The UTHealth Houston School of Public Health, which operates out of three buildings currently, will consolidate all of its operations in the new building. Rendering courtesy of UTHealth

UTHealth Houston School of Public Health broke ground Tuesday on a new tower in the Texas Medical Center's Helix Park.

The $229 million facility is slated to be open in time for the fall semester in 2026. It will be home to research laboratories, distance-learning technology, an auditorium, teaching kitchen, collaborative spaces, and classrooms and adds 350,000 square feet to TMC’s Helix Park, which has several projects underway.

The UTHealth Houston School of Public Health, which operates out of three buildings currently, will consolidate all of its operations in the new building at 1930 Old Spanish Trail. Disciplines taught in the new tower will include epidemiology, genetics, nutrition, health policy, data science, and health promotion.

According to a statement from UTHealth, the facility will allow the school to continue to grow as enrollment has increased 27 percent over the last five years.

“The new building reflects our bold thinking as we pioneer radical solutions for imminent and future public health challenges while giving our students the tools and resources to improve the health of Texas,” Eric Boerwinkle, dean of UTHealth School of Public Health, said in a statement.

Houston-based Kirksey Architecture and Detroit-based Smith Group designed the new 10-story building which incorporates sustainable design. The tower is slated to feature rainwater harvesting for irrigation, an upper-level terrace, holistic teaching garden and a building automation programming. A skybride over Old Spanish Trail will also connect the UTHealth Houston School of Public Health with a plaza that is shared with MD Anderson.

The new tower joins the 12-story Dynamic One project at TMC Helix Park, which is slated to open this year. It will be anchored by Baylor College of Medicine and is the first of the four buildings planned for the 37-acre, five-million-square-foot development, named for the shape of the park and walkway design at the center of the campus.

The TMC3 Collaborative Building will also be located within Helix Park, also slated to open this year. The 250,000-square-foot space will house research facilities for MD Anderson Cancer Center, the Texas A&M University Health Science Center, the University of Texas Health Science Center at Houston, and TMC, as well as VC firms and hedge funds. UTHealth is also slated to move into a portion of that building in September or October.

Helix Park will be one of four districts within the TMC, including the already operating TMC Medical Campus and the TMC Innovation Factory.

The TMC BioPort completes the list. The biomanufacturing and medical supplies distribution site is intended to create over 100,000 new job opportunities once completed.
The Dynamic One building in TMC Helix Park is expected to deliver later this year. Rendering via TMC.edu

Rising TMC development names Houston health care institution as anchor tenant

coming soon

TMC Helix Park, formerly known as TMC3, has announced its first anchor tenant.

The Texas Medical Center and Beacon Capital Partners announced that Baylor College of Medicine will be the anchor tenant of the Dynamic One building at TMC Helix Park. The facility is will be the first to deliver of the four TMC Helix Park industry buildings. The Topped off in December, the Dynamic One building is being developed by Beacon in collaboration with Zoë Life Science and is scheduled to open before the end of the year.

“Beacon is excited that Dynamic One will be our first entry into the fast-growing Houston Life Science market,” says Fred Seigel, president and CEO of Beacon, in a news release. “This state-of-the-art environment is designed to enable and encourage collaboration and will greatly accelerate the innovative lifesaving discoveries that emerge when industry and academic research work side-by-side.”

Baylor College of Medicine will lease 114,000 square-feet of lab and office space in the 355,000-square-foot building. BCM's goal is to house lab space for novel diagnostics and therapeutics — and provide space to house startups.

The organization is expanding its presence in Houston after decades of residing in the region.

“Baylor College of Medicine moved to Houston in 1943 and was the first institution built in the Texas Medical Center," says Dr. Paul Klotman, president and CEO and executive dean of Baylor, in the release. "Our researchers and scientists will have the opportunity to access the uniquely concentrated research environment being developed at TMC Helix Park, facilitating the continuing advancement of innovation and compassionate care."

TMC Helix Park, which includes more than 5 million-square-feet of space across 37-acres, also expects to deliver its research facility, the TMC3 Collaborative Building, later this year.

“Baylor College of Medicine is a major force in life sciences discovery and commercialization at TMC," says Bill McKeon, president and CEO of TMC, in the release. "Their move to TMC Helix Park will serve as a catalyst for enhanced collaboration with TMC’s other esteemed Institutions, as well as with industry leaders from around the world."

BCM is the first anchor tenant announced for TMC Helix Park. Rendering via TMC.edu

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston team develops low-cost device to treat infants with life-threatening birth defect

infant innovation

A team of engineers and pediatric surgeons led by Rice University’s Rice360 Institute for Global Health Technologies has developed a cost-effective treatment for infants born with gastroschisis, a congenital condition in which intestines and other organs are developed outside of the body.

The condition can be life-threatening in economically disadvantaged regions without access to equipment.

The Rice-developed device, known as SimpleSilo, is “simple, low-cost and locally manufacturable,” according to the university. It consists of a saline bag, oxygen tubing and a commercially available heat sealer, while mimicking the function of commercial silo bags, which are used in high-income countries to protect exposed organs and gently return them into the abdominal cavity gradually.

Generally, a single-use bag can cost between $200 and $300. The alternatives that exist lack structure and require surgical sewing. This is where the SimpleSilo comes in.

“We focused on keeping the design as simple and functional as possible, while still being affordable,” Vanshika Jhonsa said in a news release. “Our hope is that health care providers around the world can adapt the SimpleSilo to their local supplies and specific needs.”

The study was published in the Journal of Pediatric Surgery, and Jhonsa, its first author, also won the 2023 American Pediatric Surgical Association Innovation Award for the project. She is a recent Rice alumna and is currently a medical student at UTHealth Houston.

Bindi Naik-Mathuria, a pediatric surgeon at UTMB Health, served as the corresponding author of the study. Rice undergraduates Shreya Jindal and Shriya Shah, along with Mary Seifu Tirfie, a current Rice360 Global Health Fellow, also worked on the project.

In laboratory tests, the device demonstrated a fluid leakage rate of just 0.02 milliliters per hour, which is comparable to commercial silo bags, and it withstood repeated disinfection while maintaining its structure. In a simulated in vitro test using cow intestines and a mock abdominal wall, SimpleSilo achieved a 50 percent reduction of the intestines into the simulated cavity over three days, also matching the performance of commercial silo bags. The team plans to conduct a formal clinical trial in East Africa.

“Gastroschisis has one of the biggest survival gaps from high-resource settings to low-resource settings, but it doesn’t have to be this way,” Meaghan Bond, lecturer and senior design engineer at Rice360, added in the news release. “We believe the SimpleSilo can help close the survival gap by making treatment accessible and affordable, even in resource-limited settings.”

Oxy's $1.3B Texas carbon capture facility on track to​ launch this year

gearing up

Houston-based Occidental Petroleum is gearing up to start removing CO2 from the atmosphere at its $1.3 billion direct air capture (DAC) project in the Midland-Odessa area.

Vicki Hollub, president and CEO of Occidental, said during the company’s recent second-quarter earnings call that the Stratos project — being developed by carbon capture and sequestration subsidiary 1PointFive — is on track to begin capturing CO2 later this year.

“We are immensely proud of the achievements to date and the exceptional record of safety performance as we advance towards commercial startup,” Hollub said of Stratos.

Carbon dioxide captured by Stratos will be stored underground or be used for enhanced oil recovery.

Oxy says Stratos is the world’s largest DAC facility. It’s designed to pull 500,000 metric tons of carbon dioxide from the air and either store it underground or use it for enhanced oil recovery. Enhanced oil recovery extracts oil from unproductive reservoirs.

Most of the carbon credits that’ll be generated by Stratos through 2030 have already been sold to organizations such as Airbus, AT&T, All Nippon Airways, Amazon, the Houston Astros, the Houston Texans, JPMorgan, Microsoft, Palo Alto Networks and TD Bank.

The infrastructure business of investment manager BlackRock has pumped $550 million into Stratos through a joint venture with 1PointFive.

As it gears up to kick off operations at Stratos, Occidental is also in talks with XRG, the energy investment arm of the United Arab Emirates-owned Abu Dhabi National Oil Co., to form a joint venture for the development of a DAC facility in South Texas. Occidental has been awarded up to $650 million from the U.S. Department of Energy to build the South Texas DAC hub.

The South Texas project, to be located on the storied King Ranch, will be close to industrial facilities and energy infrastructure along the Gulf Coast. Initially, the roughly 165-square-mile site is expected to capture 500,000 metric tons of carbon dioxide per year, with the potential to store up to 3 billion metric tons of CO2 per year.

“We believe that carbon capture and DAC, in particular, will be instrumental in shaping the future energy landscape,” Hollub said.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.