The UTHealth Houston School of Public Health, which operates out of three buildings currently, will consolidate all of its operations in the new building. Rendering courtesy of UTHealth

UTHealth Houston School of Public Health broke ground Tuesday on a new tower in the Texas Medical Center's Helix Park.

The $229 million facility is slated to be open in time for the fall semester in 2026. It will be home to research laboratories, distance-learning technology, an auditorium, teaching kitchen, collaborative spaces, and classrooms and adds 350,000 square feet to TMC’s Helix Park, which has several projects underway.

The UTHealth Houston School of Public Health, which operates out of three buildings currently, will consolidate all of its operations in the new building at 1930 Old Spanish Trail. Disciplines taught in the new tower will include epidemiology, genetics, nutrition, health policy, data science, and health promotion.

According to a statement from UTHealth, the facility will allow the school to continue to grow as enrollment has increased 27 percent over the last five years.

“The new building reflects our bold thinking as we pioneer radical solutions for imminent and future public health challenges while giving our students the tools and resources to improve the health of Texas,” Eric Boerwinkle, dean of UTHealth School of Public Health, said in a statement.

Houston-based Kirksey Architecture and Detroit-based Smith Group designed the new 10-story building which incorporates sustainable design. The tower is slated to feature rainwater harvesting for irrigation, an upper-level terrace, holistic teaching garden and a building automation programming. A skybride over Old Spanish Trail will also connect the UTHealth Houston School of Public Health with a plaza that is shared with MD Anderson.

The new tower joins the 12-story Dynamic One project at TMC Helix Park, which is slated to open this year. It will be anchored by Baylor College of Medicine and is the first of the four buildings planned for the 37-acre, five-million-square-foot development, named for the shape of the park and walkway design at the center of the campus.

The TMC3 Collaborative Building will also be located within Helix Park, also slated to open this year. The 250,000-square-foot space will house research facilities for MD Anderson Cancer Center, the Texas A&M University Health Science Center, the University of Texas Health Science Center at Houston, and TMC, as well as VC firms and hedge funds. UTHealth is also slated to move into a portion of that building in September or October.

Helix Park will be one of four districts within the TMC, including the already operating TMC Medical Campus and the TMC Innovation Factory.

The TMC BioPort completes the list. The biomanufacturing and medical supplies distribution site is intended to create over 100,000 new job opportunities once completed.
The Dynamic One building in TMC Helix Park is expected to deliver later this year. Rendering via TMC.edu

Rising TMC development names Houston health care institution as anchor tenant

coming soon

TMC Helix Park, formerly known as TMC3, has announced its first anchor tenant.

The Texas Medical Center and Beacon Capital Partners announced that Baylor College of Medicine will be the anchor tenant of the Dynamic One building at TMC Helix Park. The facility is will be the first to deliver of the four TMC Helix Park industry buildings. The Topped off in December, the Dynamic One building is being developed by Beacon in collaboration with Zoë Life Science and is scheduled to open before the end of the year.

“Beacon is excited that Dynamic One will be our first entry into the fast-growing Houston Life Science market,” says Fred Seigel, president and CEO of Beacon, in a news release. “This state-of-the-art environment is designed to enable and encourage collaboration and will greatly accelerate the innovative lifesaving discoveries that emerge when industry and academic research work side-by-side.”

Baylor College of Medicine will lease 114,000 square-feet of lab and office space in the 355,000-square-foot building. BCM's goal is to house lab space for novel diagnostics and therapeutics — and provide space to house startups.

The organization is expanding its presence in Houston after decades of residing in the region.

“Baylor College of Medicine moved to Houston in 1943 and was the first institution built in the Texas Medical Center," says Dr. Paul Klotman, president and CEO and executive dean of Baylor, in the release. "Our researchers and scientists will have the opportunity to access the uniquely concentrated research environment being developed at TMC Helix Park, facilitating the continuing advancement of innovation and compassionate care."

TMC Helix Park, which includes more than 5 million-square-feet of space across 37-acres, also expects to deliver its research facility, the TMC3 Collaborative Building, later this year.

“Baylor College of Medicine is a major force in life sciences discovery and commercialization at TMC," says Bill McKeon, president and CEO of TMC, in the release. "Their move to TMC Helix Park will serve as a catalyst for enhanced collaboration with TMC’s other esteemed Institutions, as well as with industry leaders from around the world."

BCM is the first anchor tenant announced for TMC Helix Park. Rendering via TMC.edu

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston engineers develop breakthrough device to advance spinal cord treatment

future of health

A team of Rice University engineers has developed an implantable probe over a hundred times smaller than the width of a hair that aims to help develop better treatments for spinal cord disease and injury.

Detailed in a recent study published in Cell Reports, the probe or sensor, known as spinalNET, is used to explore how neurons in the spinal cord process sensation and control movement, according to a statement from Rice. The research was supported by the National Institutes of Health, Rice, the California-based Salk Institute for Biological Studies, and the philanthropic Mary K. Chapman Foundation based in Oklahoma.

The soft and flexible sensor was used to record neuronal activity in freely moving mice with high resolution for multiple days. Historically, tracking this level of activity has been difficult for researchers because the spinal cord and its neurons move so much during normal activity, according to the team.

“We developed a tiny sensor, spinalNET, that records the electrical activity of spinal neurons as the subject performs normal activity without any restraint,” Yu Wu, a research scientist at Rice and lead author of the study said in a statement. “Being able to extract such knowledge is a first but important step to develop cures for millions of people suffering from spinal cord diseases.”

The team says that before now the spinal cord has been considered a "black box." But the device has already helped the team uncover new findings about the body's rhythmic motor patterns, which drive walking, breathing and chewing.

Lan Luan (from left), Yu Wu, and Chong Xie are working on the breakthrough device. Photo by Jeff Fitlow/Rice University

"Some (spinal neurons) are strongly correlated with leg movement, but surprisingly, a lot of neurons have no obvious correlation with movement,” Wu said in the statement. “This indicates that the spinal circuit controlling rhythmic movement is more complicated than we thought.”

The team said they hope to explore these findings further and aim to use the technology for additional medical purposes.

“In addition to scientific insight, we believe that as the technology evolves, it has great potential as a medical device for people with spinal cord neurological disorders and injury,” Lan Luan, an associate professor of electrical and computer engineering at Rice and a corresponding author on the study, added in the statement.

Rice researchers have developed several implantable, minimally invasive devices to address health and mental health issues.

In the spring, the university announced that the United States Department of Defense had awarded a four-year, $7.8 million grant to the Texas Heart Institute and a Rice team led by co-investigator Yaxin Wang to continue to break ground on a novel left ventricular assist device (LVAD) that could be an alternative to current devices that prevent heart transplantation.

That same month, the university shared news that Professor Jacob Robinson had published findings on minimally invasive bioelectronics for treating psychiatric conditions. The 9-millimeter device can deliver precise and programmable stimulation to the brain to help treat depression, obsessive-compulsive disorder and post-traumatic stress disorder.

Houston clean hydrogen startup to pilot tech with O&G co.

stay gold

Gold H2, a Houston-based producer of clean hydrogen, is teaming up with a major U.S.-based oil and gas company as the first step in launching a 12-month series of pilot projects.

The tentative agreement with the unnamed oil and gas company kicks off the availability of the startup’s Black 2 Gold microbial technology. The technology underpins the startup’s biotech process for converting crude oil into proprietary Gold Hydrogen.

The cleantech startup plans to sign up several oil and gas companies for the pilot program. Gold H2 says it’s been in discussions with companies in North America, Latin America, India, Eastern Europe and the Middle East.

The pilot program is aimed at demonstrating how Gold H2’s technology can transform old oil wells into hydrogen-generating assets. Gold H2, a spinout of Houston-based biotech company Cemvita, says the technology is capable of producing hydrogen that’s cheaper and cleaner than ever before.

“This business model will reshape the traditional oil and gas industry landscape by further accelerating the clean energy transition and creating new economic opportunities in areas that were previously dismissed as unviable,” Gold H2 says in a news release.

The start of the Black 2 Gold demonstrations follows the recent hiring of oil and gas industry veteran Prabhdeep Singh Sekhon as CEO.

“With the proliferation of AI, growth of data centers, and a national boom in industrial manufacturing underway, affordable … carbon-free energy is more paramount than ever,” says Rayyan Islam, co-founder and general partner at venture capital firm 8090 Industries, an investor in Gold H2. “We’re investing in Gold H2, as we know they’ll play a pivotal role in unleashing a new dawn for energy abundance in partnership with the oil industry.”

------

This article originally ran on EnergyCapital.

3 Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes an e-commerce startup founder, an industrial biologist, and a cellular scientist.

Omair Tariq, co-founder and CEO of Cart.com

Omair Tariq of Cart.com joins the Houston Innovators Podcast to share his confidence in Houston as the right place to scale his unicorn. Photo via Cart.com

Houston-based Cart.com, which operates a multichannel commerce platform, has secured $105 million in debt refinancing from investment manager BlackRock.

The debt refinancing follows a recent $25 million series C extension round, bringing Cart.com’s series C total to $85 million. The scaleup’s valuation now stands at $1.2 billion, making it one of the few $1 billion-plus “unicorns” in the Houston area.

Cart.com was co-founded by CEO Omair Tariq in October 2020. Read more.

Nádia Skorupa Parachin, vice president of industrial biotechnology at Cemvita

Nádia Skorupa Parachin joined Cemvita as vice president of industrial biotechnology. Photo courtesy of Cemvita

Houston-based biotech company Cemvita recently tapped two executives to help commercialize its sustainable fuel made from carbon waste.

Nádia Skorupa Parachin came aboard as vice president of industrial biotechnology, and Phil Garcia was promoted to vice president of commercialization.

Parachin most recently oversaw several projects at Boston-based biotech company Ginkjo Bioworks. She previously co-founded Brazilian biotech startup Integra Bioprocessos. Read more.

Han Xiao, associate professor of chemistry at Rice University

The funds were awarded to Han Xiao, a chemist at Rice University.

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories. Xiao will use the five-year grant to advance his work on noncanonical amino acids.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement. Read more.