UH has announced a new multi-disciplinary institute to promote drug discovery. Photo courtesy of UH

The University of Houston has introduced a new institute to its campus. The multi-disciplinary program includes both on-campus and citywide collaboration.

UH has established the Drug Discovery Institute in order to streamline and modernize drug discovery. In partnership with the Texas Medical Center, as well as other organizations, the DDI will tap into technology and innovation to advance modern medicine. The institute will collaborate with the UH colleges of Pharmacy, Natural Sciences and Mathematics and Cullen College of Engineering.

"Our new Drug Discovery Institute could not have been launched at a more appropriate juncture. With the frantic quest for effective drugs to counter the current and future viral infections, the broad and deep strength of the University of Houston is being brought to bear and will no doubt advance the development of innovative cures," says Amr Elnashai, vice president for research and technology transfer, in a press release.

The university currently has about 100 faculty members conducting drug discovery-related research, but, according to the release, these efforts have been fragmented. With DDI, UH hopes to bring these efforts together under one roof in order to promote synergistic research.

F. Lamar Pritchard, dean of the UH College of Pharmacy, has been advocating for the idea of a collaborative drug discovery research center for more than a decade

"The breadth of this initiative will establish the institute and the University among the national leaders in drug discovery and become one of the first to fully embrace AI into its academic drug discovery programs," Pritchard says in the release.

The new institute will be led by Ruiwen Zhang, Robert L. Boblitt Endowed Professor in Drug Discovery at the College of Pharmacy,. He will hold the position of director for two years, before the title rotates through the collaboration of colleges.

"Working together is critical, none of us can do this alone," Zhang says in the release. "In drug discovery, a chemist needs a biologist, a biologist needs a pharmacologist, and so on. We will build a platform and infrastructure, along with the necessary tools, to bring everyone together."

The facility will work to promote each of the school's expertise across many aspects of the drug discovery process — including high-throughput screening technologies, organ-on-chip models, biosensing and biofeedback, molecular modeling and more.

"Practicing team science is key to making innovative discoveries and we are eager to collaborate with faculty across the University to develop cutting-edge research and ultimately to find treatments and cures for disease," says Dan Wells, dean of the College of Natural Sciences and Mathematics, in the release.

Additionally, DDI will offer seed grants for interdependent drug-discovery projects and encourage collaboration and the sharing of data with experts around the world

"I foresee one day in the near future that we are able to create some of the strongest databases and artificial intelligence approaches to drug discovery," Pritchard says in the release. "Rather than having to screen millions of compounds to find one therapy, we may be able to narrow that down to 1,000 and really streamline the process."

UH has been ranked among the top schools for new patents. Photo courtesy of University of Houston

University of Houston scores spot on top schools in the world for new patents

put a patent on it

A Houston school has ranked on a global list that recognizes new utility patents issued. University of Houston tied for No. 75 on the list with 39 utility patents issued in 2019.

The list is created by the National Academy of Inventors and the Intellectual Property Owners Association based on data from the U.S. Patent and Trademark Office. UH has made the list every year for the past five years.

"The rankings show that UH continues to make a major contribution to the innovation enterprise on the U.S. and global stage," says Amr Elnashai, vice president/vice chancellor for research and technology transfer at UH.

"To be in the top 100 universities worldwide for U.S. patents emphasizes that the UH research enterprise has been successfully steered towards impactful research with the potential to address societal challenges."

A utility patent, known as a patent for invention, is the most commonly referred to type of patent and regards the creation of a new or improved product, process, or machine.

Two Texas schools ranked above UH on this year's list. The University of Texas ranked at No. 3 with 276 utility patents and Texas A&M University came in a few spots ahead of UH at No. 65 with 44 utility patents issued.

UH tied with Drexel University in Philadelphia, and the University of California scored the top spot by far with 631 utility patents filed last year. All in all, the ranking finds that 7,873 U.S. utility patents were issued in 2019, which is up from 1,046 patents in 2018.

UH's Technology Bridge was revamped in 2018 to focus on cultivating innovation and new technologies as they develop from the lab and into the marketplace.

There's a growing need for physician-scientists who can see from both sides of the table. Miguel Tovar/University of Houston

University of Houston researchers on why bridging the gap between academia and clinicians is key

Beaker to bedside

Physician-scientists are a group of specialized researchers at the intersection of medicine and technology. Earning both medical degrees and Ph.D.s, they offer a perspective beyond the scope of clinical practice.

Three such researchers discussed how they make the connections between discovery and patient care.

Why a dual education matters

Shaun Xiaoliu Zhang, director of the Center for Nuclear Receptors and Cell Signaling at the University of Houston and M.D. Anderson professor of biology and biochemistry, knows exactly what the clinical demands are.

"I can see from the M.D. perspective, but at the same time I have a Ph.D. — I know how to design research properly," he says. "In the clinic, you're faced with reality that a patient is struggling but you don't have the tools to treat those patients. If you engage in research you can create a tool."

Zhang says clinicians know the need but may struggle to design a solution. A Ph.D., on the other hand, may only know basic research.

Renowned hormone researcher Jan-Åke Gustafsson, Robert A. Welch professor of biology and biochemistry and founding director of the Center for Nuclear Receptors and Cell Signaling, agrees.

"The dual education makes it possible for you to see which diseases are in need of more research, drugs and so on," he says.

Physician-scientists are the driving force behind many advances of modern medicine.

"The way I look at it is, practicing medicine is relatively easy but coming up with the next diagnostic device or the next treatment for a disease is way more difficult, way more challenging," says Chandra Mohan, Hugh Roy and Lillie Cranz Cullen Endowed professor of biomedical engineering at UH.

"You see patients with certain diseases, and you know there's a dire need for better diagnostics, earlier treatment, earlier diagnosis with fewer side effects," he says.

While researchers spend time primarily in the laboratory and clinical practitioners interact with patients, they both want to make an impact.

"We have made some discoveries which have led to the development of new drugs and better understanding of certain diseases," says Gustafsson. "There's a great satisfaction that it may help people to get healthy."

Traditional research brings value to a university

The synergy of this dual education makes these investigators valuable not only to academia, but also to medical science.

"I can't imagine doing translational research without medical training," Zhang says. "If you have this part without the other, you don't know where to go. With medical training, you know exactly which direction to go."

Mohan echos that assessment.

"When you start doing research there are so many questions you can answer," he says. "Sometimes there are questions which are just too basic. They're too far removed from how it will impact a patient's life. So what are the most important questions? I think questions that really make a difference in the patient's life are the most important."

Zhang notes that the National Institutes of Health has switched its funding philosophy — once focused on basic science, it now is more interested in translational research, with a direct relationship to patient health.

As physician-scientists, these "translators" of medical research are able to bridge the chasm.

Amr Elnashai, vice president/vice chancellor of research and technology transfer at UH, says physician-scientists play an important role.

"The increasing importance of deploying technology in medicine renders it essential for a progressive research university to hire medical Ph.D. holders who are in an ideal position to bridge the gap between engineering and science on the one hand, and the broad field of medicine on the other," he says.

Research groups that bring both fields together not only have a much higher probability of impacting lives by adopting the latest technology in medical applications, he adds, but they also give interdisciplinary teams greater access to specific funding pursue such solutions.

In that sense, says Elnashai, medical Ph.D. researchers play an important part of the future research university.

------

This article originally appeared on the University of Houston's The Big Idea.

Nitiya Spearman is the internal communications coordinator for the UH Division of Research.

UH has maintained its spot on the top 100 global universities for number of patents issued. Photo courtesy of University of Houston

University of Houston ranks among top schools for issued patents

best in class

A new ranking shows the University of Houston is flexing its brains and its brawn as one of the most prolific producers of patents in the academic world.

The new ranking, published by the National Academy of Inventors and the Intellectual Property Owners Association, puts UH at No. 88 among the world's top 100 universities for patent activity in 2018.

"As the UH research portfolio grows and the medical school starts up, we would continue to anticipate a strong IP portfolio going forward for UH," says Tom Campbell, executive director of the Office of Technology Transfer and Innovation at UH.

UH tied with the Texas A&M University on this year's list; each recorded 28 patents in 2018. A year earlier, UH received 39 patents. The University of Texas was the only other Texas school on the new list. With 187 patents issued in 2018, it landed at No. 5.

Houston's Rice University showed up at No. 79 on the 2018 list but dropped out of this year's top 100.

Amr Elnashai, UH's vice president and vice chancellor for research and technology transfer since 2017, says his school's appearance in the ranking reflects an emphasis on converting faculty inventions into meaningful innovations. During the 2018 budget year, UH collected $43 million in patent royalties.

Among the patents UH received last year were those for a mutant herpes simplex virus connected to cancer therapy and a rechargeable alkaline battery.

"UH researchers are driven by making a positive impact on the quality of life," Elnashai says in a release. "From new remedies for persistent medical conditions to sustainable energy technologies, researchers from the University of Houston are addressing many of the world's most pressing challenges. The UH ranking, tied with our larger neighbor Texas A&M, is a testament to our emphasis on and excellence in technology transfer and innovation."

To ramp up UH's impact, the university last year rebranded its research park as the UH Technology Bridge. With 30,000 square feet of incubator space and over 700,000 square feet of space for labs, pilot-scale facilities, and light manufacturing, the Technology Bridge houses 21 startups and two established companies.

"From clean energy solutions and medicines to uses of artificial intelligence, data science tools and other emerging technologies, the University of Houston is focusing on bridging the gap between technological discoveries by our faculty and actual products that change peoples' lives," Elnashai said in 2018.

The list from the National Academy of Inventors and the Intellectual Property Owners Association started in 2013. UH first cracked the top 100 in 2016 (for patents issued in 2015). That year, it ranked 88th. UH dropped to No. 91 on the 2017 list but rose to No. 67 on the 2018 list.

"The patents our universities produce represent important processes and collaborations which have the potential to make a significant impact on society on a local, regional, national, and global scale," says Paul Sanberg, president of the National Academy of Inventors.

The annual ranking relies on data from the U.S. Patent and Trademark Office regarding utility patents, which make up 90 percent of all patents issued.

According to Investopedia, a utility patent covers the creation of a new or improved — and useful — product, process, or machine. This type of patent prohibits other people or companies from making, using, or selling the invention without authorization.

"Patenting an invention is the first step towards making a lasting impact on the innovation ecosystem," says Jessica Landacre, deputy executive director of the Intellectual Property Owners Association.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Greentown Labs names Lawson Gow as its new Houston leader

head of hou

Greentown Labs has named Lawson Gow as its Head of Houston.

Gow is the founder of The Cannon, a coworking space with seven locations in the Houston area, with additional partner spaces. He also recently served as managing partner at Houston-based investment and advisory firm Helium Capital. Gow is the son of David Gow, founder of Energy Capital's parent company, Gow Media.

According to Greentown, Gow will "enhance the founder experience, cultivate strategic partnerships, and accelerate climatetech solutions" in his new role.

“I couldn’t be more excited to join Greentown at this critical moment for the energy transition,” Gow said in a news release. “Greentown has a fantastic track record of supporting entrepreneurs in Houston, Boston, and beyond, and I am eager to keep advancing our mission in the energy transition capital of the world.”

Gow has also held analyst, strategy and advising roles since graduating from Rice University.

“We are thrilled to welcome Lawson to our leadership team,” Georgina Campbell Flatter, CEO of Greentown Labs, added in the release. “Lawson has spent his career building community and championing entrepreneurs, and we look forward to him deepening Greentown’s support of climate and energy startups as our Head of Houston.”

Gow is the latest addition to a series of new hires at Greentown Labs following a leadership shakeup.

Flatter was named as the organization's new CEO in February, replacing Kevin Dutt, Greentown’s interim CEO, who replaced Kevin Knobloch after he announced that he would step down in July 2024 after less than a year in the role.

Greentown also named Naheed Malik its new CFO in January.

Timmeko Moore Love was named the first Houston general manager and senior vice president of Greentown Labs. According to LinkedIn, she left the role in January.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston foundation grants $27M to support Texas chemistry research

fresh funding

Houston-based The Welch Foundation has doled out $27 million in its latest round of grants for chemical research, equipment and postdoctoral fellowships.

According to a June announcement, $25.5 million was allocated for the foundation's longstanding research grants, which provide $100,000 per year in funding for three years to full-time, regular tenure or tenure-track faculty members in Texas. The foundation made 85 grants to faculty at 16 Texas institutions for 2025, including:

  • Michael I. Jacobs, assistant professor in the chemistry and biochemistry department at Texas State University, who is investigating the structure and thermodynamics of intrinsically disordered proteins, which could "reveal clues about how life began," according to the foundation.
  • Kendra K. Frederick, assistant professor in the biophysics department at The University of Texas Southwestern Medical Center, who is studying a protein linked to Parkinson’s disease.
  • Jennifer S. Brodbelt, professor in chemistry at The University of Texas at Austin, who is testing a theory called full replica symmetry breaking (fullRSB) on glass-like materials, which has implications for complex systems in physics, chemistry and biology.

Additional funding will be allocated to the Welch Postdoctoral Fellows of the Life Sciences Research Foundation. The program provides three-year fellowships to recent PhD graduates to support clinical research careers in Texas. Two fellows from Rice University and Baylor University will receive $100,000 annually for three years.

The Welch Foundation also issued $975,000 through its equipment grant program to 13 institutions to help them develop "richer laboratory experience(s)." The universities matched funds of $352,346.

Since 1954, the Welch Foundation has contributed over $1.1 billion for Texas-nurtured advancements in chemistry through research grants, endowed chairs and other chemistry-related ventures. Last year, the foundation granted more than $40.5 million in academic research grants, equipment grants and fellowships.

“Through funding basic chemical research, we are actively investing in the future of humankind,” Adam Kuspa, president of The Welch Foundation, said the news release. “We are proud to support so many talented researchers across Texas and continue to be inspired by the important work they complete every day.”

New Houston biotech co. developing capsules for hard-to-treat tumors

biotech breakthroughs

Houston company Sentinel BioTherapeutics has made promising headway in cancer immunotherapy for patients who don’t respond positively to more traditional treatments. New biotech venture creation studio RBL LLC (pronounced “rebel”) recently debuted the company at the 2025 American Society of Clinical Oncology (ASCO) Annual Meeting in Chicago.

Rima Chakrabarti is a neurologist by training. Though she says she’s “passionate about treating the brain,” her greatest fervor currently lies in leading Sentinel as its CEO. Sentinel is RBL’s first clinical venture, and Chakrabarti also serves as cofounder and managing partner of the venture studio.

The team sees an opportunity to use cytokine interleukin-2 (IL-2) capsules to fight many solid tumors for which immunotherapy hasn't been effective in the past. “We plan to develop a pipeline of drugs that way,” Chakrabarti says.

This may all sound brand-new, but Sentinel’s research goes back years to the work of Omid Veiseh, director of the Rice Biotechnology Launch Pad (RBLP). Through another, now-defunct company called Avenge Bio, Veiseh and Paul Wotton — also with RBLP and now RBL’s CEO and chairman of Sentinel — invested close to $45 million in capital toward their promising discovery.

From preclinical data on studies in mice, Avenge was able to manufacture its platform focused on ovarian cancer treatments and test it on 14 human patients. “That's essentially opened the door to understanding the clinical efficacy of this drug as well as it's brought this to the attention of the FDA, such that now we're able to continue that conversation,” says Chakrabarti. She emphasizes the point that Avenge’s demise was not due to the science, but to the company's unsuccessful outsourcing to a Massachusetts management team.

“They hadn't analyzed a lot of the data that we got access to upon the acquisition,” explains Chakrabarti. “When we analyzed the data, we saw this dose-dependent immune activation, very specific upregulation of checkpoints on T cells. We came to understand how effective this agent could be as an immune priming agent in a way that Avenge Bio hadn't been developing this drug.”

Chakrabarti says that Sentinel’s phase II trials are coming soon. They’ll continue their previous work with ovarian cancer, but Chakrabarti says that she also believes that the IL-2 capsules will be effective in the treatment of endometrial cancer. There’s also potential for people with other cancers located in the peritoneal cavity, such as colorectal cancer, gastrointestinal cancer and even primary peritoneal carcinomatosis.

“We're delivering these capsules into the peritoneal cavity and seeing both the safety as well as the immune activation,” Chakrabarti says. “We're seeing that up-regulation of the checkpoint that I mentioned. We're seeing a strong safety signal. This drug was very well-tolerated by patients where IL-2 has always had a challenge in being a well-tolerated drug.”

When phase II will take place is up to the success of Sentinel’s fundraising push. What we do know is that it will be led by Amir Jazaeri at MD Anderson Cancer Center. Part of the goal this summer is also to create an automated cell manufacturing process and prove that Sentinel can store its product long-term.

“This isn’t just another cell therapy,” Chakrabarti says.

"Sentinel's cytokine factory platform is the breakthrough technology that we believe has the potential to define the next era of cancer treatment," adds Wotton.