis astronauts, like the Apollo-era moonwalkers before them, to drive the rover, which features a rechargeable electric battery and a robotic arm, across the lunar surface, to conduct scientific research and prepare for human missions to Mars,” Intuitive Machines says in a post on its website.

The company tapped the expertise of Apollo-era moonwalkers Charlie Duke and Harrison Schmitt to design the pickup-truck-sized RACER. Intuitive Machines engineered the LTV in partnership with Atlas Devices, AVL, Barrios, Boeing, CSIRO, FUGRO, Michelin, Northrop Grumman, and Roush.

“This [project] strategically aligns with the Company’s flight-proven capability to deliver payloads to the surface of the Moon under [NASA’s] Commercial Lunar Payload Services initiative, further solidifying our position as a proven commercial contractor in lunar exploration,” says Steve Altemus, CEO of Intuitive Machines.

Astronauts at NASA’s Johnson Space Center are testing the static prototype of the company’s LTV. Meanwhile, the fully electric mobile demonstration LTV will undergo field testing later this month near Meteor Crater National Park in Arizona.

NASA expects to choose an LTV provider or providers in 2025.

- YouTubewww.youtube.com

Houston accelerator names inaugural cohort to propel digital transformation in energy

building tech

Houston-based Venture Builder VC has kicked off its NOV Supernova Accelerator and named its inaugural cohort.

The program, originally announced earlier this year, focuses on accelerating digital transformation solutions for NOV Inc.'s operations in the upstream oil and gas industry. It will support high-potential startups in driving digital transformation within the energy sector, specifically upstream oil and gas, and last five months and culminate in a demo day where founders will present solutions to industry leaders, potential investors, NOV executives, and other stakeholders.

The NOV Supernova Accelerator will work to cultivate relationships between startups and NOV. They will offer specific companies access to NOV’s corporate R&D teams and business units to test their solutions in an effort to potentially develop long-term partnerships.

“The Supernova Accelerator is a reflection of our commitment to fostering forward-thinking technologies that will drive the future of oil and gas,” Diana Grauer, director of R&D of NOV, says in a news release.

The cohort’s focus will be digital transformation challenges that combine with NOV’s vision and include data management and analytics, operational efficiency, HSE (Health, Safety, and Environmental) monitoring, predictive maintenance, and digital twins.

Startups selected for the program include:

  • AnyLog, an edge data management platform that replaces proprietary edge projects with a plug-and-play solution that services real-time data directly at the source, eliminating cloud costs, data transfer, and latency issues.
  • Equipt, an AI-powered self-serve platform that maximizes Asset & Field Service performance, and minimizes downtime and profit leakages.
  • Geolumina's platform is a solution that leverages data analytics to enhance skills, scale insights, and improve efficiency for subsurface companies.
  • Gophr acts as the "Priceline" of logistics, using AI to provide instant shipping quotes and optimize dispatch for anything from paper clips to rocket ships.
  • IoT++ simplifies industrial IoT with a secure, AI-enabled ecosystem of plug-and-play edge devices.
  • Kiana's hardware-agnostic solution secures people, assets, and locations using existing Wi-Fi, Bluetooth, UWB, and cameras, helping energy and manufacturing companies reduce risks and enhance operations.
  • Novity uses AI and physics models to accurately predict machine faults, helping factory operators minimize downtime by knowing the remaining useful life of their machines.
  • Promecav is redefining crude oil conditioning with patented technology that slashes water use and energy while reducing toxic exposure for safer, cleaner, and more sustainable oil processing.
  • RaftMind's enterprise AI solution transforms how businesses manage knowledge. Our advanced platform makes it easier to process data and unlock insights from diverse sources.
  • Spindletop AI uses edge-based machine learning to make each well an autonomous, self-optimizing unit, cutting costs, emissions, and cloud dependence.
  • Taikun.aicombines generative AI with SCADA data to create virtual industrial engineers, augmenting human teams for pennies an hour.
  • Telemetry Insight’s platform utilizes high-resolution accelerometer data to simplify oilfield monitoring and optimize marginal wells for U.S. oil and gas producers via actionable insights.
  • Visual Logging utilizes fiber optic and computer vision technology to deliver real-time monitoring solutions, significantly enhancing data accuracy by providing precise insights into well casing integrity and flow conditions.

“Each startup brings unique solutions to the table, and we are eager to see how these technologies will evolve with NOV’s support and expertise,” Billy Grandy, general partner of Venture Builder VC, says in the release. “This partnership reflects our ongoing commitment to nurturing talent and driving innovation within the energy sector.”

Venture Builder VC is a consulting firm, investor, and accelerator program.

“Unlike mergers and acquisitions, the venture client model allows corporations like NOV to quickly test and implement new technologies without committing to an acquisition or risking significant investment,” Grandy previously said about the accelerator program.

------

This article originally ran on EnergyCapital.