March Biosciences is testing its MB-105 cell therapy in a Phase 2 clinical trial for people with difficult-to-treat cancer. Photo via march.bio

A Houston cell therapy company has dosed its first patient in a Phase 2 clinical trial. March Biosciences is testing the efficacy of MB-105, a CD5-targeted CAR-T cell therapy for patients with relapsed or refractory CD5-positive T-cell lymphoma.

Last year, InnovationMap reported that March Biosciences had closed its series A with a $28.4 million raise. Now, the company, co-founded by Sarah Hein, Max Mamonkin and Malcolm Brenner, is ready to enroll a total of 46 patients in its study of people with difficult-to-treat cancer.

The trial will be conducted at cancer centers around the United States, but the first dose took place locally, at The University of Texas MD Anderson Cancer Center. Dr. Swaminathan P. Iyer, a professor in the department of lymphoma/myeloma at MD Anderson, is leading the trial.

“This represents a significant milestone in advancing MB-105 as a potential treatment option for patients with T-cell lymphoma who currently face extremely limited therapeutic choices,” Hein, who serves as CEO, says. “CAR-T therapies have revolutionized the treatment of B-cell lymphomas and leukemias but have not successfully addressed the rarer T-cell lymphomas and leukemias. We are optimistic that this larger trial will further validate MB-105's potential to address the critical unmet needs of these patients and look forward to reporting our first clinical readouts.”

The Phase 1 trial showed promise for MB-105 in terms of both safety and efficacy. That means that potentially concerning side effects, including neurological events and cytokine release above grade 3, were not observed. Those results were published last year, noting lasting remissions.

In January 2025, MB-105 won an orphan drug designation from the FDA. That results in seven years of market exclusivity if the drug is approved, as well as development incentives along the way.

The trial is enrolling its single-arm, two-stage study on ClinicalTrials.gov. For patients with stubborn blood cancers, the drug is providing new hope.

Rice and MD Anderson scientists are researching new methods for treating brain cancer by overcoming the blood-brain barrier. Photo via Getty Images.

Rice, MD Anderson receive $1.5 million to further brain cancer research

fresh funding

Rice University chemist Han Xiao, who also serves as director of the university’s Synthesis X Center, and cancer biologist Dihua Yu of The University of Texas MD Anderson Cancer Center have received a three-year, $1.5 million grant from the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation.

The funding will allow them to continue their research on treating brain metastasis by overcoming the blood-brain barrier, or the BBB, according to a news release.

Brain metastasis is the leading form of brain cancer, with survival rates below 20 percent within a year of diagnosis, according to the National Library of Medicine. It commonly originates from breast, lung and melanoma cancers.

The BBB typically acts as a protective barrier for the brain. However, it prevents most drugs from being able to directly reach the brain. According to Rice, only 2 percent of FDA-approved small molecule drugs can penetrate the BBB, limiting treatment options.

Xiao and Yu’s approach to dealing with the BBB includes a light-induced brain delivery (LIBD) platform. The advanced system employs nanoparticles that are embedded with a near-infrared dye for the transport of therapeutic agents across the BBB. The research will evaluate the LIBD’s ability to improve the delivery of small-molecule drugs and biological therapies. Some therapies have shown potential for reducing cancer growth in laboratory studies, but they have struggled due to limited BBB penetration in animal models.

“Our LIBD platform represents a novel strategy for delivering drugs to the brain with precision and efficiency,” Xiao said in a news release. “This technology could not only improve outcomes for brain metastasis patients but also pave the way for treating other neurological diseases.”

The Kleberg Foundation looks for groundbreaking medical research proposals from leading institutions that focus on “innovative basic and applied biological research that advances scientific knowledge and human health” according to the foundation.

“This research is a testament to the power of collaboration and innovation,” Xiao said in a news release. “Together, we’re pushing the boundaries of what’s possible in treating brain metastasis and beyond.”

Rice launched the Synthesis X Center, or Synth X, last spring. It was born out of what started about eight years ago as informal meetings between Xiao's research group and others from the Baylor College of Medicine’s Dan L Duncan Comprehensive Cancer Center. It aims to turn fundamental research into clinical applications through collaboration.

“This collaboration builds on the strengths of both research teams,” Xiao said in the release. “By combining SynthX Center's expertise in chemistry with Dr. Yu's expertise in cancer biology and brain metastases, we aim to create a transformative solution.”

Innovators in immunotherapy, precision drug discovery, monoclonal antibodies, and diagnostic and therapeutic technologies have joined TMC's Accelerator for Cancer Therapeutics. Photo courtesy TMC.

TMC names 2025 cohort of cancer treatment innovators

ready to grow

Texas Medical Center Innovation has named more than 50 health care innovators to the fifth cohort of its Accelerator for Cancer Therapeutics (ACT).

The group specializes in immunotherapy, precision drug discovery, monoclonal antibodies, and diagnostic and therapeutic technologies, according to a statement from TMC.

During the nine-month ACT program, participants will enjoy access to a network of mentors, grant-writing support, chemistry resources, and the entrepreneur-in-residence program. The program is designed to equip participants with the ability to secure investments, develop partnerships, and advance the commercialization of cancer therapeutics in Texas.

“With over 35 million new cancer cases predicted by 2050, the urgency to develop safer, more effective, and personalized treatments cannot be overstated,” Tom Luby, chief innovation officer at Texas Medical Center, said in a news release.

Members of the new cohort are:

  • Alexandre Reuben, Kunal Rai, Dr. Cassian Yee, Dr. Wantong Yao, Dr. Haoqiang Ying, Xiling Shen, and Zhao Chen, all of the University of Texas MD Anderson Cancer Center
  • Dr. Andre Catic and Dr. Martin M. Matzuk, both of the Baylor College of Medicine
  • Cynthia Hu and Zhiqiang An, both of UTHealth Houston
  • Christopher Powala, Aaron Sato, and Mark de Souza, all of ARespo Biopharma
  • Daniel Romo, Dr. Susan Bates, and Ken Hull, all of Baylor University
  • Eugene Sa & Minseok Kim, both of CTCELLS
  • Gomika Udugamasooriya and Nathaniel Dawkins, both of the University of Houston
  • Dr. Hector Alila of Remunity Therapeutics
  • Iosif Gershteyn and Victor Goldmacher, both of ImmuVia
  • João Seixas, Pedro Cal, and Gonçalo Bernardes, all of TargTex
  • Ken Hsu and Yelena Wetherill, both of the University of Texas at Austin
  • Luis Martin and Dr. Alberto Ocaña, both of C-Therapeutics
  • Dr. Lynda Chin, Dr. Keith Flaherty, Dr. Padmanee Sharma, James Allison, and Ronan O’Hagan, all of Project Crest/Apricity Health
  • Michael Coleman and Shaker Reddy, both of Metaclipse Therapeutics
  • Robert Skiff and Norman Packard, both of 3582.ai
  • Rolf Brekken, Uttam Tambar, Ping Mu, Su Deng, Melanie Rodriguez, and Alexander Busse, all of UT Southwestern Medical Center
  • Ryan Swoboda and Maria Teresa Sabrina Bertilaccio, both of NAVAN Technologies
  • Shu-Hsia Chen and Ping-Ying Pan, both of Houston Methodist
  • Thomas Kim, Philipp Mews, and Eyal Gottlieb, all of ReEngage Therapeutics
The ACT launched in 2021 and has had 77 researchers and companies participate. The group has collectively secured more than $202 million in funding from the NIH, CPRIT and venture capital, according to TMC.

Cellenkos Therapeutics has completed promising Phase 1b testing of its Treg cell therapy, CK0804, in the fight against myelofibrosis. Photo via Getty Images

Houston biotech company tests hard-to-fight cancer therapeutics

fighting cancer

A Houston-based, female-founded biotech company has developed a treatment that could prove to be an effective therapy for a rare blood cancer.

Cellenkos Therapeutics has completed promising Phase 1b testing of its Treg cell therapy, CK0804, in the fight against myelofibrosis. According to a news release from the Cellenkos team, the use of its cord-blood-derived therapeutics could signal a paradigm shift for the treatment of this hard-to-fight cancer.

Cellenkos was founded by MD Anderson Cancer Center physician and professor Simrit Parmar. Her research at the hospital displayed the ability of a unique subset of T cells’ capability to home in on a patient’s bone marrow, restoring immune balance, and potentially halting disease progression.

Myelofibrosis has long been treated primarily with JAK (Janus Kinase) inhibitors, medications that help to block inflammatory enzymes. They work by suppressing the immune response to the blood cancer, but don’t slow the progression of the malady. And they’re not effective for every patient.

“There is a significant need for new therapeutic options for patients living with myelofibrosis who have suboptimal responses to approved JAK inhibitors,” Parmar says. “We are greatly encouraged by the safety profile and early signs of efficacy observed in this patient cohort and look forward to continuing our evaluation of the clinical potential of CK0804 in our planned expansion cohort.”

The expansion cohort is currently enrolling patients with myelofibrosis. What exactly are sufferers dealing with? Myelofibrosis is a chronic disease that causes bone marrow to form scar tissue. This makes it difficult for the body to produce normal blood cells, leaving patients with fatigue, spleen enlargement and night sweats.

Myelofibrosis is rare, with just 16,000 to 18,500 people affected in the United States. But for patients who don’t respond well to JAKs, the prognosis could mean a shorter span than the six-year median survival rate outlined for the disease by Cleveland Clinic.

Helping myelofibrosis patients to thrive isn’t the only goal for Cellenkos right now.

The company seeks to aid people with rare conditions, particularly inflammatory and autoimmune disorders, with the use of CK0804, but also other candidates including one known as CK0801. The latter drug has shown promising efficacy in aplastic anemia, including transfusion independence in treated patients.

The company closed its $15 million series A round led by BVCF Management, based in Shanghai, in 2021. Read more here.

Several Houston institutions scored funding from the Cancer Prevention and Research Institute of Texas. Photo via Getty Images

German biotech co. to relocate to Houston thanks to $4.75M CPRIT grant

money moves

Armed with a $4.75 million grant from the Cancer Prevention and Research Institute of Texas, a German biotech company will relocate to Houston to work on developing a cancer medicine that fights solid tumors.

Eisbach Bio is conducting a clinical trial of its EIS-12656 therapy at Houston’s MD Anderson Cancer Center. In September, the company announced its first patient had undergone EIS-12656 treatment. EIS-12656 works by suppressing cancer-related genome reorganization generated by DNA.

The funding from the cancer institute will support the second phase of the EIS-12656 trial, focusing on homologous recombination deficiency (HRD) tumors.

“HRD occurs when a cell loses its ability to repair double-strand DNA breaks, leading to genomic alterations and instability that can contribute to cancerous tumor growth,” says the institute.

HRD is a biomarker found in most advanced stages of ovarian cancer, according to Medical News Today. DNA constantly undergoes damage and repairs. One of the repair routes is the

homologous recombination repair (HRR) system.

Genetic mutations, specifically those in the BCRA1 and BCRA1 genes, cause an estimated 10 percent of cases of ovarian cancer, says Medical News Today.

The Cancer Prevention and Research Institute of Texas (CPRIT) says the Eisbach Bio funding will bolster the company’s “transformative approach to HRD tumor therapy, positioning Texas as a hub for innovative cancer treatments while expanding clinical options for HRD patients.”

The cancer institute also handed out grants to recruit several researchers to Houston:

  • $2 million to recruit Norihiro Goto from the Massachusetts Institute of Technology to MD Anderson.
  • $2 million to recruit Xufeng Chen from New York University to MD Anderson.
  • $2 million to recruit Xiangdong Lv from MD Anderson to the University of Texas Health Science Center at Houston.

In addition, the institute awarded:

  • $9,513,569 to Houston-based Marker Therapeutics for a first-phase study to develop T cell-based immunotherapy for treatment of metastatic pancreatic cancer.
  • $2,499,990 to Lewis Foxhall of MD Anderson for a colorectal cancer screening program.
  • $1,499,997 to Abigail Zamorano of the University of Texas Health Science Center at Houston for a cervical cancer screening program.
  • $1,497,342 to Jennifer Minnix of MD Anderson for a lung cancer screening program in Northeast Texas.
  • $449,929 to Roger Zoorob of the Baylor College of Medicine for early prevention of lung cancer.

On November 20, the Cancer Prevention and Research Institute granted funding of $89 million to an array of people and organizations involved in cancer prevention and research.

The Cancer Bioengineering Collaborative announced the projects that were selected for its first round of seed grants. Photo via Rice.edu

2 Houston health innovation leaders award grants to cancer-fighting researchers

dream team

Five cancer-fighting research projects were named inaugural recipients of a new grant program founded by two Houston institutions.

Last summer, Rice University and The University of Texas MD Anderson Cancer Center announced they were teaming up to form the new Cancer Bioengineering Collaborative. The shared initiative, created to form innovative technologies and bioengineering approaches to improve cancer research, diagnosis and treatment, recently launched with an event at the TMC3 Collaborative Building in Helix Park.

At the gathering, the Cancer Bioengineering Collaborative announced the projects that were selected for its first round of seed grants.

  • “Enhancing CAR-T immunotherapy via precision CRISPR/Cas-based epigenome engineering of high value therapeutic gene targets,” led by Isaac Hilton, associate professor of biosciences and bioengineering at Rice and a Cancer Research and Prevention Institute of Texas (CPRIT) scholar; and Michael Green, associate professor of lymphoma/myeloma at MD Anderson.
  • “Nanocluster and KRAS inhibitor-based combination therapy for pancreatic ductal adenocarcinoma,” led by Linlin Zhang, assistant research professor of bioengineering at Rice; and Haoqiang Ying, associate professor of molecular and cellular oncology at MD Anderson.
  • “Engineering tumor-infiltrating fusobacteriumas a microbial cancer therapy,” led by Jeffrey Tabor, professor of bioengineering at Rice; and Christopher Johnston, associate professor of genomic medicine and director of microbial genomics within the Platform for Innovative Microbiome and Translational Research at MD Anderson.
  • “Preclinical study of nanoscale TRAIL liposomes as a neoadjuvant therapy for colorectal cancer liver metastasis,” led by Michael King, the E.D. Butcher Professor of Bioengineering at Rice, CPRIT scholar and special adviser to the provost on life science collaborations with the Texas Medical Center; and Xiling Shen, professor of gastrointestinal medical oncology at MD Anderson.
  • “Deciphering molecular mechanisms of cellular plasticity in MDS progression,” led by Ankit Patel, assistant professor of electrical and computer engineering at Rice and of neuroscience at Baylor College of Medicine; and Pavan Bachireddy, assistant professor of hematopoietic biology and malignancy and lymphoma/myeloma at MD Anderson.

The event was a who’s who of Houston-based cancer specialists. Speakers included our city’s favorite Nobel laureate, Jim Allison, director of the James P. Allison Institute, as well as MD Anderson’s vice president of research, Eyal Gottlieb. Attendees were welcomed by the leaders of the initiative, Rice’s Gang Bao and MD Anderson’s Jeffrey Molldrem.

“This collaborative initiative builds on the strong foundation of our existing relationship, combining Rice’s expertise in bioengineering, artificial intelligence and nanotechnology with MD Anderson’s unmatched insights in cancer care and research,” Rice’s president Reginald DesRoches says at the event. “This is a momentous occasion to advance cancer research and treatment with the innovative fusion of engineering and medicine.”

The collaboration is part of Rice’s 10-year strategic plan for leadership in health innovation, called “Momentous: Personalized Scale for Global Impact.” Its goals include a commitment to responsible use of cutting-edge AI.

“As both institutions continue to make breakthroughs every day, we hope this collaborative will enable us to tackle the complex challenges of cancer care and treatment more effectively, ultimately improving the lives of patients here in Houston and beyond," Carin Hagberg, senior vice president and chief academic officer at MD Anderson, adds. "Whether our researchers are working on the South Campus or within the hedges of Rice, this collaborative will strengthen each other’s efforts and push the boundaries of what is possible in cancer.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston university to launch artificial intelligence major, one of first in nation

BS in AI

Rice University announced this month that it plans to introduce a Bachelor of Science in AI in the fall 2025 semester.

The new degree program will be part of the university's department of computer science in the George R. Brown School of Engineering and Computing and is one of only a few like it in the country. It aims to focus on "responsible and interdisciplinary approaches to AI," according to a news release from the university.

“We are in a moment of rapid transformation driven by AI, and Rice is committed to preparing students not just to participate in that future but to shape it responsibly,” Amy Dittmar, the Howard R. Hughes Provost and executive vice president for academic affairs, said in the release. “This new major builds on our strengths in computing and education and is a vital part of our broader vision to lead in ethical AI and deliver real-world solutions across health, sustainability and resilient communities.”

John Greiner, an assistant teaching professor of computer science in Rice's online Master of Computer Science program, will serve as the new program's director. Vicente Ordóñez-Román, an associate professor of computer science, was also instrumental in developing and approving the new major.

Until now, Rice students could study AI through elective courses and an advanced degree. The new bachelor's degree program opens up deeper learning opportunities to undergrads by blending traditional engineering and math requirements with other courses on ethics and philosophy as they relate to AI.

“With the major, we’re really setting out a curriculum that makes sense as a whole,” Greiner said in the release. “We are not simply taking a collection of courses that have been created already and putting a new wrapper around them. We’re actually creating a brand new curriculum. Most of the required courses are brand new courses designed for this major.”

Students in the program will also benefit from resources through Rice’s growing AI ecosystem, like the Ken Kennedy Institute, which focuses on AI solutions and ethical AI. The university also opened its new AI-focused "innovation factory," Rice Nexus, earlier this year.

“We have been building expertise in artificial intelligence,” Ordóñez-Román added in the release. “There are people working here on natural language processing, information retrieval systems for machine learning, more theoretical machine learning, quantum machine learning. We have a lot of expertise in these areas, and I think we’re trying to leverage that strength we’re building.”

Houston biomanufacturing accelerator adds pilot plant to support scale-ups

new digs

Houston accelerator BioWell announced this month that it has taken over operations of Texas BioTechnology’s pilot plant in Richmond, Texas.

The 33,000-square-foot facility is one of the largest of its kind in the U.S. and features molecular biology labs, advanced automation, fermentation equipment and 16 dedicated benches for early-stage industrial biomanufacturing companies, according to a release from the company. It will allow BioWell to offer on-site education, workforce development, and lab training for students and workers.

BioWell and its founding company, First Bight Ventures, report that the facility should help address the industry's "scale-up bottleneck due to limited pilot- and demonstration-scale infrastructure" in the U.S.

"As a Houston-based accelerator dedicated exclusively to early-stage biomanufacturing startups, partnering with this facility was a natural and highly strategic decision for us. The site is fully operational and offers a strong platform to support biomanufacturing companies, industry leaders, and research institutions, providing critical expertise and infrastructure across a broad range of biotechnology production processes,” Veronica Breckenridge, founder of First Bight Ventures and BioWell, said in a news release.

First Bight Ventures shares that the partnership with the facility will also allow it to better support its portfolio companies and make them more attractive to future investors.

BioWell will host an open house and tours of the fermentation and lab spaces and an overview of current bioindustrial projects Wednesday, May 28, at 10:30 a.m. and 2 p.m. RSVPs are required.

BioWell was originally funded by a $700,000 U.S. Economic Development Administration’s Build to Scale grant and launched as a virtual accelerator for bioindustrial startups. Listen to an interview with Carlos Estrada, head of venture acceleration at BioWell, here.

Ultra-fast EV charging bays coming to Waffle House locations in Texas and beyond

power breakfast

Scattered, smothered and ... charged?

Starting next year, EV drivers can connect to ultra-fast charging stations at select Waffle House locations throughout Texas, courtesy of bp pulse.

The EV arm of British energy giant bp announced a strategic partnership with the all-day breakfast chain this week. The company aims to deploy a network of 400kW DC fast chargers and a mix of CCS and NACS connectors at Waffle House locations in Texas, Georgia, Florida, and other restaurants in the South.

Each Waffle House site will feature six ultra-fast EV charging bays, allowing drivers to "(enjoy) Waffle House’s 24/7 amenities," the announcement reads.

“Adding an iconic landmark like Waffle House to our growing portfolio of EV charging sites is such an exciting opportunity. As an integrated energy company, bp is committed to providing efficient solutions like ultra-fast charging to support our customers’ mobility needs," Sujay Sharma, CEO of bp pulse U.S., said in a news release. "We’re building a robust network of ultra-fast chargers across the country, and this is another example of third-party collaborations enabling access to charging co-located with convenient amenities for EV drivers.”

The news comes as bp pulse continues to grow its charging network in Texas.

The company debuted its new high-speed electric vehicle charging site, known as the Gigahub, at the bp America headquarters in Houston last year. In partnership with Hertz Electrifies Houston, it also previously announced plans to install a new EV fast-charging hub at Hobby Airport. In a recent partnership with Simon Malls, bp also shared plans to install EV charging Gigahubs at The Galleria and Katy Mills Mall.

bp has previously reported that it plans to invest $1 billion in EV charging infrastructure by 2030, with $500 million invested by the end of 2025.

---

A version of this article originally appeared on EnergyCapitalHTX.com.