Houston institutions have landed $6.25 million in NIH funding to launch the HAI-KUH research training program. Photo via UH.

Institutions within Houston’s Texas Medical Center have launched the Houston Area Incubator for Kidney, Urologic and Hematologic Research Training (HAI-KUH) program. The incubator will be backed by $6.25 million over five years from the National Institutes of Health and aims to create a training pipeline for researchers.

HAI-KUH will include 58 investigators from Baylor College of Medicine, Texas Children’s Hospital, the University of Texas Health Science Center at Houston, University of Houston, Houston Methodist Research Institute, MD Anderson Cancer Center, Rice University and Texas A&M University Institute of Biosciences and Technology. The program will fund six predoctoral students and six postdoctoral associates. Trainees will receive support in scientific research, professional development and networking.

According to the organizations, Houston has a high burden of kidney diseases, hypertension, sickle cell disease and other nonmalignant hematologic conditions. HAI-KUH will work to improve the health of patients by building a strong scientific workforce that leverages the team's biomedical research resources to develop research skills of students and trainees and prepare them for sustained and impactful careers. The funding comes through the National Institute of Diabetes and Digestive and Kidney Diseases.

The principal investigators of the project include Dr. Alison Bertuch, professor of pediatric oncology and molecular and human genetics at BCM; Peter Doris, professor and director of the Institute of Molecular Medicine Center for Human Genetics at UT Health; and Margaret Goodell, professor and chair of the Department of Molecular and Cellular Biology at Baylor.

“This new award provides unique collaborative training experiences that extend beyond the outstanding kidney, urology, and hematology research going on in the Texas Medical Center,” Doris said in a news release. “In conceiving this award, the National Institute of Diabetes and Digestive and Kidney Diseases envisioned trainee development across the full spectrum of skills required for professional success.”

Jeffrey Rimer, a professor of Chemical Engineering, is a core investigator on the project and program director at UH. Rimer is known for his breakthroughs in using innovative methods in control crystals to help treat malaria and kidney stones. Other co-investigators include Dr. Wolfgang Winkelmeyer (Baylor), Oleh Pochynyuk (UTHealth), Dr. Rose Khavari (Houston Methodist) and Pamela Wenzel (UT Health).

“This new NIH-sponsored training program will enable us to recruit talented students and postdocs to work on these challenging areas of research,” Rimer added in a release.

The Science & Community Impacts Mapping Project identified 37 cancelled or frozen NIH grants for Houston institutions. Photo via Unsplash.

Houston health orgs lost $58M in canceled, stalled NIH grants, new report shows

research cuts

Seven institutions in the Houston area have lost nearly $60 million in grants from the National Institutes of Health (NIH) that were aimed at funding health research.

The Science & Community Impacts Mapping Project identified 37 cancelled or frozen NIH grants worth $58.7 million that were awarded to seven Houston-area institutions. The University of Texas Medical Branch at Galveston suffered the biggest loss — five grants totaling nearly $44.8 million.

The Harvard University T.H. Chan School of Public Health reported in May that over the previous several months across the U.S., the federal government had terminated roughly 2,100 NIH research grants worth around $9.5 billion.

In August, the U.S. Supreme Court derailed researchers’ efforts to reinstate almost $2 billion in research grants issued by NIH, according to Nature.com.

“Make no mistake: This was a decision critical to the future of the nation, and the Supreme Court made the wrong choice. History will look upon these mass National Institutes of Health (NIH) research grant terminations with shame,” the American Association of Medical Colleges said in a statement. “The Court has turned a blind eye to this grievous attack on science and medicine, and we call upon Congress to take action to restore the rule of law at NIH.”

Texas health researchers rely heavily on NIH grants and contracts. During the federal government’s 2024 budget year, NIH awarded $1.9 billion in grants and contracts that directly supported 30,553 jobs and more than $6.1 billion in economic activity in Texas, according to the United for Medical Research coalition.

Here’s a rundown of the cancelled and frozen NIH grants in the Houston area.

  • University of Texas Medical Branch at Galveston: Five cancelled or frozen grants, totalling approximately $44.8 million in funding lost.
  • Baylor College of Medicine: 17 grants cancelled or frozen, totalling approximately $8 million in funding lost
  • University of Houston. Five cancelled or frozen grants, totalling approximately $3.7 million in funding lost
  • University of Texas Health Science Center Houston: Five grants cancelled or frozen, totaling approximately $1.1 million in funding lost.
  • University of Texas MD Anderson Cancer Center: Two grants cancelled or frozen, totalling $831,581 in funding
  • Rice University. Two grants cancelled or frozen, totaling $254,645 in funding lost
  • Prairie View A&M University: One grant cancelled or frozen, totalling $31,771 in funding lost
Recent funding from CPRIT will help launch the new Accelerator for Cancer Medical Devices. Photo via TMC

TMC lands $3M grant to launch cancer device accelerator

cancer funding

A new business accelerator at Houston’s Texas Medical Center has received a nearly $3 million grant from the Cancer Prevention and Research Institute of Texas.

The CPRIT grant, awarded to the Texas Medical Center Foundation, will help launch the Accelerator for Cancer Medical Devices. The accelerator will support emerging innovators in developing prototypes for cancer-related medical devices and advancing them from prototype to clinical trials.

“The translation of new cancer-focused precision medical devices, often the width of a human hair, creates the opportunity to develop novel treatments for cancer patients,” the accelerator posted on the CPRIT website.

Scientist, consultant, and entrepreneur Jason Sakamoto, associate director of the TMC Center for Device Innovation, will oversee the accelerator. TMC officials say the accelerator builds on the success of TMC Innovation’s Accelerator for Cancer Therapeutics.

Each participant in the Accelerator for Cancer Medical Devices program will graduate with a device prototype, a business plan, and a “solid foundation” in preclinical and clinical strategies, TMC says. Participants will benefit from “robust support” provided by the TMC ecosystem, according to the medical center, and “will foster innovation into impactful and life-changing cancer patient solutions in Texas and beyond.”

In all, CPRIT recently awarded $27 million in grants for cancer research. That includes $18 million to attract top cancer researchers to Texas. Houston institutions received $4 million for recruitment:

  • $2 million to the University of Texas MD Anderson Cancer Center to recruit Rodrigo Romero from Memorial Sloan Kettering Cancer Center in New York City
  • $2 million to MD Anderson to recruit Eric Gardner from Weill Cornell Medicine in New York City

A $1 million grant also went to Baylor College of Medicine researcher Dr. Akiva Diamond. He is an assistant professor at the medical college and is affiliated with Baylor’s Dan L. Duncan Comprehensive Cancer Center.

MD Anderson is teaming up with TOPPAN Holdings on cutting-edge organoid tech to help match cancer patients with the most effective treatments. Photo via Getty Images.

MD Anderson launches $10M collaboration to advance personalized cancer treatment tech

fighting cancer

The University of Texas MD Anderson Cancer Center and Japan’s TOPPAN Holdings Inc. have announced a strategic collaboration to co-develop TOPPAN Holdings’ 3D cell culture, or organoid, technology known as invivoid.

The technology will be used as a tool for personalized cancer treatments and drug screening efforts, according to a release from MD Anderson. TOPPAN has committed $10 million over five years to advance the joint research activities.

“The strategic alliance with MD Anderson paves a promising path toward personalized cancer medicine," Hiroshi Asada, head of the Business Innovation Center at TOPPAN Holdings, said in a news release.

Invivoid is capable of establishing organoid models directly from patient biopsies or other tissues in a way that is faster and more efficient. Researchers may be able to test a variety of potential treatments in the laboratory to understand which approach may work best for the patient, if validated clinically.

“Organoids allow us to model the three-dimensional complexity of human cancers in the lab, thus allowing us to engineer a powerful translational engine—one that could not only predict how patients will respond to therapy before treatment begins but also could help to reimagine how we discover and validate next-generation therapies," Dr. Donna Hansel, division head of pathology and laboratory medicine at MD Anderson, added in the news release. “Through this collaboration, we hope to make meaningful progress in modeling cancer biology for therapeutic innovation.”

The collaboration will build upon preclinical research previously conducted by MD Anderson and TOPPAN. The organizations will work collaboratively to obtain College of American Pathologists (CAP) and Clinical Laboratory Improvement Amendments (CLIA) certifications for the technology, which demonstrate a commitment to high-quality patient care. Once the certifications are obtained, they plan to conduct observational clinical studies and then prospective clinical studies.

“We believe our proprietary invivoid 3D cell culture technology, by enabling the rapid establishment of organoid models directly from patient biopsies, has strong potential to help identify more effective treatment options and reduce the likelihood of unnecessary therapies,” Asada added in the release. “Through collaboration on CAP/CLIA certification and clinical validation, we aim to bring this innovation closer to real-world patient care and contribute meaningfully to the advancement of cancer medicine."

Sentinel BioTherapeutics is developing cytokine interleukin-2 (IL-2) capsules to fight many solid tumors. Photo via Getty Images.

New Houston biotech co. developing capsules for hard-to-treat tumors

biotech breakthroughs

Houston company Sentinel BioTherapeutics has made promising headway in cancer immunotherapy for patients who don’t respond positively to more traditional treatments. New biotech venture creation studio RBL LLC (pronounced “rebel”) recently debuted the company at the 2025 American Society of Clinical Oncology (ASCO) Annual Meeting in Chicago.

Rima Chakrabarti is a neurologist by training. Though she says she’s “passionate about treating the brain,” her greatest fervor currently lies in leading Sentinel as its CEO. Sentinel is RBL’s first clinical venture, and Chakrabarti also serves as cofounder and managing partner of the venture studio.

The team sees an opportunity to use cytokine interleukin-2 (IL-2) capsules to fight many solid tumors for which immunotherapy hasn't been effective in the past. “We plan to develop a pipeline of drugs that way,” Chakrabarti says.

This may all sound brand-new, but Sentinel’s research goes back years to the work of Omid Veiseh, director of the Rice Biotechnology Launch Pad (RBLP). Through another, now-defunct company called Avenge Bio, Veiseh and Paul Wotton — also with RBLP and now RBL’s CEO and chairman of Sentinel — invested close to $45 million in capital toward their promising discovery.

From preclinical data on studies in mice, Avenge was able to manufacture its platform focused on ovarian cancer treatments and test it on 14 human patients. “That's essentially opened the door to understanding the clinical efficacy of this drug as well as it's brought this to the attention of the FDA, such that now we're able to continue that conversation,” says Chakrabarti. She emphasizes the point that Avenge’s demise was not due to the science, but to the company's unsuccessful outsourcing to a Massachusetts management team.

“They hadn't analyzed a lot of the data that we got access to upon the acquisition,” explains Chakrabarti. “When we analyzed the data, we saw this dose-dependent immune activation, very specific upregulation of checkpoints on T cells. We came to understand how effective this agent could be as an immune priming agent in a way that Avenge Bio hadn't been developing this drug.”

Chakrabarti says that Sentinel’s phase II trials are coming soon. They’ll continue their previous work with ovarian cancer, but Chakrabarti says that she also believes that the IL-2 capsules will be effective in the treatment of endometrial cancer. There’s also potential for people with other cancers located in the peritoneal cavity, such as colorectal cancer, gastrointestinal cancer and even primary peritoneal carcinomatosis.

“We're delivering these capsules into the peritoneal cavity and seeing both the safety as well as the immune activation,” Chakrabarti says. “We're seeing that up-regulation of the checkpoint that I mentioned. We're seeing a strong safety signal. This drug was very well-tolerated by patients where IL-2 has always had a challenge in being a well-tolerated drug.”

When phase II will take place is up to the success of Sentinel’s fundraising push. What we do know is that it will be led by Amir Jazaeri at MD Anderson Cancer Center. Part of the goal this summer is also to create an automated cell manufacturing process and prove that Sentinel can store its product long-term.

“This isn’t just another cell therapy,” Chakrabarti says.

"Sentinel's cytokine factory platform is the breakthrough technology that we believe has the potential to define the next era of cancer treatment," adds Wotton.

Cole Woody has earned the Barry Goldwater Scholarship for his research on personalized cancer-fighting vaccines. Photo courtesy UH.

UH student earns prestigious award for cancer vaccine research

up-and-comer

Cole Woody, a biology major in the College of Natural Sciences and Mathematics at the University of Houston, has been awarded a Barry Goldwater Scholarship, becoming the first sophomore in UH history to earn the prestigious prize for research in natural sciences, mathematics and engineering.

Woody was recognized for his research on developing potential cancer vaccines through chimeric RNAs. The work specifically investigates how a vaccine can more aggressively target cancers.

Woody developed the MHCole Pipeline, a bioinformatic tool that predicts peptide-HLA binding affinities with nearly 100 percent improvement in data processing efficiency. The MHCole Pipeline aims to find cancer-specific targets and develop personalized vaccines. Woody is also a junior research associate at the UH Sequencing Core and works in Dr. Steven Hsesheng Lin’s lab at MD Anderson Cancer Center.

“Cole’s work ethic and dedication are unmatched,” Preethi Gunaratne, director of the UH Sequencing Core and professor of Biology & Biochemistry at NSM, said in a news release. “He consistently worked 60 to 70 hours a week, committing himself to learning new techniques and coding the MHCole pipeline.”

Woody plans to earn his MD-PhD and has been accepted into the Harvard/MIT MD-PhD Early Access to Research Training (HEART) program. According to UH, recipients of the Goldwater Scholarship often go on to win various nationally prestigious awards.

"Cole’s ability to independently design and implement such a transformative tool at such an early stage in his career demonstrates his exceptional technical acumen and creative problem-solving skills, which should go a long way towards a promising career in immuno-oncology,” Gunaratne added in the release.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Meet 6 mentors who are helping the Houston startup scene flourish

meet the finalists

Few founders launch successful startups alone — experienced and insightful mentors often play an integral role in helping the business and its founders thrive.

The Houston startup community is home to many mentors who are willing to lend an ear and share advice to help entrepreneurs meet their goals.

The Mentor of the Year category in our 2025 Houston Innovation Awards will honor an individual like this, who dedicates their time and expertise to guide and support budding entrepreneurs. The award is presented by Houston City College Northwest.

Below, meet the six finalists for the 2025 award. They support promising startups in the medical tech, digital health, clean energy and hardware sectors.

Then, join us at the Houston Innovation Awards this Thursday, Nov. 13 at Greentown Labs, when the winner will be unveiled. The event is just days away, so secure your seats now.

Anil Shetty, InformAI

Anil Shetty serves as president and chief medical officer for biotech company Ferronova and chief innovation officer for InformAI. He's mentored numerous medical device and digital health companies at seed or Series A, including Pathex, Neurostasis, Vivifi Medical and many others. He mentors through organizations like Capital Factory, TMC Biodesign, UT Venture Mentoring, UTMB Innovation and Rice's Global Medical Innovation program.

"Being a mentor means empowering early-stage innovators to shape, test, and refine their ideas with clarity and purpose," Shetty says. "I’m driven by the opportunity to help them think strategically and pivot early before resources are wasted. At this critical stage, most founders lack the financial means to bring on seasoned experts and often haven’t yet gained real-world exposure. Mentorship allows me to fill that gap, offering guidance that accelerates their learning curve and increases the chances of meaningful, sustainable impact."

Jason Ethier, EnergyTech Nexus

Jason Ethier is the founding partner of EnergyTech Nexus, through which he has mentored numerous startups and Innovation Awards finalists, including Geokiln, Energy AI Solutions, Capwell Services and Corrolytics. He founded Dynamo Micropower in 2011 and served as its president and CEO. He later co-founded Greentown Labs in Massachusetts and helped bring the accelerator to Houston.

"Being a mentor means using my experience to help founders see a clearer path to success. I’ve spent years navigating the ups and downs of building companies, struggling with cash flow, and making all the mistakes; mentoring gives me the chance to share those lessons and show entrepreneurs the shortcuts I wish I’d known earlier," Ethier says. "At Energytech Nexus, that role goes beyond just helping individual founders — it’s about creating a flywheel effect for Houston’s entire innovation ecosystem."

Jeremy Pitts, Activate Houston

Jeremy Pitts serves as managing director of Activate Houston, which launched in Houston last year. He was one of the founders of Greentown Labs in the Boston area and served in a leadership role for the organization between 2011 and 2015. Through Activate, he has mentored numerous impactful startups and Innovation Awards finalists, including Solidec, Coflux Purification, Bairitone Health, Newfound Materials, Deep Anchor Solutions and others.

"Being a mentor to me is very much about supporting the person in whatever they need. Oftentimes that means supporting the business—providing guidance and advice, feedback, introductions, etc," But just as important is recognizing the person and helping them with whatever challenges they are going through ... Sometimes they need a hype man to tell them how awesome they are and that they can go do whatever hard thing they need to do. Sometimes they just need an empathetic listener who can relate to how hard these things are. Being there for the person and supporting them on their journey is key to my mentorship style."

Joe Alapat, Liongard

Joe Alapat founded and serves as chief strategy officer at Houston software company Liongard and chief information officer at Empact IT, which he also owns. He mentors through Founder Fridays Houston Group, Software Day by Mercury Fund, SUPERGirls SHINE Foundation, Cup of Joey and at the Ion. He's worked with founders of FlowCare, STEAM OnDemand, Lokum and many other early stage startups.

"Being a mentor to me means unleashing an individual’s 10x—their purpose, their ikigai (a Japanese concept that speaks to a person’s reason for being)," Alapat says. "Mentoring founders in the Houston community of early stage, high-growth startups is an honor for me. I get to live vicariously through a founder’s vision of the future. Once they show me that compelling vision, I’m drawn to bring the future forward with them so the vision becomes reality with a sense of urgency."

Neal Dikeman, Energy Transition Ventures

Neal Dikeman serves as partner at early stage venture fund Energy Transition Ventures, executive in residence at Greentown Labs, and offices in and supports Rice Nexus at the Ion. He mentors startups, like Geokiln, personally. He also mentored Helix Earth through Greentown Labs. The company went on to win in the Smart Cities, Transportation & Sustainability contest at SXSW earlier this year. Dikeman has helped launch several successful startups himself, most recently serving on the board of directors for Resilient Power Systems, which was acquired by Eaton Corp for $150 million.

"Founders have to find their own path, and most founders need a safe space where they can discuss hard truths outside of being 'on' in sales mode with their team or board or investors, to let them be able to work on their business, not just in it," Dikeman says.

Nisha Desai, Intention

Nisha Desai serves as CEO of investment firm Intention and mentors through Greentown Labs, TEX-E, Open Minds, the Rice Alliance Clean Energy Accelerator, Avatar Innovations and The Greenhouse. She currently works with founders from Solidec, Deep Anchor Solutions, CLS Wind and several other local startups, several of which have been nominated for Innovation Awards this year. She's served a board member for Greentown Labs since 2021.

"When I first started mentoring, I viewed my role as someone who was supposed to prevent the founder from making bad decisions. Now, I see my role as a mentor as enabling the founder to develop their own decision-making capability," Desai says. "Sometimes that means giving them the space to make decisions that might be good, that might be bad, but that they can be accountable for. At the end of the day, being a mentor is like being granted a place on the founder's leadership development journey, and it's a privilege I'm grateful for."

---

The Houston Innovation Awards program is sponsored by Houston City College Northwest, Houston Powder Coaters, FLIGHT by Yuengling, and more to be announced soon. For sponsorship opportunities, please contact sales@innovationmap.com.

Rice, Houston Methodist developing soft 'sleep cap' for brain health research

Researchers and scientists at Rice University and Houston Methodist are developing a “sleep cap” that aims to protect the brain against dementia and other similar diseases by measuring and improving deep sleep.

The project is a collaboration between Rice University engineering professors Daniel Preston, Vanessa Sanchez and Behnaam Aazhang; and Houston Methodist neurologist Dr. Timea Hodics and Dr. Gavin Britz, director of the Houston Methodist Neurological Institute and chairman of the Department of Neurosurgery.

According to Rice, deep sleep is essential for clearing waste products from the brain and nightly “cleaning cycles” help remove toxic proteins. These toxic proteins, like amyloids, can accumulate during the day and are linked to Alzheimer’s disease and other neurological issues.

Aazhang, director of the Rice Neuroengineering Initiative, and his team are building a system that not only tracks the brain’s clearing process but can also stimulate it, improving natural mechanisms that protect against neurodegeneration.

Earlier proof-of-concept versions of the caps successfully demonstrated the promise of this approach; however, they were rigid and uncomfortable for sleep.

Preston and Sanchez will work to transform the design of the cap into a soft, lightweight, textile-based version to make sleep easier, while also allowing the caps to be customizable and tailored for each patient.

“One of the areas of expertise we have here at Rice is designing wearable devices from soft and flexible materials,” Preston, an assistant professor of mechanical engineering, said in a news release. “We’ve already shown this concept works in rigid device prototypes. Now we’re building a soft, breathable cap that people can comfortably wear while they sleep.”

Additionally, the research team is pursuing ways to adapt their technology to measure neuroinflammation and stimulate the brain’s natural plasticity. Neuroinflammation, or swelling in the brain, can be caused by injury, stroke, disease or lifestyle factors and is increasingly recognized as a driver of neurodegeneration, according to Rice.

“Our brain has an incredible ability to rewire itself,” Aazhang added in the release. “If we can harness that through technology, we can open new doors for treating not just dementia but also traumatic brain injury, stroke, Parkinson’s disease and more.”

The project represents Rice’s broader commitment to brain health research and its support for the Dementia Prevention Research Institute of Texas (DPRIT), which passed voter approval last week. The university also recently launched its Rice Brain Institute.

As part of the project, Houston Methodist will provide access to clinicians and patients for early trials, which include studies on patients who have suffered traumatic brain injury and stroke.

“We have entered an era in neuroscience that will result in transformational cures in diseases of the brain and spinal cord,” Britz said in the release. “DPRIT could make Texas the hub of these discoveries.”

Autonomous truck company with Houston routes goes public

on a roll

Kodiak Robotics, a provider of AI-powered autonomous vehicle technology, has gone public through a SPAC merger and has rebranded as Kodiak AI. The company operates trucking routes to and from Houston, which has served as a launchpad for the business.

Privately held Kodiak, founded in 2018, merged with a special purpose acquisition company — publicly held Ares Acquisition Corp. II — to form Kodiak AI, whose stock now trades on the Nasdaq market.

In September, Mountain View, California-based Kodiak and New York City-based Ares disclosed a $145 million PIPE (private investment in public equity) investment from institutional investors to support the business combo. Since announcing the SPAC deal, more than $220 million has been raised for the new Kodiak.

“We believe these additional investments underscore our investors’ confidence in the value proposition of Kodiak’s safe and commercially deployed autonomous technology,” Don Burnette, founder and CEO of Kodiak, said in a news release.

“We look forward to leading the advancement of the commercial trucking and public sector industries,” he added, “and delivering on the exciting value creation opportunities ahead to the benefit of customers and shareholders.”

Last December, Kodiak debuted a facility near George Bush Intercontinental/Houston Airport for loading and loading driverless trucks. Transportation and logistics company Ryder operates the “truckport” for Ryder.

The facility serves freight routes to and from Houston, Dallas and Oklahoma City. Kodiak’s trucks currently operate with or without drivers. Kodiak’s inaugural route launched in 2024 between Houston and Dallas.

One of the companies using Kodiak’s technology is Austin-based Atlas Energy Solutions, which owns and operates four driverless trucks equipped with Kodiak’s driver-as-a-service technology. The trucks pick up fracking sand from Atlas’ Dune Express, a 42-mile conveyor system that carries sand from Atlas’ mine to sites near customers’ oil wells in the Permian Basin.

Altogether, Atlas has ordered 100 trucks that will run on Kodiak’s autonomous technology in an effort to automate Atlas’ supply chain.