just granted

Houston cancer-fighting researchers granted over $30 million from statewide organization

Five Houston research centers have received funds from the Cancer Prevention and Research Institute of Texas in its most recent round of grants. Photo by Dwight C. Andrews/Greater Houston Convention and Visitors Bureau

The Cancer Prevention and Research Institute of Texas has again granted millions to Texas institutions. Across the state, cancer-fighting scientists have received 55 new grants totaling over $78 million.

Five Houston-area institutions — Baylor College of Medicine, the University of Houston, The University of Texas Medical Branch at Galveston, The University of Texas Health Science Center at Houston, and the The University of Texas MD Anderson Cancer Center — have received around $30 million of that grand total.

"These awards reflect CPRIT's established priorities to invest in childhood cancer research, address population and geographic disparities, and recruit top cancer research talent to our academic institutions," says Wayne Roberts, CPRIT CEO, in a news release. "I'm excited about all the awardees, particularly those in San Antonio, a region that continues expand their cancer research and prevention prowess. San Antonio is poised to have an even greater impact across the Texas cancer-fighting ecosystem."

Four grants went to new companies that are bringing new technologies to the market. Two companies with a presence in Houston — Asylia Therapeutics and Barricade Therapeutics Corp. — received grants in this category.

Last fall, CPRIT gave out nearly $136 million to Texas researchers, and, to date, the organization has granted $2.49 billion to Texas research institutions and organizations.

Here's what recent grants were made to Houston institutions.

Baylor College of Medicine

  • $900,000 granted for Feng Yang's research in targeting AKT signaling in MAPK4-high Triple Negative Breast Cancer (Individual Investigator Award)
  • $897,527 Hyun-Sung Lee's research for Spatial Profiling of Tumor-Immune Microenvironment by Multiplexed Single Cell Imaging Mass Cytometry (Individual Investigator Award)
  • $899,847 for Joshua Wythe's research in targeting Endothelial Transcriptional Networks in GBM (Individual Investigator Award)

University of Houston

  • $890,502 for Matthew Gallagher's research in Transdiagnostic Cognitive Behavioral Therapy for Smokers With Anxiety and Depression (Individual Investigator Research Award for Prevention and Early Detection)
  • $299,953 for Lorraine Reitzel's research in Taking Texas Tobacco Free Through a Sustainable Education/Training Program Designed for Personnel Addressing Tobacco Control in Behavioral Health Settings (Dissemination of CPRIT-Funded Cancer Control Interventions Award)

The University of Texas Medical Branch at Galveston

  • $1,993,096 for Abbey Berenson's research in maximizing opportunities for HPV vaccination in medically underserved counties of Southeast Texas (Expansion of Cancer Prevention Services to Rural and Medically Underserved Populations)

The University of Texas Health Science Center at Houston

  • $900,000 for Melissa Aldrich's research on "Can Microsurgeries Cure Lymphedema? An Objective Assessment" (Individual Investigator Award)
  • $900,000 for John Hancock's research in KRAS Spatiotemporal Dynamics: Novel Therapeutic Targets (Individual Investigator Award)
  • $900,000 for Nami McCarty's research in targeting Multiple Myeloma Stem Cell Niche (Individual Investigator Award)
  • $1.96 million for Paula Cuccaro's research in Expanding "All for Them": A comprehensive school-based approach to increase HPV vaccination through public schools (Expansion of Cancer Prevention Services to Rural and Medically Underserved Populations)

The University of Texas MD Anderson Cancer Center

  • $900,000 for Laurence Court's research in Artificial Intelligence for the Peer Review of Radiation Therapy Treatments
  • $900,000 for John deGroot's research in targeting MEK in EGFR-Amplified Glioblastoma (Individual Investigator Award)
  • $900,000 for Don Gibbons's research in Investigating the Role ofCD38 as a Mechanism of Acquired Resistance to Immune Checkpoint Inhibitors in Lung Cancer (Individual Investigator Award)
  • $900,000 for John Heymach's research in Molecular Features Impacting Drug Resistance in Atypical EGFR Exon 18 and Exon 20 Mutant NSCLC and the Development of Novel Mutant- Selective Inhibitors (Individual Investigator Award)
  • $900,000 for Zhen Fan's research in Development of a Novel Strategy for Tumor Delivery of MHC-I-Compatible Peptides for Cancer Immunotherapy (Individual Investigator Award)
  • $900,000 for Jin Seon Im's research in off the shelf, Cord-Derived iNK T cells Engineered to Prevent GVHD and Relapse After Hematopoietic Stem Cell Transplantation (Individual Investigator Award)
  • $900,000 for Jae-il Park's research in CRAD Tumor Suppressor and Mucinous Adenocarcinoma (Individual Investigator Award)
  • $900,000 for Helen Piwnica-Worms's research in Single-Cell Evaluation to Identify Tumor-stroma Niches Driving the Transition from In Situ to Invasive Breast Cancer (Individual Investigator Award)
  • $898,872 for Kunal Rai's research in Heterogeneity of Enhancer Patterns in Colorectal Cancers- Mechanisms and Therapy (Individual Investigator Award)
  • $900,000 for Ferdinandos Skoulidis's research in Elucidating Aberrant Splicing-Induced Immune Pathway Activation in RBMl0-Deficient KRAS-Mutant NSCLC and Harnessing Its Potential for Precision Immunotherapy (Individual Investigator Award)
  • $887,713 for Konstantin Sokolov's research in High-Sensitivity 19F MRI for Clinically Translatable Imaging of Adoptive NK Cell Brain Tumor Therapy (Individual Investigator Award)
  • $900,000 for Liuqing Yang's research in Adipocyte-Producing Noncoding RNA Promotes Liver Cancer Immunoresistance (Individual Investigator Award)
  • $1.44 million for Eugenie Kleinerman's research in Doxorubicin-Induced Cardiotoxicity: Defining Blood and Echocardiogram Biomarkers in a Mouse Model and AYA Sarcoma Patients for Evaluating Exercise Interventions (Individual Investigator Award for Cancer in Children and Adolescents)
  • $2.4 million for Arvind Dasari's research in Circulating Tumor DNA- Defined Minimal Residual Disease in Colorectal Cancer (Individual Investigator Research Award for Clinical Translation)
  • Targeting Alterations of the NOTCH! Pathway in Head and Neck Squamous Cell Carcinoma (HNSCC)(Faye Johnson) - $1.2 million (Individual Investigator Research Award for Clinical Translation)
  • $2.07 million for Florencia McAllister's research in Modulating the Gut- Tumor Microbial Axis to Reverse Pancreatic Cancer Immunosuooression (Individual Investigator Research Award for Clinical Translation)
  • $2 million to recruit Eric Smith, MD, PhD, to The University of Texas MD Anderson Cancer Center from Memorial Sloan Kettering Cancer Center (Recruitment of First-Time, Tenure-Track Faculty Members Award)
  • $2 million for Karen Basen-Engquist's research in Active Living After Cancer: Combining a Physical Activity Program with Survivor Navigation (Expansion of Cancer Prevention Services to Rural and Medically Underserved Populations)


Seed Awards for Product Development Research

  • Houston and Boston-based Asylia Therapeutics's Jeno Gyuris was granted $3 million for its development of a Novel Approach to Cancer Immunotherapy by Targeting Extracellular Tumor- derived HSP70 to Dendritic Cells
  • Houston-based Barricade Therapeutics Corp.'s Neil Thapar was granted $3 million for its development of a First-In-Class Small Molecule, TASIN, for Targeting Truncated APC Mutations for the Treatment of Colorectal Cancer (CRC)

Trending News

 
 

Promoted

A research team housed out of the newly launched Rice Biotech Launch Pad received funding to scale tech that could slash cancer deaths in half. Photo via Rice University

A research funding agency has deployed capital into a team at Rice University that's working to develop a technology that could cut cancer-related deaths in half.

Rice researchers received $45 million from the National Institutes of Health's Advanced Research Projects Agency for Health, or ARPA-H, to scale up development of a sense-and-respond implant technology. Rice bioengineer Omid Veiseh leads the team developing the technology as principal investigator.

“Instead of tethering patients to hospital beds, IV bags and external monitors, we’ll use a minimally invasive procedure to implant a small device that continuously monitors their cancer and adjusts their immunotherapy dose in real time,” he says in a news release. “This kind of ‘closed-loop therapy’ has been used for managing diabetes, where you have a glucose monitor that continuously talks to an insulin pump. But for cancer immunotherapy, it’s revolutionary.”

Joining Veiseh on the 19-person research project named THOR, which stands for “targeted hybrid oncotherapeutic regulation,” is Amir Jazaeri, co-PI and professor of gynecologic oncology at the University of Texas MD Anderson Cancer Center. The device they are developing is called HAMMR, or hybrid advanced molecular manufacturing regulator.

“Cancer cells are continually evolving and adapting to therapy. However, currently available diagnostic tools, including radiologic tests, blood assays and biopsies, provide very infrequent and limited snapshots of this dynamic process," Jazaeri adds. "As a result, today’s therapies treat cancer as if it were a static disease. We believe THOR could transform the status quo by providing real-time data from the tumor environment that can in turn guide more effective and tumor-informed novel therapies.”

With a national team of engineers, physicians, and experts across synthetic biology, materials science, immunology, oncology, and more, the team will receive its funding through the Rice Biotech Launch Pad, a newly launched initiative led by Veiseh that exists to help life-saving medical innovation scale quickly.

"Rice is proud to be the recipient of the second major funding award from the ARPA-H, a new funding agency established last year to support research that catalyzes health breakthroughs," Rice President Reginald DesRoches says. "The research Rice bioengineer Omid Veiseh is doing in leading this team is truly groundbreaking and could potentially save hundreds of thousands of lives each year. This is the type of research that makes a significant impact on the world.”

The initial focus of the technology will be on ovarian cancer, and this funding agreement includes a first-phase clinical trial of HAMMR for the treatment of recurrent ovarian cancer that's expected to take place in the fourth year of THOR’s multi-year project.

“The technology is broadly applicable for peritoneal cancers that affect the pancreas, liver, lungs and other organs,” Veiseh says. “The first clinical trial will focus on refractory recurrent ovarian cancer, and the benefit of that is that we have an ongoing trial for ovarian cancer with our encapsulated cytokine ‘drug factory’ technology. We'll be able to build on that experience. We have already demonstrated a unique model to go from concept to clinical trial within five years, and HAMMR is the next iteration of that approach.”

Trending News

 
 

Promoted