Rice and MD Anderson scientists are researching new methods for treating brain cancer by overcoming the blood-brain barrier. Photo via Getty Images.

Rice University chemist Han Xiao, who also serves as director of the university’s Synthesis X Center, and cancer biologist Dihua Yu of The University of Texas MD Anderson Cancer Center have received a three-year, $1.5 million grant from the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation.

The funding will allow them to continue their research on treating brain metastasis by overcoming the blood-brain barrier, or the BBB, according to a news release.

Brain metastasis is the leading form of brain cancer, with survival rates below 20 percent within a year of diagnosis, according to the National Library of Medicine. It commonly originates from breast, lung and melanoma cancers.

The BBB typically acts as a protective barrier for the brain. However, it prevents most drugs from being able to directly reach the brain. According to Rice, only 2 percent of FDA-approved small molecule drugs can penetrate the BBB, limiting treatment options.

Xiao and Yu’s approach to dealing with the BBB includes a light-induced brain delivery (LIBD) platform. The advanced system employs nanoparticles that are embedded with a near-infrared dye for the transport of therapeutic agents across the BBB. The research will evaluate the LIBD’s ability to improve the delivery of small-molecule drugs and biological therapies. Some therapies have shown potential for reducing cancer growth in laboratory studies, but they have struggled due to limited BBB penetration in animal models.

“Our LIBD platform represents a novel strategy for delivering drugs to the brain with precision and efficiency,” Xiao said in a news release. “This technology could not only improve outcomes for brain metastasis patients but also pave the way for treating other neurological diseases.”

The Kleberg Foundation looks for groundbreaking medical research proposals from leading institutions that focus on “innovative basic and applied biological research that advances scientific knowledge and human health” according to the foundation.

“This research is a testament to the power of collaboration and innovation,” Xiao said in a news release. “Together, we’re pushing the boundaries of what’s possible in treating brain metastasis and beyond.”

Rice launched the Synthesis X Center, or Synth X, last spring. It was born out of what started about eight years ago as informal meetings between Xiao's research group and others from the Baylor College of Medicine’s Dan L Duncan Comprehensive Cancer Center. It aims to turn fundamental research into clinical applications through collaboration.

“This collaboration builds on the strengths of both research teams,” Xiao said in the release. “By combining SynthX Center's expertise in chemistry with Dr. Yu's expertise in cancer biology and brain metastases, we aim to create a transformative solution.”

Innovators in immunotherapy, precision drug discovery, monoclonal antibodies, and diagnostic and therapeutic technologies have joined TMC's Accelerator for Cancer Therapeutics. Photo courtesy TMC.

TMC names 2025 cohort of cancer treatment innovators

ready to grow

Texas Medical Center Innovation has named more than 50 health care innovators to the fifth cohort of its Accelerator for Cancer Therapeutics (ACT).

The group specializes in immunotherapy, precision drug discovery, monoclonal antibodies, and diagnostic and therapeutic technologies, according to a statement from TMC.

During the nine-month ACT program, participants will enjoy access to a network of mentors, grant-writing support, chemistry resources, and the entrepreneur-in-residence program. The program is designed to equip participants with the ability to secure investments, develop partnerships, and advance the commercialization of cancer therapeutics in Texas.

“With over 35 million new cancer cases predicted by 2050, the urgency to develop safer, more effective, and personalized treatments cannot be overstated,” Tom Luby, chief innovation officer at Texas Medical Center, said in a news release.

Members of the new cohort are:

  • Alexandre Reuben, Kunal Rai, Dr. Cassian Yee, Dr. Wantong Yao, Dr. Haoqiang Ying, Xiling Shen, and Zhao Chen, all of the University of Texas MD Anderson Cancer Center
  • Dr. Andre Catic and Dr. Martin M. Matzuk, both of the Baylor College of Medicine
  • Cynthia Hu and Zhiqiang An, both of UTHealth Houston
  • Christopher Powala, Aaron Sato, and Mark de Souza, all of ARespo Biopharma
  • Daniel Romo, Dr. Susan Bates, and Ken Hull, all of Baylor University
  • Eugene Sa & Minseok Kim, both of CTCELLS
  • Gomika Udugamasooriya and Nathaniel Dawkins, both of the University of Houston
  • Dr. Hector Alila of Remunity Therapeutics
  • Iosif Gershteyn and Victor Goldmacher, both of ImmuVia
  • João Seixas, Pedro Cal, and Gonçalo Bernardes, all of TargTex
  • Ken Hsu and Yelena Wetherill, both of the University of Texas at Austin
  • Luis Martin and Dr. Alberto Ocaña, both of C-Therapeutics
  • Dr. Lynda Chin, Dr. Keith Flaherty, Dr. Padmanee Sharma, James Allison, and Ronan O’Hagan, all of Project Crest/Apricity Health
  • Michael Coleman and Shaker Reddy, both of Metaclipse Therapeutics
  • Robert Skiff and Norman Packard, both of 3582.ai
  • Rolf Brekken, Uttam Tambar, Ping Mu, Su Deng, Melanie Rodriguez, and Alexander Busse, all of UT Southwestern Medical Center
  • Ryan Swoboda and Maria Teresa Sabrina Bertilaccio, both of NAVAN Technologies
  • Shu-Hsia Chen and Ping-Ying Pan, both of Houston Methodist
  • Thomas Kim, Philipp Mews, and Eyal Gottlieb, all of ReEngage Therapeutics
The ACT launched in 2021 and has had 77 researchers and companies participate. The group has collectively secured more than $202 million in funding from the NIH, CPRIT and venture capital, according to TMC.

Cellenkos Therapeutics has completed promising Phase 1b testing of its Treg cell therapy, CK0804, in the fight against myelofibrosis. Photo via Getty Images

Houston biotech company tests hard-to-fight cancer therapeutics

fighting cancer

A Houston-based, female-founded biotech company has developed a treatment that could prove to be an effective therapy for a rare blood cancer.

Cellenkos Therapeutics has completed promising Phase 1b testing of its Treg cell therapy, CK0804, in the fight against myelofibrosis. According to a news release from the Cellenkos team, the use of its cord-blood-derived therapeutics could signal a paradigm shift for the treatment of this hard-to-fight cancer.

Cellenkos was founded by MD Anderson Cancer Center physician and professor Simrit Parmar. Her research at the hospital displayed the ability of a unique subset of T cells’ capability to home in on a patient’s bone marrow, restoring immune balance, and potentially halting disease progression.

Myelofibrosis has long been treated primarily with JAK (Janus Kinase) inhibitors, medications that help to block inflammatory enzymes. They work by suppressing the immune response to the blood cancer, but don’t slow the progression of the malady. And they’re not effective for every patient.

“There is a significant need for new therapeutic options for patients living with myelofibrosis who have suboptimal responses to approved JAK inhibitors,” Parmar says. “We are greatly encouraged by the safety profile and early signs of efficacy observed in this patient cohort and look forward to continuing our evaluation of the clinical potential of CK0804 in our planned expansion cohort.”

The expansion cohort is currently enrolling patients with myelofibrosis. What exactly are sufferers dealing with? Myelofibrosis is a chronic disease that causes bone marrow to form scar tissue. This makes it difficult for the body to produce normal blood cells, leaving patients with fatigue, spleen enlargement and night sweats.

Myelofibrosis is rare, with just 16,000 to 18,500 people affected in the United States. But for patients who don’t respond well to JAKs, the prognosis could mean a shorter span than the six-year median survival rate outlined for the disease by Cleveland Clinic.

Helping myelofibrosis patients to thrive isn’t the only goal for Cellenkos right now.

The company seeks to aid people with rare conditions, particularly inflammatory and autoimmune disorders, with the use of CK0804, but also other candidates including one known as CK0801. The latter drug has shown promising efficacy in aplastic anemia, including transfusion independence in treated patients.

The company closed its $15 million series A round led by BVCF Management, based in Shanghai, in 2021. Read more here.

Several Houston institutions scored funding from the Cancer Prevention and Research Institute of Texas. Photo via Getty Images

German biotech co. to relocate to Houston thanks to $4.75M CPRIT grant

money moves

Armed with a $4.75 million grant from the Cancer Prevention and Research Institute of Texas, a German biotech company will relocate to Houston to work on developing a cancer medicine that fights solid tumors.

Eisbach Bio is conducting a clinical trial of its EIS-12656 therapy at Houston’s MD Anderson Cancer Center. In September, the company announced its first patient had undergone EIS-12656 treatment. EIS-12656 works by suppressing cancer-related genome reorganization generated by DNA.

The funding from the cancer institute will support the second phase of the EIS-12656 trial, focusing on homologous recombination deficiency (HRD) tumors.

“HRD occurs when a cell loses its ability to repair double-strand DNA breaks, leading to genomic alterations and instability that can contribute to cancerous tumor growth,” says the institute.

HRD is a biomarker found in most advanced stages of ovarian cancer, according to Medical News Today. DNA constantly undergoes damage and repairs. One of the repair routes is the

homologous recombination repair (HRR) system.

Genetic mutations, specifically those in the BCRA1 and BCRA1 genes, cause an estimated 10 percent of cases of ovarian cancer, says Medical News Today.

The Cancer Prevention and Research Institute of Texas (CPRIT) says the Eisbach Bio funding will bolster the company’s “transformative approach to HRD tumor therapy, positioning Texas as a hub for innovative cancer treatments while expanding clinical options for HRD patients.”

The cancer institute also handed out grants to recruit several researchers to Houston:

  • $2 million to recruit Norihiro Goto from the Massachusetts Institute of Technology to MD Anderson.
  • $2 million to recruit Xufeng Chen from New York University to MD Anderson.
  • $2 million to recruit Xiangdong Lv from MD Anderson to the University of Texas Health Science Center at Houston.

In addition, the institute awarded:

  • $9,513,569 to Houston-based Marker Therapeutics for a first-phase study to develop T cell-based immunotherapy for treatment of metastatic pancreatic cancer.
  • $2,499,990 to Lewis Foxhall of MD Anderson for a colorectal cancer screening program.
  • $1,499,997 to Abigail Zamorano of the University of Texas Health Science Center at Houston for a cervical cancer screening program.
  • $1,497,342 to Jennifer Minnix of MD Anderson for a lung cancer screening program in Northeast Texas.
  • $449,929 to Roger Zoorob of the Baylor College of Medicine for early prevention of lung cancer.

On November 20, the Cancer Prevention and Research Institute granted funding of $89 million to an array of people and organizations involved in cancer prevention and research.

The Cancer Bioengineering Collaborative announced the projects that were selected for its first round of seed grants. Photo via Rice.edu

2 Houston health innovation leaders award grants to cancer-fighting researchers

dream team

Five cancer-fighting research projects were named inaugural recipients of a new grant program founded by two Houston institutions.

Last summer, Rice University and The University of Texas MD Anderson Cancer Center announced they were teaming up to form the new Cancer Bioengineering Collaborative. The shared initiative, created to form innovative technologies and bioengineering approaches to improve cancer research, diagnosis and treatment, recently launched with an event at the TMC3 Collaborative Building in Helix Park.

At the gathering, the Cancer Bioengineering Collaborative announced the projects that were selected for its first round of seed grants.

  • “Enhancing CAR-T immunotherapy via precision CRISPR/Cas-based epigenome engineering of high value therapeutic gene targets,” led by Isaac Hilton, associate professor of biosciences and bioengineering at Rice and a Cancer Research and Prevention Institute of Texas (CPRIT) scholar; and Michael Green, associate professor of lymphoma/myeloma at MD Anderson.
  • “Nanocluster and KRAS inhibitor-based combination therapy for pancreatic ductal adenocarcinoma,” led by Linlin Zhang, assistant research professor of bioengineering at Rice; and Haoqiang Ying, associate professor of molecular and cellular oncology at MD Anderson.
  • “Engineering tumor-infiltrating fusobacteriumas a microbial cancer therapy,” led by Jeffrey Tabor, professor of bioengineering at Rice; and Christopher Johnston, associate professor of genomic medicine and director of microbial genomics within the Platform for Innovative Microbiome and Translational Research at MD Anderson.
  • “Preclinical study of nanoscale TRAIL liposomes as a neoadjuvant therapy for colorectal cancer liver metastasis,” led by Michael King, the E.D. Butcher Professor of Bioengineering at Rice, CPRIT scholar and special adviser to the provost on life science collaborations with the Texas Medical Center; and Xiling Shen, professor of gastrointestinal medical oncology at MD Anderson.
  • “Deciphering molecular mechanisms of cellular plasticity in MDS progression,” led by Ankit Patel, assistant professor of electrical and computer engineering at Rice and of neuroscience at Baylor College of Medicine; and Pavan Bachireddy, assistant professor of hematopoietic biology and malignancy and lymphoma/myeloma at MD Anderson.

The event was a who’s who of Houston-based cancer specialists. Speakers included our city’s favorite Nobel laureate, Jim Allison, director of the James P. Allison Institute, as well as MD Anderson’s vice president of research, Eyal Gottlieb. Attendees were welcomed by the leaders of the initiative, Rice’s Gang Bao and MD Anderson’s Jeffrey Molldrem.

“This collaborative initiative builds on the strong foundation of our existing relationship, combining Rice’s expertise in bioengineering, artificial intelligence and nanotechnology with MD Anderson’s unmatched insights in cancer care and research,” Rice’s president Reginald DesRoches says at the event. “This is a momentous occasion to advance cancer research and treatment with the innovative fusion of engineering and medicine.”

The collaboration is part of Rice’s 10-year strategic plan for leadership in health innovation, called “Momentous: Personalized Scale for Global Impact.” Its goals include a commitment to responsible use of cutting-edge AI.

“As both institutions continue to make breakthroughs every day, we hope this collaborative will enable us to tackle the complex challenges of cancer care and treatment more effectively, ultimately improving the lives of patients here in Houston and beyond," Carin Hagberg, senior vice president and chief academic officer at MD Anderson, adds. "Whether our researchers are working on the South Campus or within the hedges of Rice, this collaborative will strengthen each other’s efforts and push the boundaries of what is possible in cancer.”

MD Anderson's lab led by Nobel laureate James Allison has secured a $5 million donation. Photo courtesy of MD Anderson Cancer Center

Cancer-fighting Houston lab led by Nobel laureate receives $5M grant at annual event

supporting research

The James P. Allison Institute at The University of Texas MD Anderson Cancer Center scored a $5 million gift at its second annual symposium.

On behalf of Mayor John Whitmire, Oct. 10, 2024 was named “James P. Allison Institute Day,” and it was also the day that the TMC3 Collaborative Building in the Texas Medical Center’s Helix Park greeted 900 attendees for the scientific symposium, entitled “Immunotherapy in Space and Time: The Tumor Microenvironment.”

Allison, who won the Nobel Prize in 2018, leads his namesake institute that was founded in 2022 to advance translational and clinical within cancer to create new, synergetic therapies. In addition to his role as director of the institute, he is regental professor and chair of Immunology at MD Anderson.

At the symposium, Jack and Judi Johnson presented a $5 million gift to the Allison Institute on behalf of the David and Eula Wintermann Foundation, a private organization dedicated to funding the advancement of medical education and research. A longtime supporter of MD Anderson, the foundation’s donation will go towards recruitment and technology for the institute, as well help fund clinical trials.

The money will help support several researchers, who will be known as Wintermann Scholars. The chosen great minds run the gamut from early career scientists to world-renowned experts in fields including immunotherapy, genetics, cancer biology, data science, bioinformatics, spatial profiling or the microbiome.

It was clear to us that the work happening within the Allison Institute has the potential to transform the lives of so many patients,” said Johnson, president of the Wintermann Foundation. “Our hope is that, with our support, we can help close the distance from the lab to the clinic so the incredible advancements underway can sooner help more cancer patients and their families.”

But the attendees on Oct. 10 learned far more than that. They were treated to a conversation between Allison and Carolyn Bertozzi, also a Nobel laureate, moderated by Alice Park, a senior health correspondent at Time. Park also took part in a fireside chat with Allison institute leaders, joined by MD Anderson President Peter WT Pisters and Chief Scientific Officer Giulio Draetta. Additional sessions also included presentations from big names like Mark Dawson, Elizabeth Jaffee, and Philip Greenberg.

“Spatial biology is a rapidly expanding field that offers tremendous new insights into immunobiology that were not possible just a few short years ago. Understanding how immune cells interact with their neighbors and with tumor cells in space and time will enable us to bring forward new strategies to improve immunotherapy outcomes,” said Allison. “We are proud to host this annual symposium to advance the field, and we are extremely grateful for the support of the Wintermann Foundation to make new breakthroughs possible.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston lab develops AI tool to improve neurodevelopmental diagnoses

developing news

One of the hardest parts of any medical condition is waiting for answers. Speeding up an accurate diagnosis can be a doctor’s greatest mercy to a family. A team at Baylor College of Medicine has created technology that may do exactly that.

Led by Dr. Ryan S. Dhindsa, assistant professor of pathology and immunology at Baylor and principal investigator at the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, the scientists have developed an artificial intelligence-based approach that will help doctors to identify genes tied to neurodevelopmental disorders. Their research was recently published the American Journal of Human Genetics.

According to its website, Dhindsa Lab uses “human genomics, human stem cell models, and computational biology to advance precision medicine.” The diagnoses that stem from the new computational tool could include specific types of autism spectrum disorder, epilepsy and developmental delay, disorders that often don’t come with a genetic diagnosis.

“Although researchers have made major strides identifying different genes associated with neurodevelopmental disorders, many patients with these conditions still do not receive a genetic diagnosis, indicating that there are many more genes waiting to be discovered,” Dhindsa said in a news release.

Typically, scientists must sequence the genes of many people with a diagnosis, as well as people not affected by the disorder, to find new genes associated with a particular disease or disorder. That takes time, money, and a little bit of luck. AI minimizes the need for all three, explains Dhindsa: “We used AI to find patterns among genes already linked to neurodevelopmental diseases and predict additional genes that might also be involved in these disorders.”

The models, made using patterns expressed at the single-cell level, are augmented with north of 300 additional biological features, including data on how intolerant genes are to mutations, whether they interact with other known disease-associated genes, and their functional roles in different biological pathways.

Dhindsa says that these models have exceptionally high predictive value.

“Top-ranked genes were up to two-fold or six-fold, depending on the mode of inheritance, more enriched for high-confidence neurodevelopmental disorder risk genes compared to genic intolerance metrics alone,” he said in the release. “Additionally, some top-ranking genes were 45 to 500 times more likely to be supported by the literature than lower-ranking genes.”

That means that the models may actually validate genes that haven’t yet been proven to be involved in neurodevelopmental conditions. Gene discovery done with the help of AI could possibly become the new normal for families seeking answers beyond umbrella terms like “autism spectrum disorder.”

“We hope that our models will accelerate gene discovery and patient diagnoses, and future studies will assess this possibility,” Dhindsa added.

Texas robotics co. begins new search for missing Malaysia Airlines flight 370

International News

Malaysia’s government has given final approval for a Texas-based marine robotics company to renew the search for Malaysia Airlines Flight 370, which is believed to have crashed in the southern Indian Ocean more than a decade ago.

Cabinet ministers agreed to terms and conditions for a “no-find, no-fee” contract with Texas-based Ocean Infinity to resume the seabed search operation at a new 5,800-square-mile site in the ocean, Transport Minister Anthony Loke said in a statement Wednesday. Ocean Infinity will be paid $70 million only if wreckage is discovered.

The Boeing 777 plane vanished from radar shortly after taking off on March 8, 2014, carrying 239 people, mostly Chinese nationals, on a flight from Malaysia’s capital, Kuala Lumpur, to Beijing. Satellite data showed the plane turned from its flight path and headed south to the far-southern Indian Ocean, where it is believed to have crashed.

An expensive multinational search failed to turn up any clues to its location, although debris washed ashore on the east African coast and Indian Ocean islands. A private search in 2018 by Ocean Infinity also found nothing.

The final approval for a new search came three months after Malaysia gave the nod in principle to plans for a fresh search.

Ocean Infinity CEO Oliver Punkett earlier this year reportedly said the company had improved its technology since 2018. He has said the firm is working with many experts to analyze data and had narrowed the search area to the most likely site.

Loke said his ministry will ink a contract with Ocean Infinity soon but didn’t provide details on the terms. The firm has reportedly sent a search vessel to the site and indicated that January-April is the best period for the search.

“The government is committed to continuing the search operation and providing closure for the families of the passengers of flight MH370,” he said in a statement.

Harris County booms with 3rd biggest population in U.S.

Boomtown

Newly released U.S. Census Bureau data has revealed Harris County became the third most populous county nationwide in 2024, and it had the highest year-over-year growth rate from 2023.

The new population report, published this month, estimated year-over-year population data from 2023 to 2024 across all 3,144 U.S. counties, and 387 metro areas.

Harris County's numeric growth rate outpaced all other U.S. counties from July 1, 2023 to July 1, 2024, the report found. The Census Bureau estimated Harris County's population grew by 105,852 people year-over-year, bringing the total population to 5,009,302 residents. That's around a 2.16 percent growth rate.

Los Angeles County, California (No. 1) and Illinois' Cook County (No. 2) are the only two U.S. counties that have larger populations than Harris County. Los Angeles County now boasts a population of nearly 9.76 million, while Cook County's has increased to more than 5.18 million people.

The top 10 most populous counties in the U.S. are:

  • No. 1 – Los Angles County, California
  • No. 2 – Cook County, Illinois
  • No. 3 – Harris County, Texas
  • No. 4 – Maricopa County, Arizona
  • No. 5 – San Diego County, California
  • No. 6 – Orange County, California
  • No. 7 – Miami-Dade County, Florida
  • No. 8 – Dallas County, Texas
  • No. 9 – Kings County, New York
  • No. 10 – Riverside County, California

Montgomery County also ranked among the top 10 U.S. counties with the highest numeric growth, ranking 9th nationally after gaining 34,268 residents from 2023 to 2024. Montgomery County's population has now grown to 749,613 people.

In the report's national comparison of counties with the largest population growth by percentage, Montgomery County ranked No. 7 with a year-over-year growth rate of 4.8 percent.

Most populated U.S. metro areas

The U.S. Census Bureau additionally found Houston-Pasadena-The Woodlands nearly led the nation as the second-fastest growing metro area in 2024.

From July 2023 to July 2024, the Houston metro added 198,171 residents to bring the total population to 7,796,182.

New York-Newark-Jersey City was the only metro area to outpace Houston's growth during the one-year period. The New York-New Jersey metro added 213,403 new residents, which brought the total population to over 19.94 million last year.

Kristie Wilder, a Census Bureau Population Division demographer, said in the report that the nation's population growth in its major metros was largely impacted by international migration rather than changes in birth rates.

"While births continue to contribute to overall growth, rising net international migration is offsetting the ongoing net domestic outmigration we see in many of these areas," Wilder said.

Dallas-Fort Worth-Arlington was right behind Houston as the third-fastest growing U.S. metro in 2024. The Metroplex gained 177,922 residents last year, and now has a total population of more than 8.34 million.

The top 10 U.S. metros with the highest numeric growth from 2023 to 2024 are:

  • No. 1 – New York-Newark-Jersey City, New York-New Jersey
  • No. 2 – Houston-Pasadena-The Woodlands, Texas
  • No. 3 – Dallas-Fort Worth-Arlington, Texas
  • No. 4 – Miami-Fort Lauderdale-West Palm Beach, Florida
  • No. 5 – Washington-Arlington-Alexandria, D.C.-Virginia-Maryland-West Virginia
  • No. 6 – Phoenix-Mesa-Chandler, Arizona
  • No. 7 – Orlando-Kissimmee-Sanford, Florida
  • No. 8 – Atlanta-Sandy Springs-Roswell, Georgia
  • No. 9 – Chicago-Naperville-Elgin, Illinois-Indiana
  • No. 10 – Seattle-Tacoma-Bellevue, Washington
---

This article originally appeared on our sister site, CultureMap.com.