Beaker to bedside

University of Houston researchers on why bridging the gap between academia and clinicians is key

There's a growing need for physician-scientists who can see from both sides of the table. Miguel Tovar/University of Houston

Physician-scientists are a group of specialized researchers at the intersection of medicine and technology. Earning both medical degrees and Ph.D.s, they offer a perspective beyond the scope of clinical practice.

Three such researchers discussed how they make the connections between discovery and patient care.

Why a dual education matters

Shaun Xiaoliu Zhang, director of the Center for Nuclear Receptors and Cell Signaling at the University of Houston and M.D. Anderson professor of biology and biochemistry, knows exactly what the clinical demands are.

"I can see from the M.D. perspective, but at the same time I have a Ph.D. — I know how to design research properly," he says. "In the clinic, you're faced with reality that a patient is struggling but you don't have the tools to treat those patients. If you engage in research you can create a tool."

Zhang says clinicians know the need but may struggle to design a solution. A Ph.D., on the other hand, may only know basic research.

Renowned hormone researcher Jan-Åke Gustafsson, Robert A. Welch professor of biology and biochemistry and founding director of the Center for Nuclear Receptors and Cell Signaling, agrees.

"The dual education makes it possible for you to see which diseases are in need of more research, drugs and so on," he says.

Physician-scientists are the driving force behind many advances of modern medicine.

"The way I look at it is, practicing medicine is relatively easy but coming up with the next diagnostic device or the next treatment for a disease is way more difficult, way more challenging," says Chandra Mohan, Hugh Roy and Lillie Cranz Cullen Endowed professor of biomedical engineering at UH.

"You see patients with certain diseases, and you know there's a dire need for better diagnostics, earlier treatment, earlier diagnosis with fewer side effects," he says.

While researchers spend time primarily in the laboratory and clinical practitioners interact with patients, they both want to make an impact.

"We have made some discoveries which have led to the development of new drugs and better understanding of certain diseases," says Gustafsson. "There's a great satisfaction that it may help people to get healthy."

Traditional research brings value to a university

The synergy of this dual education makes these investigators valuable not only to academia, but also to medical science.

"I can't imagine doing translational research without medical training," Zhang says. "If you have this part without the other, you don't know where to go. With medical training, you know exactly which direction to go."

Mohan echos that assessment.

"When you start doing research there are so many questions you can answer," he says. "Sometimes there are questions which are just too basic. They're too far removed from how it will impact a patient's life. So what are the most important questions? I think questions that really make a difference in the patient's life are the most important."

Zhang notes that the National Institutes of Health has switched its funding philosophy — once focused on basic science, it now is more interested in translational research, with a direct relationship to patient health.

As physician-scientists, these "translators" of medical research are able to bridge the chasm.

Amr Elnashai, vice president/vice chancellor of research and technology transfer at UH, says physician-scientists play an important role.

"The increasing importance of deploying technology in medicine renders it essential for a progressive research university to hire medical Ph.D. holders who are in an ideal position to bridge the gap between engineering and science on the one hand, and the broad field of medicine on the other," he says.

Research groups that bring both fields together not only have a much higher probability of impacting lives by adopting the latest technology in medical applications, he adds, but they also give interdisciplinary teams greater access to specific funding pursue such solutions.

In that sense, says Elnashai, medical Ph.D. researchers play an important part of the future research university.

------

This article originally appeared on the University of Houston's The Big Idea.

Nitiya Spearman is the internal communications coordinator for the UH Division of Research.

Trending News

Building Houston

 
 

Five research teams are studying space radiation's effect on human tissue. Photo via NASA/Josh Valcarcel

A Houston-based organization has named five research projects to advance the understanding of space radiation using human tissue. Two of the five projects are based in Houston.

The Translational Research Institute for Space Health, or TRISH, is based at Baylor College of Medicine and funds health research and tech for astronauts during space missions. The astronauts who are headed to the moon or further will be exposed to high Galactic Cosmic Radiation levels, and TRISH wants to learn more about the effects of GCR.

"With this solicitation, TRISH was looking for novel human-based approaches to understand better Galactic Cosmic Rays (GCR) hazards, in addition to safe and effective countermeasures," says Kristin Fabre, TRISH's chief scientist, in a news release. "More than that, we sought interdisciplinary teams of scientists to carry these ideas forward. These five projects embody TRISH's approach to cutting-edge science."

The five projects are:

  • Michael Weil, PhD, of Colorado State University, Colorado — Effects of chronic high LET radiation on the human heart
  • Gordana Vunjak-Novakovic, PhD of Columbia University, New York — Human multi-tissue platform to study effects of space radiation and countermeasures
  • Sharon Gerecht, PhD of Johns Hopkins University, Maryland — Using human stem-cell derived vascular, neural and cardiac 3D tissues to determine countermeasures for radiation
  • Sarah Blutt, PhD of Baylor College of Medicine, Texas — Use of Microbial Based Countermeasures to Mitigate Radiation Induced Intestinal Damage
  • Mirjana Maletic-Savatic, PhD of Baylor College of Medicine, Texas — Counteracting space radiation by targeting neurogenesis in a human brain organoid model

The researchers are tasked with simulating radiation exposure to human tissues in order to study new ways to protect astronauts from the radiation once in deep space. According to the release, the tissue and organ models will be derived from blood donated by the astronaut in order to provide him or her with customized protection that will reduce the risk to their health.

TRISH is funded by a partnership between NASA and Baylor College of Medicine, which also includes consortium partners Caltech and MIT. The organization is also a partner to NASA's Human Research Program.

Trending News