The UTHealth Houston School of Public Health, which operates out of three buildings currently, will consolidate all of its operations in the new building. Rendering courtesy of UTHealth

UTHealth Houston School of Public Health broke ground Tuesday on a new tower in the Texas Medical Center's Helix Park.

The $229 million facility is slated to be open in time for the fall semester in 2026. It will be home to research laboratories, distance-learning technology, an auditorium, teaching kitchen, collaborative spaces, and classrooms and adds 350,000 square feet to TMC’s Helix Park, which has several projects underway.

The UTHealth Houston School of Public Health, which operates out of three buildings currently, will consolidate all of its operations in the new building at 1930 Old Spanish Trail. Disciplines taught in the new tower will include epidemiology, genetics, nutrition, health policy, data science, and health promotion.

According to a statement from UTHealth, the facility will allow the school to continue to grow as enrollment has increased 27 percent over the last five years.

“The new building reflects our bold thinking as we pioneer radical solutions for imminent and future public health challenges while giving our students the tools and resources to improve the health of Texas,” Eric Boerwinkle, dean of UTHealth School of Public Health, said in a statement.

Houston-based Kirksey Architecture and Detroit-based Smith Group designed the new 10-story building which incorporates sustainable design. The tower is slated to feature rainwater harvesting for irrigation, an upper-level terrace, holistic teaching garden and a building automation programming. A skybride over Old Spanish Trail will also connect the UTHealth Houston School of Public Health with a plaza that is shared with MD Anderson.

The new tower joins the 12-story Dynamic One project at TMC Helix Park, which is slated to open this year. It will be anchored by Baylor College of Medicine and is the first of the four buildings planned for the 37-acre, five-million-square-foot development, named for the shape of the park and walkway design at the center of the campus.

The TMC3 Collaborative Building will also be located within Helix Park, also slated to open this year. The 250,000-square-foot space will house research facilities for MD Anderson Cancer Center, the Texas A&M University Health Science Center, the University of Texas Health Science Center at Houston, and TMC, as well as VC firms and hedge funds. UTHealth is also slated to move into a portion of that building in September or October.

Helix Park will be one of four districts within the TMC, including the already operating TMC Medical Campus and the TMC Innovation Factory.

The TMC BioPort completes the list. The biomanufacturing and medical supplies distribution site is intended to create over 100,000 new job opportunities once completed.
The Dynamic One building in TMC Helix Park is expected to deliver later this year. Rendering via TMC.edu

Rising TMC development names Houston health care institution as anchor tenant

coming soon

TMC Helix Park, formerly known as TMC3, has announced its first anchor tenant.

The Texas Medical Center and Beacon Capital Partners announced that Baylor College of Medicine will be the anchor tenant of the Dynamic One building at TMC Helix Park. The facility is will be the first to deliver of the four TMC Helix Park industry buildings. The Topped off in December, the Dynamic One building is being developed by Beacon in collaboration with Zoë Life Science and is scheduled to open before the end of the year.

“Beacon is excited that Dynamic One will be our first entry into the fast-growing Houston Life Science market,” says Fred Seigel, president and CEO of Beacon, in a news release. “This state-of-the-art environment is designed to enable and encourage collaboration and will greatly accelerate the innovative lifesaving discoveries that emerge when industry and academic research work side-by-side.”

Baylor College of Medicine will lease 114,000 square-feet of lab and office space in the 355,000-square-foot building. BCM's goal is to house lab space for novel diagnostics and therapeutics — and provide space to house startups.

The organization is expanding its presence in Houston after decades of residing in the region.

“Baylor College of Medicine moved to Houston in 1943 and was the first institution built in the Texas Medical Center," says Dr. Paul Klotman, president and CEO and executive dean of Baylor, in the release. "Our researchers and scientists will have the opportunity to access the uniquely concentrated research environment being developed at TMC Helix Park, facilitating the continuing advancement of innovation and compassionate care."

TMC Helix Park, which includes more than 5 million-square-feet of space across 37-acres, also expects to deliver its research facility, the TMC3 Collaborative Building, later this year.

“Baylor College of Medicine is a major force in life sciences discovery and commercialization at TMC," says Bill McKeon, president and CEO of TMC, in the release. "Their move to TMC Helix Park will serve as a catalyst for enhanced collaboration with TMC’s other esteemed Institutions, as well as with industry leaders from around the world."

BCM is the first anchor tenant announced for TMC Helix Park. Rendering via TMC.edu

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University launches hub in India to drive education, tech innovation abroad

global mission

Rice University is launching Rice Global India, which is a strategic initiative to expand India’s rapidly growing education and technology sectors.

“India is a country of tremendous opportunity, one where we see the potential to make a meaningful impact through collaboration in research, innovation and education,” Rice President Reginald DesRoches says in a news release. “Our presence in India is a critical step in expanding our global reach, and we are excited to engage more with India’s academic leaders and industries to address some of the most pressing challenges of our time.”

The new hub will be in the country’s third-largest city and the center of the country’s high-tech industry, Bengaluru, India, and will include collaborations with top-tier research and academic institutions.

Rice continues its collaborations with institutions like the Indian Institute of Technology (IIT) Kanpur and the Indian Institute of Science (IISc) Bengaluru. The partnerships are expected to advance research initiatives, student and faculty exchanges and collaborations in artificial intelligence, biotechnology and sustainable energy.

India was a prime spot for the location due to the energy, climate change, artificial intelligence and biotechnology studies that align with Rice’s research that is outlined in its strategic plan Momentous: Personalized Scale for Global Impact.

“India’s position as one of the world’s fastest-growing education and technology markets makes it a crucial partner for Rice’s global vision,” vice president for global at Rice Caroline Levander adds. “The U.S.-India relationship, underscored by initiatives like the U.S.-India Initiative on Critical and Emerging Technology, provides fertile ground for educational, technological and research exchanges.”

On November 18, the university hosted a ribbon-cutting ceremony in Bengaluru, India to help launch the project.

“This expansion reflects our commitment to fostering a more interconnected world where education and research transcend borders,” DesRoches says.

UH-backed project secures $3.6M to transform CO2 into sustainable fuel with cutting-edge tech

funds granted

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

------

This article originally ran on EnergyCapital.

Houston innovator drives collaboration, access to investment with female-focused group

HOUSTON INNOVATORS PODCAST EPISODE 262

After working in technology in her home country of Pakistan, Samina Farid, who was raised in the United States, found her way to Houston in the '70s where business was booming.

She was recruited to work at Houston Natural Gas — a company that would later merge and create Enron — where she rose through the ranks and oversaw systems development for the company before taking on a role running the pipelines.

"When you're in technology, you're always looking for inefficiencies, and you always see areas where you can improve," Farid says on the Houston Innovators Podcast, explaining that she moved on from Enron in the mid-'80s, which was an exciting time for the industry.

"We had these silos of data across the industry, and I felt like we needed to be communicating better, having a good source of data, and making sure we weren't continuing to have the problems we were having," she says. "That was really the seed that got me started in the idea of building a company."

She co-founded Merrick Systems, a software solutions business for managing oil and gas production, with her nephew, and thus began her own entrepreneurial journey. She came to another crossroads in her career after selling that business in 2014 and surviving her own battle with breast cancer.

"I got involved in investing because the guys used to talk about it — there was always men around me," Farid says. "I was curious."

In 2019, she joined an organization called Golden Seeds. Founded in 2005 in New York, the network of angel investors funding female-founded enterprises has grown to around 280 members across eight chapters. Suzan Deison, CEO of the Houston Women's Chamber, was integral in bringing the organization to Houston, and now Farid leads it as head of the Houston Chapter of Golden Seeds.

For Farid, the opportunity for Houston is the national network of investors — both to connect local female founders to potential capital from coast to coast and to give Houston investors deal flow from across the country.

"It was so hard for me to get funding for my own company," Farid says. "Having access to capital was only on the coasts. Software and startups was too risky."

Now, with Golden Seeds, the opportunity is there — and Farid says its an extremely collaborative investor network, working with local organizations like the Houston Angel Network and TiE Houston.

"With angel investing, when we put our money in, we want these companies to succeed," she says."We want more people to see these companies and to invest in them. We're not competing. We want to work with others to help these companies succeed."