Bastion Technologies has been tapped to provide safety and mission services for NASA's Marshall Space Flight Center in Alabama. Photo via nasa.gov.

NASA has granted Houston-based Bastion Technologies Inc. the Safety and Mission Assurance II (SMAS II) award with a maximum potential value of $400 million.

The award stipulates that the engineering and technical services company provide safety and mission services for the agency’s Marshall Space Flight Center in Huntsville, Alabama, according to a release from NASA.

In the deal, Bastion’s services include system safety, reliability, maintainability, software assurance, quality engineering, independent assessment, institutional safety and pressure systems. Bastion’s work will support research and development projects, hardware fabrication and testing, spaceflight and science missions, and other activities at NASA Marshall, Michoud Assembly Facility in New Orleans, Stennis Space Center in Bay St. Louis, Mississippi, NASA’s Kennedy Space Center in Florida and various other sites.

The first base period for the SMASS II award has already begun, with the option for a base ordering period of four years to extend services through March 2034.

Bastion has been a key player in NASA’s Artemis program, and was also awarded a contract to support occupational safety, health and mission assurance at NASA’s Ames Research Center in Silicon Valley in 2024. Also in 2024, Bastion was awarded the NASA Glenn Research Center (GRC) Environmental, Safety, Health, and Mission Assurance (ESHMA) contract.

Since 1998, Bastion has held over 350 contracts at almost every NASA center and most major aerospace industry partners.

In the last few years, the National Oceanic and Atmospheric Administration has devoted $10 million to $15 million annually to small businesses in the form of SBIR grants. Photo via Getty Images

Expert advice: Should your Houston startup apply for this lesser known SBIR grant?

guest column

Inside the Department of Commerce is a relatively small federal agency, compared to the others, call the National Oceanic and Atmospheric Administration. They too have a small business innovation research (or SBIR) program in which technology startups can have access to funds to de-risk their innovation.

Here’s what you need to know about this non-dilutive funding opportunity:

Overview of NOAA’s SBIR Program

Although the SBIR program has been around for over forty years, NOAA entered the scene in 2010 when their research and development budget reached over $100 million. Per the federal statue, they joined a host of federal agencies that were to devote 3.2 percent of that budget to small businesses.

In the last few years, NOAA has devoted $10 to $15 million annually to small businesses in the form of SBIR grants. These Phase I awards have reached $175,000 in funding for a six-month feasibility study. Follow-on Phase II awards can reach up to $650,000 for 24 months of R&D. Each year’s solicitation is generally announced near the end of the calendar year with deadlines ranging from December to March. While not exactly cyclical, anticipating these deadlines allows a company to set aside enough to prepare a proper application.

What is NOAA Looking For?

According to the NOAA’s website, “NOAA is an agency that enriches life through science. Our reach goes from the surface of the sun to the depths of the ocean floor as we work to keep the public informed of the changing environment around them.“ Their SBIR research topics have stayed consistent since 2011 with minor general topic changes. These six topics have been the same for the last two funding cycles:

  • 9.1 Extreme Events and Cascading Hazards
  • 9.2 Coastal Resilience
  • 9.3 The Changing Ocean
  • 9.4 Water Availability, Quality, and Risk
  • 9.5 Effects of Space Weather
  • 9.6 Monitoring and Modeling for Climate Change Mitigation

When analyzing past winners, which you can find online, a clear emphasis is placed on developing advanced tools for data collection, analysis, and prediction, particularly in the areas of weather forecasting, oceanic observation, and ecosystem health. Many projects involve AI and machine learning for processing large datasets to improve decision-making in disaster response, fishery management, and habitat conservation.

The recurring theme of scalability, real-time data applications, and cost-effective, sustainable solutions shows NOAA's interest in technologies that not only address immediate environmental challenges but also have broader implications for global climate and ecosystem management. Additionally, NOAA seems to value partnerships that leverage cross-disciplinary expertise, integrating cutting-edge science with practical applications.

Their grading criteria also give you some early insight into what they are interested in receiving:

  1. The scientific merit and technical approach of the proposed research (40 points)
  2. The level of innovation the proposed effort offers to the research topic area (20 points)
  3. Consideration of an application’s commercial and societal impacts and potential applications (20 points)
  4. Qualifications of the proposed principal/key investigators, supporting staff, and consultants and availability of instrumentation and physical facilities necessary to complete the proposed work (20 points)

How to Apply

Because of the previous trends, we anticipate NOAA will publish a similar list of research topics along the same lines as the last few years within the next several months. With a deadline being between December and March, it’s in your best interest to begin preparing your application now. Here are the first three early steps I’d recommend for you to get a headstart:

  • Check your eligibility
    • You must be a for-profit organization.
    • You must have fewer than 500 employees
    • You must be primarily owned by a U.S. citizen or permanent resident
    • You must not be majority owned by venture capital or private equity
  • Complete your registrations
    • System for Award Management (SAM) — registration can take over a month and must be renewed on an annual basis.
    • Small Business Association SBA — registration can take up to 90 days.
    • Grants.gov — registration typically takes between three to 10 business days.
  • Start writing your first sections
    • Develop your abstract and specific aims. If possible, schedule a meeting with a program manager from NOAA to review and provide early feedback on these early sections.

Don’t Forget About Asking for Help

Practice regular and open communication with NOAA and their SBIR program managers. Ask questions early and often to make sure you have the best chance of receiving positive feedback when you finally submit your application. I’d encourage you to find previous NOAA SBIR reviewers to do a preliminary review before your submission. Since these solicitations only come around once a year, it’s worth the time and effort to polish your application to the highest degree. If you’re worried about the time commitment of writing a 15 page application for funding, find a local grant writer (or grant writing firm) to help with application and submission process.

Finally, good luck to all you NOAA applications as you innovate in such a way to make the world a better place.

------

Robert Wegner is the director of business development for Baginski Wegner and Company (BW&CO).

Carlos Estrada, head of Venture Acceleration at BioWell, joins the Houston Innovators Podcast to share why Houston is already a great hub for bioindustrial innovation. Photo courtesy of BioWell

Houston innovator drives new accelerator toward supporting promising bioindustrial startups

HOUSTON INNOVATORS PODCAST EPISODE 238

Bioindustrial technologies have a high potential for impacting sustainability — but they tend to need a little bit more help navigating the startup valley of death. That's where the BioWell comes in.

Carlos Estrada, head of Venture Acceleration at BioWell, says the idea for the accelerator was came to First Bight Ventures, a Houston-based biomanufacturing investment firm, as it began building its portfolio of promising companies.

"While we were looking at various companies, we found ourselves finding different needs that these startups have," Estrada says on the Houston Innovators Podcast. "That's how the opportunity for the BioWell came about."

Specifically, bioindustrial companies, which are tapping into life science innovation to create more sustainable products or services, need early funding, lab space, and strategic corporate partners to help research and develop their startups.

"The very direct challenge that we are seeing is that these companies very often have to spend their funds to build out their own lab spaces," Estrada says, "so by the time they're trying to focus back on the product itself, they are starting to run out of funding."

BioWell is currently selecting its inaugural cohort and is also actively searching for its physical location to build out the program and facilities. Last year, BioWell secured $741,925 of the $53 million doled out as a part of the "Build to Scale" Grant program from the U.S. Economic Development Administration.

In addition to solving for specific challenges bioindustrial companies face, Estrada says the program will provide support for general startup and entrepreneurial guidance, like business plan development, navigating investors and grant funding, and more.

Just as First Bight Ventures was founded strategically in Houston to make the most of the local resources, the BioWell will operate out of the Bayou City — a market Estrada says has everything the industry needs.

"We have the right talent — our universities produce great researchers. We have the energy companies that are utilizing (a workforce) with transferable skills," he says on the show. "We also have the infrastructure, the square footage, and various real estate companies creating shells for lab space. We have the know how, the universities, and all at a lower cost, which plays a big role in the equation."

The GHP and HETI announced that it has signed a memorandum of understanding with Argonne National Laboratory, a a federally-funded research and development facility in Illinois. Photo by Natalie Harms/InnovationMap

Houston organization announces major partnership with DOE lab to spur energy innovation commercialization

R&D teammate

A new partnership between the Greater Houston Partnership and Argonne National Laboratory has been established to spur development of commercial-scale energy transition solutions.

The GHP and the Houston Energy Transition Initiative, or HETI, announced that it has signed a memorandum of understanding with Argonne National Laboratory, a federally-funded research and development facility in Illinois. The lab is owned by the United States Department of Energy and run by UChicago Argonne LLC of the University of Chicago.

“The U.S. Department of Energy’s national laboratories have long been the backbone of research, development, and demonstration for the energy sector," Bobby Tudor, CEO of Artemis Energy Partners and Chair of HETI, says in a news release. "The Partnership and HETI, working with our industry members, business community and top research and academic institutions, in collaboration with Argonne, will work across our energy innovation ecosystem to drive this critical effort for our region.”

The partnership, announced at HETI House at CERAWeek by S&P Global, is intended to provide resources and collaboration opportunities between Houston's energy innovation ecosystem — from corporates to startups — to "accelerate the translation, evaluation and pre-commercialization of breakthrough carbon reduction technologies," per the news release.

“A decarbonization center of excellence in Houston is the missing link in the region’s coordinated approach to advancing critical energy transition technologies needed to mitigate the risks associated with climate change, while also promoting economic growth and job creation for the region,” Tudor continues.

Established in 1946, Argonne works with universities, industry, and other national laboratories on large, collaborative projects that are expected to make a big impact on the energy transition.

“Partnerships are essential to realizing net zero goals,” Argonne Director Paul Kearns adds. “We are pleased to extend DOE national laboratory expertise and work with HETI to focus the region’s considerable energy and industrial assets, infrastructure, and talent on broad commercial deployment of needed technologies.”

------

This article originally ran on EnergyCapital.

“This breakthrough technology has the potential to reshape the landscape of disease treatment and the future of research and development in the field of cell-based therapies." Photo via Getty Images

Rice lab cooks up breakthrough 'living pharmacy' research for potential cell therapy treatment

biotech innovation

Rice University’s Biotech Launchpad has created an electrocatalytic on-site oxygenator, or ecO2, that produces oxygen intended to keeps cells alive. The device works inside an implantable “living pharmacy,” which the Rice Biotech Launch Pad team believes will one day be able to administer and regulate therapeutics within a patient’s body.

Last week, Rice announced a peer-reviewed publication in Nature Communications detailing the development of the novel rechargeable device. The study is entitled “Electrocatalytic on-site oxygenation for transplanted cell-based-therapies.”

How will doctors use the “living pharmacy?” The cell-based therapies implanted could treat conditions that include endocrine disorders, autoimmune syndromes, cancers and neurological degeneration. One major challenge standing in the way of bringing the technology beyond the theoretical has been ensuring the survival of cells for extended periods, which is necessary to create effective treatments. Oxygenation of the cells is an important component to keeping them alive and healthy and the longer they remain so, the longer the therapeutics will be helpful.

Other treatments to deliver oxygen to cells are ungainly and more limited in terms of oxygen production and regulation. According to Omid Veiseh, associate professor of bioengineering and faculty director of the Rice Biotech Launch Pad, oxygen generation is achieved with the ecO2 through water splitting that is precisely regulated using a battery-powered, wirelessly controlled electronic system. New versions will have wireless charging, which means it could last a patient’s entire lifetime.

“Cell-based therapies could be used for replacing damaged tissues, for drug delivery or augmenting the body’s own healing mechanisms, thus opening opportunities in wound healing and treatments for obesity, diabetes and cancer, for example. Generating oxygen on site is critical for many of these ‘biohybrid’ cell therapies: We need many cells to have sufficient production of therapeutics from those cells, thus there is a high metabolic demand. Our approach would integrate the ecO2 device to generate oxygen from the water itself,” says Jonathan Rivnay of Northwestern University, who co-led the study with Tzahi Cohen-Karni of Carnegie Mellon University (CMU).

The study’s co-first authors are Northwestern’s Abhijith Surendran and CMU’s Inkyu Lee.

Northwestern leads the collaboration with Rice to produce therapeutics onsite within the device. The research supports a Defense Advanced Research Projects Agency (DARPA) cooperative agreement worth up to $33 million to develop the implantable “living pharmacy” to control the human body’s sleep and wake cycles.

“This breakthrough technology has the potential to reshape the landscape of disease treatment and the future of research and development in the field of cell-based therapies. We are working toward advancing this technology into the clinic to bring it one step closer to those in need,” says Veiseh.

A Rice research team is tapping into materials science to better understand Alzheimer’s disease, a UH professor is developing a treatment for hereditary vision loss, and a BCM researcher is looking at stress and brain cancer. Photo by Gustavo Raskosky/Rice University

These 3 Houston research projects are coming up with life-saving innovations

research roundup

Research, perhaps now more than ever, is crucial to expanding and growing innovation in Houston — and it's happening across the city right under our noses.

In InnovationMap's latest roundup of research news, three Houston institutions are working on life-saving health care research thanks to new technologies.

Rice University scientists' groundbreaking alzheimer's study

Angel Martí (right) and his co-authors (from left) Utana Umezaki and Zhi Mei Sonia He have published their latest findings on Alzheimer’s disease. Photo by Gustavo Raskosky/Rice University

According to the Centers for Disease Control and Prevention, Alzheimer’s disease will affect nearly 14 million people in the U.S. by 2060. A group of scientists from Rice University are looking into a peptide associated with the disease, and their study was published in Chemical Science.

Angel Martí — a professor of chemistry, bioengineering, and materials science and nanoengineering and faculty director of the Rice Emerging Scholars Program — and his team have developed a new approach using time-resolved spectroscopy and computational chemistry, according to a news release from Rice. The scientists "found experimental evidence of an alternative binding site on amyloid-beta aggregates, opening the door to the development of new therapies for Alzheimer’s and other diseases associated with amyloid deposits."

Amyloid plaque deposits in the brain are a main feature of Alzheimer’s, per Rice.

“Amyloid-beta is a peptide that aggregates in the brains of people that suffer from Alzheimer’s disease, forming these supramolecular nanoscale fibers, or fibrils” says Martí in the release. “Once they grow sufficiently, these fibrils precipitate and form what we call amyloid plaques.

“Understanding how molecules in general bind to amyloid-beta is particularly important not only for developing drugs that will bind with better affinity to its aggregates, but also for figuring out who the other players are that contribute to cerebral tissue toxicity,” he adds.

The National Science Foundation and the family of the late Professor Donald DuPré, a Houston-born Rice alumnus and former professor of chemistry at the University of Louisville, supported the research, which is explained more thoroughly on Rice's website.

University of Houston professor granted $1.6M for gene therapy treatment for rare eye disease

Muna Naash, a professor at UH, is hoping her research can result in treatment for a rare genetic disease that causes vision loss. Photo via UH.edu

A University of Houston researcher is working on a way to restore sight to those suffering from a rare genetic eye disease.

Muna Naash, the John S. Dunn Endowed Professor of biomedical engineering at UH, is expanding a method of gene therapy to potentially treat vision loss in patients with Usher Syndrome Type 2A, or USH2A, a rare genetic disease.

Naash has received a $1.6 million grant from the National Eye Institute to support her work. Mutations of the USH2A gene can include hearing loss from birth and progressive loss of vision, according to a news release from UH. Naash's work is looking at applying gene therapy — the introduction of a normal gene into cells to correct genetic disorders — to treat this genetic disease. There is not currently another treatment for USH2A.

“Our goal is to advance our current intravitreal gene therapy platform consisting of DNA nanoparticles/hyaluronic acid nanospheres to deliver large genes in order to develop safe and effective therapies for visual loss in Usher Syndrome Type 2A,” says Naash. “Developing an effective treatment for USH2A has been challenging due to its large coding sequence (15.8 kb) that has precluded its delivery using standard approaches and the presence of multiple isoforms with functions that are not fully understood."

BCM researcher on the impact of stress

This Baylor researcher is looking at the relationship between stress and brain cancer thanks to a new grant. Photo via Andriy Onufriyenko/Getty Images

Stress can impact the human body in a number of ways — from high blood pressure to hair loss — but one Houston scientist is looking into what happens to bodies in the long term, from age-related neurodegeneration to cancer.

Dr. Steven Boeynaems is assistant professor of molecular and human genetics at Baylor College of Medicine. His lab is located at the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, and he also is a part of the Therapeutic Innovation Center, the Center for Alzheimer’s and Neurodegenerative Diseases, and the Dan L Duncan Comprehensive Cancer Center at Baylor.

Recently, the Cancer Prevention and Research Institute of Texas, or CPRIT, awarded Boeynaems a grant to continue his work studying how cells and organisms respond to stress.

“Any cell, in nature or in our bodies, during its existence, will have to deal with some conditions that deviate from its ideal environment,” Boeynaems says in a BCM press release. “The key issue that all cells face in such conditions is that they can no longer properly fold their proteins, and that leads to the abnormal clumping of proteins into aggregates. We have seen such aggregates occur in many species and under a variety of stress-related conditions, whether it is in a plant dealing with drought or in a human patient with aging-related Alzheimer’s disease."

Now, thanks to the CPRIT funding, he says his lab will now also venture into studying the role of cellular stress in brain cancer.

“A tumor is a very stressful environment for cells, and cancer cells need to continuously adapt to this stress to survive and/or metastasize,” he says in the release.

“Moreover, the same principles of toxic protein aggregation and protection through protein droplets seem to be at play here as well,” he continues. “We have studied protein droplets not only in humans but also in stress-tolerant organisms such as plants and bacteria for years now. We propose to build and leverage on that knowledge to come up with innovative new treatments for cancer patients.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

10 promising Houston startups that made headlines in 2025

year in review

Editor's note: As we reflect on 2025, we're looking back at the stories and startups that made waves in Houston's innovation scene. These 10 startups reached memorable milestones, won prestigious awards, found creative solutions, and disrupted their industries.

Persona AI: Houston humanoid robotics startup inks new deal to deploy its rugged robots

A concept design rendering of Persona AI's humanoid robot. The company is expanding at the Ion and plans to deliver prototype humanoids by the end of 2026 for complex shipyard welding tasks. Rendering courtesy Persona AI.

Persona AI is building modularized humanoid robots that aim to deliver continuous, round-the-clock productivity and skilled labor for "dull, dirty, dangerous, and declining" jobs. The company was founded by Houston entrepreneur Nicolaus Radford, who serves as CEO, along with CTO Jerry Pratt and COO Jide Akinyode. It raised $42 million in pre-seed funding this year and is developing its prototype of a robot-welder for Hyundai's shipbuilding division, which it plans to unveil in 2026. The company won in the Deep Tech Business category at this year's Houston Innovation Awards. Continue reading.

Rheom Materials: Houston startup unveils its innovative leather alternative at the rodeo

Rheom Materials presented its bio-based alternative, Shorai, a 93 percent bio-based leather, at the rodeo and plans to scale it up this year. Photos courtesy Rheom Materials

Rheom Materials presented its scalable, bio-based alternative known as Shorai, a 93 percent bio-based leather, through two custom, western-inspired outfits that showed off cowboy flair through a sustainable lens at the Houston Livestock Show and Rodeo earlier this year.

Next up, the company said it aimed to scale production of Shorai, the Japanese word for “future,” at a competitive price point, while also reducing its carbon footprint by 80 percent when compared to synthetic leather. The company also made a large-scale production partnership with a thermoplastic extrusion and lamination company, Bixby International, this year. Continue reading.

Koda Health: Houston digital health platform Koda closes $7 million funding round

Tatiana Fofanova and Dr. Desh Mohan, founders of Koda Health, which recently closed a $7 million series A. Photo courtesy Koda Health.

Houston-based digital advance care planning company Koda Health closed an oversubscribed $7 million series A funding round this year. The round, led by Evidenced, with participation from Mudita Venture Partners, Techstars and Texas Medical Center, will allow the company to scale operations and expand engineering, clinical strategy and customer success. Koda Health, saw major growth this year by integrating its end-of-life care planning platform with Dallas-based Guidehealth in April and with Epic Systems in July. The company won the Health Tech Business category at the 2025 Houston Innovation Awards. Continue reading.

Veloci Running: Student-led startup runs away with prestigious prize at Rice competition

The H. Albert Napier Rice Launch Challenge awarded $100,000 in equity-free funding to student-led startups, including first-place finisher Veloci Running. Photo courtesy of Rice University.

Veloci Running took home the first-place prize and $50,000 at the annual Liu Idea Lab for Innovation and Entrepreneurship's H. Albert Napier Rice Launch Challenge. The company was founded by Tyler Strothman, a former track and field athlete and senior at Rice, majoring in sport management. Inspired by the foot pain he suffered due to the narrow toe boxes in his running shoes, Strothman decided to create a naturally shaped shoe designed to relieve lower leg tightness and absorb impact. Additional prize winners included SteerBio, Kinnections, Labshare and several others. Continue reading.

Square Robot Inc.: Houston robotics co. unveils new robot that can handle extreme temperatures

The new robot eliminates the need for humans to enter dangerous and toxic environments. Photo courtesy of Square Robot

Houston- and Boston-based Square Robot Inc.'s newest tank inspection robot became commercially available and certified to operate at extreme temperatures this fall. The new robot, known as the SR-3HT, can operate from 14°F to 131°F, representing a broader temperature range than previous models in the company's portfolio. According to the company, its previous temperature range reached 32°F to 104°F. The company also announced a partnership with downstream and midstream energy giant Marathon Petroleum Corp. (NYSE: MPC) last month. Continue reading.

Bot Auto: Houston autonomous trucking co. completes first test run without human intervention

Bot Auto completed its first test run without human assistance in Houston. Photo courtesy Bot Auto.

Houston-based Bot Auto, an autonomous trucking company, completed its first test run without human assistance earlier this year. Bot Auto conducted the test in Houston. The transportation-as-a-service startup added that this milestone “serves as a validation benchmark, demonstrating the maturity and safety of Bot Auto’s autonomy stack and test protocols.” This summer, founder Xiaodi Hou told the Front Lines podcast that Bot Auto had raised more than $45 million. Continue reading.

Nomad: Screen-free hiking app developed in Houston earns 'Best of the Best' award

NOMAD aims to help hikers stay in the moment while still utilizing technology. Photo courtesy UH.

An AI-powered, screen-free hiking system developed by Varshini Chouthri, a recent industrial design graduate from the University of Houston, received this year's Red Dot’s “Best of the Best” award, which recognizes the top innovative designs around the world. Known as NOMAD, the system aims to help users stay in the moment while still utilizing technology. Continue reading.

Little Place Labs, Helix Earth, Tempest Droneworx: Houston startups win big at SXSW 2025 pitch competition

Two Houston startups won the SXSW Pitch showcase in their respective categories. Photo via Getty Images

Houston had a strong showing at the SXSW Pitch showcase in Austin this year, with several local startups claiming top prizes in their respective categories.

Little Place Labs, a Houston space data startup, won the Security, GovTech & Space competition. Clean-tech company Helix Earth, which spun out of Rice University and was incubated at Greentown Labs, won in the Smart Cities, Transportation & Sustainability contest. Tempest Droneworx, a Houston-based company that provides real-time intelligence collected through drones, robots and sensors, won the Best Speed Pitch award. Continue reading.

6 Houstonians named to prestigious national group of inventors

top honor

Six Houston scientists and innovation leaders have been named to the National Academy of Inventors’ newest class of fellows. The award is the highest professional distinction awarded to academic inventors by the NAI.

The 2025 class is made up of 169 fellows who hold more than 5,300 U.S. patents, according to the organization. The group hails from 127 institutions across 40 U.S. states.

The Houston-based inventors are leading fields from AI to chemistry to cancer research.

“NAI Fellows are a driving force within the innovation ecosystem, and their contributions across scientific disciplines are shaping the future of our world,” Paul R. Sanberg, president of the National Academy of Inventors, said in a news release. “We are thrilled to welcome this year’s class of Fellows to the Academy. They are truly an impressive cohort, and we look forward to honoring them at our 15th Annual Conference in Los Angeles next year.”

The 2025 list of Houston-based fellows includes:

  • Vineet Gupta, Vice President for Innovation, Technology Development and Transfer at the University of Texas Medical Branch
  • Eva Harth, chemistry professor at the University of Houston
  • Dr. Raghu Kalluri, Professor and Chairman of the Department of Cancer Biology at The University of Texas MD Anderson Cancer Center
  • Sanjoy Paul, Executive Director of Rice Nexus and AI Houston and Associate Vice President for Technology Development at Rice University
  • Dr. Jochen Reiser, President of the University of Texas Medical Branch and CEO of UTMB Health System
  • Todd Rosengart, Professor and Chair of the Department of Surgery at Baylor College of Medicine

"It is a great honor to be named a Fellow of the NAI. It is deeply gratifying to know that the work my students and I do — the daily push, often in small steps — is seen and recognized," Harth added in a news release from UH.

The 2025 fellows will be honored and presented with their medals by a senior official of the United States Patent and Trademark Office at the NAI Annual Conference this summer in Los Angeles.