March Biosciences is testing its MB-105 cell therapy in a Phase 2 clinical trial for people with difficult-to-treat cancer. Photo via march.bio

A Houston cell therapy company has dosed its first patient in a Phase 2 clinical trial. March Biosciences is testing the efficacy of MB-105, a CD5-targeted CAR-T cell therapy for patients with relapsed or refractory CD5-positive T-cell lymphoma.

Last year, InnovationMap reported that March Biosciences had closed its series A with a $28.4 million raise. Now, the company, co-founded by Sarah Hein, Max Mamonkin and Malcolm Brenner, is ready to enroll a total of 46 patients in its study of people with difficult-to-treat cancer.

The trial will be conducted at cancer centers around the United States, but the first dose took place locally, at The University of Texas MD Anderson Cancer Center. Dr. Swaminathan P. Iyer, a professor in the department of lymphoma/myeloma at MD Anderson, is leading the trial.

“This represents a significant milestone in advancing MB-105 as a potential treatment option for patients with T-cell lymphoma who currently face extremely limited therapeutic choices,” Hein, who serves as CEO, says. “CAR-T therapies have revolutionized the treatment of B-cell lymphomas and leukemias but have not successfully addressed the rarer T-cell lymphomas and leukemias. We are optimistic that this larger trial will further validate MB-105's potential to address the critical unmet needs of these patients and look forward to reporting our first clinical readouts.”

The Phase 1 trial showed promise for MB-105 in terms of both safety and efficacy. That means that potentially concerning side effects, including neurological events and cytokine release above grade 3, were not observed. Those results were published last year, noting lasting remissions.

In January 2025, MB-105 won an orphan drug designation from the FDA. That results in seven years of market exclusivity if the drug is approved, as well as development incentives along the way.

The trial is enrolling its single-arm, two-stage study on ClinicalTrials.gov. For patients with stubborn blood cancers, the drug is providing new hope.

Rice and MD Anderson scientists are researching new methods for treating brain cancer by overcoming the blood-brain barrier. Photo via Getty Images.

Rice, MD Anderson receive $1.5 million to further brain cancer research

fresh funding

Rice University chemist Han Xiao, who also serves as director of the university’s Synthesis X Center, and cancer biologist Dihua Yu of The University of Texas MD Anderson Cancer Center have received a three-year, $1.5 million grant from the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation.

The funding will allow them to continue their research on treating brain metastasis by overcoming the blood-brain barrier, or the BBB, according to a news release.

Brain metastasis is the leading form of brain cancer, with survival rates below 20 percent within a year of diagnosis, according to the National Library of Medicine. It commonly originates from breast, lung and melanoma cancers.

The BBB typically acts as a protective barrier for the brain. However, it prevents most drugs from being able to directly reach the brain. According to Rice, only 2 percent of FDA-approved small molecule drugs can penetrate the BBB, limiting treatment options.

Xiao and Yu’s approach to dealing with the BBB includes a light-induced brain delivery (LIBD) platform. The advanced system employs nanoparticles that are embedded with a near-infrared dye for the transport of therapeutic agents across the BBB. The research will evaluate the LIBD’s ability to improve the delivery of small-molecule drugs and biological therapies. Some therapies have shown potential for reducing cancer growth in laboratory studies, but they have struggled due to limited BBB penetration in animal models.

“Our LIBD platform represents a novel strategy for delivering drugs to the brain with precision and efficiency,” Xiao said in a news release. “This technology could not only improve outcomes for brain metastasis patients but also pave the way for treating other neurological diseases.”

The Kleberg Foundation looks for groundbreaking medical research proposals from leading institutions that focus on “innovative basic and applied biological research that advances scientific knowledge and human health” according to the foundation.

“This research is a testament to the power of collaboration and innovation,” Xiao said in a news release. “Together, we’re pushing the boundaries of what’s possible in treating brain metastasis and beyond.”

Rice launched the Synthesis X Center, or Synth X, last spring. It was born out of what started about eight years ago as informal meetings between Xiao's research group and others from the Baylor College of Medicine’s Dan L Duncan Comprehensive Cancer Center. It aims to turn fundamental research into clinical applications through collaboration.

“This collaboration builds on the strengths of both research teams,” Xiao said in the release. “By combining SynthX Center's expertise in chemistry with Dr. Yu's expertise in cancer biology and brain metastases, we aim to create a transformative solution.”

Innovators in immunotherapy, precision drug discovery, monoclonal antibodies, and diagnostic and therapeutic technologies have joined TMC's Accelerator for Cancer Therapeutics. Photo courtesy TMC.

TMC names 2025 cohort of cancer treatment innovators

ready to grow

Texas Medical Center Innovation has named more than 50 health care innovators to the fifth cohort of its Accelerator for Cancer Therapeutics (ACT).

The group specializes in immunotherapy, precision drug discovery, monoclonal antibodies, and diagnostic and therapeutic technologies, according to a statement from TMC.

During the nine-month ACT program, participants will enjoy access to a network of mentors, grant-writing support, chemistry resources, and the entrepreneur-in-residence program. The program is designed to equip participants with the ability to secure investments, develop partnerships, and advance the commercialization of cancer therapeutics in Texas.

“With over 35 million new cancer cases predicted by 2050, the urgency to develop safer, more effective, and personalized treatments cannot be overstated,” Tom Luby, chief innovation officer at Texas Medical Center, said in a news release.

Members of the new cohort are:

  • Alexandre Reuben, Kunal Rai, Dr. Cassian Yee, Dr. Wantong Yao, Dr. Haoqiang Ying, Xiling Shen, and Zhao Chen, all of the University of Texas MD Anderson Cancer Center
  • Dr. Andre Catic and Dr. Martin M. Matzuk, both of the Baylor College of Medicine
  • Cynthia Hu and Zhiqiang An, both of UTHealth Houston
  • Christopher Powala, Aaron Sato, and Mark de Souza, all of ARespo Biopharma
  • Daniel Romo, Dr. Susan Bates, and Ken Hull, all of Baylor University
  • Eugene Sa & Minseok Kim, both of CTCELLS
  • Gomika Udugamasooriya and Nathaniel Dawkins, both of the University of Houston
  • Dr. Hector Alila of Remunity Therapeutics
  • Iosif Gershteyn and Victor Goldmacher, both of ImmuVia
  • João Seixas, Pedro Cal, and Gonçalo Bernardes, all of TargTex
  • Ken Hsu and Yelena Wetherill, both of the University of Texas at Austin
  • Luis Martin and Dr. Alberto Ocaña, both of C-Therapeutics
  • Dr. Lynda Chin, Dr. Keith Flaherty, Dr. Padmanee Sharma, James Allison, and Ronan O’Hagan, all of Project Crest/Apricity Health
  • Michael Coleman and Shaker Reddy, both of Metaclipse Therapeutics
  • Robert Skiff and Norman Packard, both of 3582.ai
  • Rolf Brekken, Uttam Tambar, Ping Mu, Su Deng, Melanie Rodriguez, and Alexander Busse, all of UT Southwestern Medical Center
  • Ryan Swoboda and Maria Teresa Sabrina Bertilaccio, both of NAVAN Technologies
  • Shu-Hsia Chen and Ping-Ying Pan, both of Houston Methodist
  • Thomas Kim, Philipp Mews, and Eyal Gottlieb, all of ReEngage Therapeutics
The ACT launched in 2021 and has had 77 researchers and companies participate. The group has collectively secured more than $202 million in funding from the NIH, CPRIT and venture capital, according to TMC.

Cellenkos Therapeutics has completed promising Phase 1b testing of its Treg cell therapy, CK0804, in the fight against myelofibrosis. Photo via Getty Images

Houston biotech company tests hard-to-fight cancer therapeutics

fighting cancer

A Houston-based, female-founded biotech company has developed a treatment that could prove to be an effective therapy for a rare blood cancer.

Cellenkos Therapeutics has completed promising Phase 1b testing of its Treg cell therapy, CK0804, in the fight against myelofibrosis. According to a news release from the Cellenkos team, the use of its cord-blood-derived therapeutics could signal a paradigm shift for the treatment of this hard-to-fight cancer.

Cellenkos was founded by MD Anderson Cancer Center physician and professor Simrit Parmar. Her research at the hospital displayed the ability of a unique subset of T cells’ capability to home in on a patient’s bone marrow, restoring immune balance, and potentially halting disease progression.

Myelofibrosis has long been treated primarily with JAK (Janus Kinase) inhibitors, medications that help to block inflammatory enzymes. They work by suppressing the immune response to the blood cancer, but don’t slow the progression of the malady. And they’re not effective for every patient.

“There is a significant need for new therapeutic options for patients living with myelofibrosis who have suboptimal responses to approved JAK inhibitors,” Parmar says. “We are greatly encouraged by the safety profile and early signs of efficacy observed in this patient cohort and look forward to continuing our evaluation of the clinical potential of CK0804 in our planned expansion cohort.”

The expansion cohort is currently enrolling patients with myelofibrosis. What exactly are sufferers dealing with? Myelofibrosis is a chronic disease that causes bone marrow to form scar tissue. This makes it difficult for the body to produce normal blood cells, leaving patients with fatigue, spleen enlargement and night sweats.

Myelofibrosis is rare, with just 16,000 to 18,500 people affected in the United States. But for patients who don’t respond well to JAKs, the prognosis could mean a shorter span than the six-year median survival rate outlined for the disease by Cleveland Clinic.

Helping myelofibrosis patients to thrive isn’t the only goal for Cellenkos right now.

The company seeks to aid people with rare conditions, particularly inflammatory and autoimmune disorders, with the use of CK0804, but also other candidates including one known as CK0801. The latter drug has shown promising efficacy in aplastic anemia, including transfusion independence in treated patients.

The company closed its $15 million series A round led by BVCF Management, based in Shanghai, in 2021. Read more here.

Several Houston institutions scored funding from the Cancer Prevention and Research Institute of Texas. Photo via Getty Images

German biotech co. to relocate to Houston thanks to $4.75M CPRIT grant

money moves

Armed with a $4.75 million grant from the Cancer Prevention and Research Institute of Texas, a German biotech company will relocate to Houston to work on developing a cancer medicine that fights solid tumors.

Eisbach Bio is conducting a clinical trial of its EIS-12656 therapy at Houston’s MD Anderson Cancer Center. In September, the company announced its first patient had undergone EIS-12656 treatment. EIS-12656 works by suppressing cancer-related genome reorganization generated by DNA.

The funding from the cancer institute will support the second phase of the EIS-12656 trial, focusing on homologous recombination deficiency (HRD) tumors.

“HRD occurs when a cell loses its ability to repair double-strand DNA breaks, leading to genomic alterations and instability that can contribute to cancerous tumor growth,” says the institute.

HRD is a biomarker found in most advanced stages of ovarian cancer, according to Medical News Today. DNA constantly undergoes damage and repairs. One of the repair routes is the

homologous recombination repair (HRR) system.

Genetic mutations, specifically those in the BCRA1 and BCRA1 genes, cause an estimated 10 percent of cases of ovarian cancer, says Medical News Today.

The Cancer Prevention and Research Institute of Texas (CPRIT) says the Eisbach Bio funding will bolster the company’s “transformative approach to HRD tumor therapy, positioning Texas as a hub for innovative cancer treatments while expanding clinical options for HRD patients.”

The cancer institute also handed out grants to recruit several researchers to Houston:

  • $2 million to recruit Norihiro Goto from the Massachusetts Institute of Technology to MD Anderson.
  • $2 million to recruit Xufeng Chen from New York University to MD Anderson.
  • $2 million to recruit Xiangdong Lv from MD Anderson to the University of Texas Health Science Center at Houston.

In addition, the institute awarded:

  • $9,513,569 to Houston-based Marker Therapeutics for a first-phase study to develop T cell-based immunotherapy for treatment of metastatic pancreatic cancer.
  • $2,499,990 to Lewis Foxhall of MD Anderson for a colorectal cancer screening program.
  • $1,499,997 to Abigail Zamorano of the University of Texas Health Science Center at Houston for a cervical cancer screening program.
  • $1,497,342 to Jennifer Minnix of MD Anderson for a lung cancer screening program in Northeast Texas.
  • $449,929 to Roger Zoorob of the Baylor College of Medicine for early prevention of lung cancer.

On November 20, the Cancer Prevention and Research Institute granted funding of $89 million to an array of people and organizations involved in cancer prevention and research.

The Cancer Bioengineering Collaborative announced the projects that were selected for its first round of seed grants. Photo via Rice.edu

2 Houston health innovation leaders award grants to cancer-fighting researchers

dream team

Five cancer-fighting research projects were named inaugural recipients of a new grant program founded by two Houston institutions.

Last summer, Rice University and The University of Texas MD Anderson Cancer Center announced they were teaming up to form the new Cancer Bioengineering Collaborative. The shared initiative, created to form innovative technologies and bioengineering approaches to improve cancer research, diagnosis and treatment, recently launched with an event at the TMC3 Collaborative Building in Helix Park.

At the gathering, the Cancer Bioengineering Collaborative announced the projects that were selected for its first round of seed grants.

  • “Enhancing CAR-T immunotherapy via precision CRISPR/Cas-based epigenome engineering of high value therapeutic gene targets,” led by Isaac Hilton, associate professor of biosciences and bioengineering at Rice and a Cancer Research and Prevention Institute of Texas (CPRIT) scholar; and Michael Green, associate professor of lymphoma/myeloma at MD Anderson.
  • “Nanocluster and KRAS inhibitor-based combination therapy for pancreatic ductal adenocarcinoma,” led by Linlin Zhang, assistant research professor of bioengineering at Rice; and Haoqiang Ying, associate professor of molecular and cellular oncology at MD Anderson.
  • “Engineering tumor-infiltrating fusobacteriumas a microbial cancer therapy,” led by Jeffrey Tabor, professor of bioengineering at Rice; and Christopher Johnston, associate professor of genomic medicine and director of microbial genomics within the Platform for Innovative Microbiome and Translational Research at MD Anderson.
  • “Preclinical study of nanoscale TRAIL liposomes as a neoadjuvant therapy for colorectal cancer liver metastasis,” led by Michael King, the E.D. Butcher Professor of Bioengineering at Rice, CPRIT scholar and special adviser to the provost on life science collaborations with the Texas Medical Center; and Xiling Shen, professor of gastrointestinal medical oncology at MD Anderson.
  • “Deciphering molecular mechanisms of cellular plasticity in MDS progression,” led by Ankit Patel, assistant professor of electrical and computer engineering at Rice and of neuroscience at Baylor College of Medicine; and Pavan Bachireddy, assistant professor of hematopoietic biology and malignancy and lymphoma/myeloma at MD Anderson.

The event was a who’s who of Houston-based cancer specialists. Speakers included our city’s favorite Nobel laureate, Jim Allison, director of the James P. Allison Institute, as well as MD Anderson’s vice president of research, Eyal Gottlieb. Attendees were welcomed by the leaders of the initiative, Rice’s Gang Bao and MD Anderson’s Jeffrey Molldrem.

“This collaborative initiative builds on the strong foundation of our existing relationship, combining Rice’s expertise in bioengineering, artificial intelligence and nanotechnology with MD Anderson’s unmatched insights in cancer care and research,” Rice’s president Reginald DesRoches says at the event. “This is a momentous occasion to advance cancer research and treatment with the innovative fusion of engineering and medicine.”

The collaboration is part of Rice’s 10-year strategic plan for leadership in health innovation, called “Momentous: Personalized Scale for Global Impact.” Its goals include a commitment to responsible use of cutting-edge AI.

“As both institutions continue to make breakthroughs every day, we hope this collaborative will enable us to tackle the complex challenges of cancer care and treatment more effectively, ultimately improving the lives of patients here in Houston and beyond," Carin Hagberg, senior vice president and chief academic officer at MD Anderson, adds. "Whether our researchers are working on the South Campus or within the hedges of Rice, this collaborative will strengthen each other’s efforts and push the boundaries of what is possible in cancer.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Elon Musk's SpaceX site officially becomes the city of Starbase, Texas

Starbase, Texas

The South Texas home of Elon Musk’s SpaceX rocket company is now an official city with a galactic name: Starbase.

A vote Saturday, May 3, to formally organize Starbase as a city was approved by a lopsided margin among the small group of voters who live there and are mostly Musk’s employees at SpaceX. With all the votes in, the tally was 212 in favor to 6 against, according to results published online by the Cameron County Elections Department.

Musk celebrated in a post on his social platform, X, saying it is “now a real city!”

Starbase is the facility and launch site for the SpaceX rocket program that is under contract with the Department of Defense and NASA that hopes to send astronauts back to the moon and someday to Mars.

Musk first floated the idea of Starbase in 2021 and approval of the new city was all but certain. Of the 283 eligible voters in the area, most are believed to be Starbase workers.

The election victory was personal for Musk. The billionaire’s popularity has diminished since he became the chain-saw-wielding public face of President Donald Trump’s federal job and spending cuts, and profits at his Tesla car company have plummeted.

SpaceX has generally drawn widespread support from local officials for its jobs and investment in the area.

But the creation of an official company town has also drawn critics who worry it will expand Musk’s personal control over the area, with potential authority to close a popular beach and state park for launches.

Companion efforts to the city vote include bills in the state Legislature to shift that authority from the county to the new town’s mayor and city council.

All these measures come as SpaceX is asking federal authorities for permission to increase the number of South Texas launches from five to 25 a year.

The city at the southern tip of Texas near the Mexico border is only about 1.5 square miles (3.9 square kilometers), crisscrossed by a few roads and dappled with airstream trailers and modest midcentury homes.

SpaceX officials have said little about exactly why they want a company town and did not respond to emailed requests for comment.

“We need the ability to grow Starbase as a community,” Starbase General Manager Kathryn Lueders wrote to local officials in 2024 with the request to get the city issue on the ballot.

The letter said the company already manages roads and utilities, as well as “the provisions of schooling and medical care” for those living on the property.

SpaceX officials have told lawmakers that granting the city authority to close the beach would streamline launch operations. SpaceX rocket launches and engine tests, and even just moving certain equipment around the launch base, requires the closure of a local highway and access to Boca Chica State Park and Boca Chica Beach.

Critics say beach closure authority should stay with the county government, which represents a broader population that uses the beach and park. Cameron County Judge Eddie Trevino, Jr. has said the county has worked well with SpaceX and there is no need for change.

Another proposed bill would make it a Class B misdemeanor with up to 180 days in jail if someone doesn’t comply with an order to evacuate the beach.

The South Texas Environmental Justice Network, which has organized protests against the city vote and the beach access issue, held another demonstration Saturday that attracted dozens of people.

Josette Hinojosa, whose young daughter was building a sandcastle nearby, said she was taking part to try to ensure continued access to a beach her family has enjoyed for generations.

With SpaceX, Hinojosa said, “Some days it’s closed, and some days you get turned away."

Organizer Christopher Basaldú, a member of the Carrizo/Comecrudo Nation of Texas tribe, said his ancestors have long been in the area, where the Rio Grande meets the Gulf.

“It’s not just important,” he said, “it’s sacred.”

Texas-based 'DoorDash for laundry' startup tumbles into Houston market

No Scrubs

Laundry may seem like an endless task that piles up, but a new service offers a solution to overwhelmed Houston families.

NoScrubs, an Austin-based home laundry pickup service has just expanded to Houston. Described by the company as "DoorDash — but for laundry," they wash customer's clothes at local laundromats and return them the same day, folded and ready to be put away.

The service took off like gangbusters in Austin, making an expansion to the state's largest city an obvious choice. It's not universal coverage just yet.

For now, only the following ZIP codes have NoScrubs service available: 77002, 77004, 77005, 77006, 77007, 77008, 77009, 77010, 77018, 77019, 77024, 77025, 77027, 77046, 77056, 77057, 77081, 77098, 77401, 77030, 77003.

A single pickup starts at $40 for 20 pounds of laundry, while the basic monthly subscription is $60 for two pickups. All services use hypoallergenic detergents.

The average American family spends about 240 hours a year on laundry, making it a very time-consuming chore. For people with disabilities, difficult work schedules, and other circumstances, it can be a real help, says co-founder Matt O'Connor.

"Some of our favorite customer stories simply revolve around saving people time when they have something challenging going on," he writes in an email. "For example, one customer reviewed NoScrubs saying 'So happy I could cry! (Partially because I'm pregnant and my emotions are heightened!)...1000% recommend if you have time restrictions or physical restrictions! ' So, whether it’s saving time, the affordability, or the pleasantly surprising turnaround time, NoScrubs has a variety of benefits for any customer."

NoScrubs is also a new opportunity for Houston's gig workers. Because there are no passengers, it can be a safer alternative to driving ride share for women and other people apprehensive about having strangers in their cars. As NoScrubs partners with local laundromats, drivers are also going to centralized locations rather than all over the map, leading to less wear and tear on their cars. The laundromats benefit as well, since NoScrubs loads are ones that would otherwise be done at home.

"Our model makes driving a tiny fraction of the time, so folks who don’t want to wear down their vehicles and spend a ton on gas love working at NoScrubs," added O'Connor.

Here's what's next for Houston’s Tempest Droneworx after SXSW Pitch win

winner, winner

It’s not easy to be a standout at South by Southwest, especially during SXSW Interactive, which is the subsection of the festival that focuses on new media, technology and entrepreneurship.

But it’s even more difficult to win at SXSW Pitch, the competition for startups and entrepreneurs that showcases innovative new technology to a panel of industry experts, high-profile media professionals, venture capital investor, and angel investors.

Tempest Droneworx, a Houston-based company that provides real-time intelligence collected through drones, robots and sensors, did just that in March, taking home the Best Speed Pitch award. It was also named a finalist and alternate in the full SXSW Pitch competition. The company is known for it flagship product, Harbinger, a software solution that agnostically gathers data at virtually any scale and presents that data in easy-to-understand visualizations using a video game engine.

Tempest CEO and founder Ty Audronis says his company won based on its merits and the impact it’s making and will make on the world. Audronis founded the company after his hometown of Paradise, California, was destroyed by a wildfire in 2018.

“(SXSW) was a huge moment for our team,” says Audronis, whose background is in science visualization, data visualization and visual effects for the movie industry. “This is about what everyone at Tempest Droneworx has created, and our mission to make sure that issues—like the one that befell Paradise, California, my hometown, and the inspiration for our Harbinger software—don’t become the full-blown (disasters)."

Audronis shares that the company is working to release an agriculture beta this summer and is raising a Tactical Funding Increase (TACFI) round through the AFWERX, the Department of the Air Force’s innovation arm.

Tempest’s Harbinger is impressing investors and clients alike, but what is it exactly and what does it do?

The best way to explain the solution is in how it’s redefining the agriculture space. Tempest has deployed the product at Grand Farm in North Dakota, an agtech operation that seeks to promote sustainable, climate-resilient farming using applied technology.

“We decided to go down the road of agriculture,” Audronis says. “We're currently installed at the Grand Farm in North Dakota, which is a farm that is very closely tied to Microsoft. They do third-party verification of new soils and fertilizers, and we are helping them with visualizing the data that they're getting from their sensors.”

Additionally, Audronis and his co-founder and wife, Dana Abramovitz, spearhead a pilot program at Doubting Thomas Farms, an organic farm in Minnesota, where the company has installed 22 in-ground sensors that can measure volatile organic emissions.

To further optimize their solutions approach, Tempest Droneworx will also train artificial intelligence to look for overspray from neighboring non-organic farms. This will help maintain organic certification and reduce insurance claims for lost crops.

“This will save Doubting Thomas Farms and other organic farms a boatload of cash,” Audronis says.

During an exclusive tour with InnovationMap, Audronis pulled up a live feed of sensors buried around the Minnesota farm up on the conference room display. The feed did, in fact, look like a video game, with the sensors giving real-time data about the farm’s temperature, moisture level, humidity, CO2 and nitrogen.

Harbinger will collect, extract and extrapolate all of the data and later provide a digital almanac for farmers to track the history of their crops.

As the office tour continued, Audronis pointed out the company’s expanding partnership with the U.S. Military.

As a retired U.S. Navy veteran with over two decades of experience designing, building and piloting drones, Audronis understands that Harbinger has multiple military applications that will ultimately save lives—a core tenet of his company’s mission.

The company has launched a robotic dog known as UBU, developed by Tempest partner Ghost Robotics, that enables faster, more accurate ground surveys for explosive devices. This task previously required multiple airmen and hours to complete, Audronis says.

With agriculture and military initiatives in progress and making an impact, Audronis hopes to one day bring his original vision for Tempest Droneworx and Harbinger full circle by getting the call to combat California’s next catastrophic wildfire.

“We're proving our technology in military and in agriculture right now,” Audronis says. “Eventually, I would like to still save some lives with wildfire. That's really the purpose of the company … Whether it's agriculture, smart cities, the bottom line is saving lives through real-time situational awareness."