UH has announced a new multi-disciplinary institute to promote drug discovery. Photo courtesy of UH

The University of Houston has introduced a new institute to its campus. The multi-disciplinary program includes both on-campus and citywide collaboration.

UH has established the Drug Discovery Institute in order to streamline and modernize drug discovery. In partnership with the Texas Medical Center, as well as other organizations, the DDI will tap into technology and innovation to advance modern medicine. The institute will collaborate with the UH colleges of Pharmacy, Natural Sciences and Mathematics and Cullen College of Engineering.

"Our new Drug Discovery Institute could not have been launched at a more appropriate juncture. With the frantic quest for effective drugs to counter the current and future viral infections, the broad and deep strength of the University of Houston is being brought to bear and will no doubt advance the development of innovative cures," says Amr Elnashai, vice president for research and technology transfer, in a press release.

The university currently has about 100 faculty members conducting drug discovery-related research, but, according to the release, these efforts have been fragmented. With DDI, UH hopes to bring these efforts together under one roof in order to promote synergistic research.

F. Lamar Pritchard, dean of the UH College of Pharmacy, has been advocating for the idea of a collaborative drug discovery research center for more than a decade

"The breadth of this initiative will establish the institute and the University among the national leaders in drug discovery and become one of the first to fully embrace AI into its academic drug discovery programs," Pritchard says in the release.

The new institute will be led by Ruiwen Zhang, Robert L. Boblitt Endowed Professor in Drug Discovery at the College of Pharmacy,. He will hold the position of director for two years, before the title rotates through the collaboration of colleges.

"Working together is critical, none of us can do this alone," Zhang says in the release. "In drug discovery, a chemist needs a biologist, a biologist needs a pharmacologist, and so on. We will build a platform and infrastructure, along with the necessary tools, to bring everyone together."

The facility will work to promote each of the school's expertise across many aspects of the drug discovery process — including high-throughput screening technologies, organ-on-chip models, biosensing and biofeedback, molecular modeling and more.

"Practicing team science is key to making innovative discoveries and we are eager to collaborate with faculty across the University to develop cutting-edge research and ultimately to find treatments and cures for disease," says Dan Wells, dean of the College of Natural Sciences and Mathematics, in the release.

Additionally, DDI will offer seed grants for interdependent drug-discovery projects and encourage collaboration and the sharing of data with experts around the world

"I foresee one day in the near future that we are able to create some of the strongest databases and artificial intelligence approaches to drug discovery," Pritchard says in the release. "Rather than having to screen millions of compounds to find one therapy, we may be able to narrow that down to 1,000 and really streamline the process."

UH has been ranked among the top schools for new patents. Photo courtesy of University of Houston

University of Houston scores spot on top schools in the world for new patents

put a patent on it

A Houston school has ranked on a global list that recognizes new utility patents issued. University of Houston tied for No. 75 on the list with 39 utility patents issued in 2019.

The list is created by the National Academy of Inventors and the Intellectual Property Owners Association based on data from the U.S. Patent and Trademark Office. UH has made the list every year for the past five years.

"The rankings show that UH continues to make a major contribution to the innovation enterprise on the U.S. and global stage," says Amr Elnashai, vice president/vice chancellor for research and technology transfer at UH.

"To be in the top 100 universities worldwide for U.S. patents emphasizes that the UH research enterprise has been successfully steered towards impactful research with the potential to address societal challenges."

A utility patent, known as a patent for invention, is the most commonly referred to type of patent and regards the creation of a new or improved product, process, or machine.

Two Texas schools ranked above UH on this year's list. The University of Texas ranked at No. 3 with 276 utility patents and Texas A&M University came in a few spots ahead of UH at No. 65 with 44 utility patents issued.

UH tied with Drexel University in Philadelphia, and the University of California scored the top spot by far with 631 utility patents filed last year. All in all, the ranking finds that 7,873 U.S. utility patents were issued in 2019, which is up from 1,046 patents in 2018.

UH's Technology Bridge was revamped in 2018 to focus on cultivating innovation and new technologies as they develop from the lab and into the marketplace.

There's a growing need for physician-scientists who can see from both sides of the table. Miguel Tovar/University of Houston

University of Houston researchers on why bridging the gap between academia and clinicians is key

Beaker to bedside

Physician-scientists are a group of specialized researchers at the intersection of medicine and technology. Earning both medical degrees and Ph.D.s, they offer a perspective beyond the scope of clinical practice.

Three such researchers discussed how they make the connections between discovery and patient care.

Why a dual education matters

Shaun Xiaoliu Zhang, director of the Center for Nuclear Receptors and Cell Signaling at the University of Houston and M.D. Anderson professor of biology and biochemistry, knows exactly what the clinical demands are.

"I can see from the M.D. perspective, but at the same time I have a Ph.D. — I know how to design research properly," he says. "In the clinic, you're faced with reality that a patient is struggling but you don't have the tools to treat those patients. If you engage in research you can create a tool."

Zhang says clinicians know the need but may struggle to design a solution. A Ph.D., on the other hand, may only know basic research.

Renowned hormone researcher Jan-Åke Gustafsson, Robert A. Welch professor of biology and biochemistry and founding director of the Center for Nuclear Receptors and Cell Signaling, agrees.

"The dual education makes it possible for you to see which diseases are in need of more research, drugs and so on," he says.

Physician-scientists are the driving force behind many advances of modern medicine.

"The way I look at it is, practicing medicine is relatively easy but coming up with the next diagnostic device or the next treatment for a disease is way more difficult, way more challenging," says Chandra Mohan, Hugh Roy and Lillie Cranz Cullen Endowed professor of biomedical engineering at UH.

"You see patients with certain diseases, and you know there's a dire need for better diagnostics, earlier treatment, earlier diagnosis with fewer side effects," he says.

While researchers spend time primarily in the laboratory and clinical practitioners interact with patients, they both want to make an impact.

"We have made some discoveries which have led to the development of new drugs and better understanding of certain diseases," says Gustafsson. "There's a great satisfaction that it may help people to get healthy."

Traditional research brings value to a university

The synergy of this dual education makes these investigators valuable not only to academia, but also to medical science.

"I can't imagine doing translational research without medical training," Zhang says. "If you have this part without the other, you don't know where to go. With medical training, you know exactly which direction to go."

Mohan echos that assessment.

"When you start doing research there are so many questions you can answer," he says. "Sometimes there are questions which are just too basic. They're too far removed from how it will impact a patient's life. So what are the most important questions? I think questions that really make a difference in the patient's life are the most important."

Zhang notes that the National Institutes of Health has switched its funding philosophy — once focused on basic science, it now is more interested in translational research, with a direct relationship to patient health.

As physician-scientists, these "translators" of medical research are able to bridge the chasm.

Amr Elnashai, vice president/vice chancellor of research and technology transfer at UH, says physician-scientists play an important role.

"The increasing importance of deploying technology in medicine renders it essential for a progressive research university to hire medical Ph.D. holders who are in an ideal position to bridge the gap between engineering and science on the one hand, and the broad field of medicine on the other," he says.

Research groups that bring both fields together not only have a much higher probability of impacting lives by adopting the latest technology in medical applications, he adds, but they also give interdisciplinary teams greater access to specific funding pursue such solutions.

In that sense, says Elnashai, medical Ph.D. researchers play an important part of the future research university.

------

This article originally appeared on the University of Houston's The Big Idea.

Nitiya Spearman is the internal communications coordinator for the UH Division of Research.

UH has maintained its spot on the top 100 global universities for number of patents issued. Photo courtesy of University of Houston

University of Houston ranks among top schools for issued patents

best in class

A new ranking shows the University of Houston is flexing its brains and its brawn as one of the most prolific producers of patents in the academic world.

The new ranking, published by the National Academy of Inventors and the Intellectual Property Owners Association, puts UH at No. 88 among the world's top 100 universities for patent activity in 2018.

"As the UH research portfolio grows and the medical school starts up, we would continue to anticipate a strong IP portfolio going forward for UH," says Tom Campbell, executive director of the Office of Technology Transfer and Innovation at UH.

UH tied with the Texas A&M University on this year's list; each recorded 28 patents in 2018. A year earlier, UH received 39 patents. The University of Texas was the only other Texas school on the new list. With 187 patents issued in 2018, it landed at No. 5.

Houston's Rice University showed up at No. 79 on the 2018 list but dropped out of this year's top 100.

Amr Elnashai, UH's vice president and vice chancellor for research and technology transfer since 2017, says his school's appearance in the ranking reflects an emphasis on converting faculty inventions into meaningful innovations. During the 2018 budget year, UH collected $43 million in patent royalties.

Among the patents UH received last year were those for a mutant herpes simplex virus connected to cancer therapy and a rechargeable alkaline battery.

"UH researchers are driven by making a positive impact on the quality of life," Elnashai says in a release. "From new remedies for persistent medical conditions to sustainable energy technologies, researchers from the University of Houston are addressing many of the world's most pressing challenges. The UH ranking, tied with our larger neighbor Texas A&M, is a testament to our emphasis on and excellence in technology transfer and innovation."

To ramp up UH's impact, the university last year rebranded its research park as the UH Technology Bridge. With 30,000 square feet of incubator space and over 700,000 square feet of space for labs, pilot-scale facilities, and light manufacturing, the Technology Bridge houses 21 startups and two established companies.

"From clean energy solutions and medicines to uses of artificial intelligence, data science tools and other emerging technologies, the University of Houston is focusing on bridging the gap between technological discoveries by our faculty and actual products that change peoples' lives," Elnashai said in 2018.

The list from the National Academy of Inventors and the Intellectual Property Owners Association started in 2013. UH first cracked the top 100 in 2016 (for patents issued in 2015). That year, it ranked 88th. UH dropped to No. 91 on the 2017 list but rose to No. 67 on the 2018 list.

"The patents our universities produce represent important processes and collaborations which have the potential to make a significant impact on society on a local, regional, national, and global scale," says Paul Sanberg, president of the National Academy of Inventors.

The annual ranking relies on data from the U.S. Patent and Trademark Office regarding utility patents, which make up 90 percent of all patents issued.

According to Investopedia, a utility patent covers the creation of a new or improved — and useful — product, process, or machine. This type of patent prohibits other people or companies from making, using, or selling the invention without authorization.

"Patenting an invention is the first step towards making a lasting impact on the innovation ecosystem," says Jessica Landacre, deputy executive director of the Intellectual Property Owners Association.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Baylor College of Medicine names Minnesota med school dean as new president, CEO ​

new leader

Dr. Jakub Tolar, dean of the University of Minnesota Medical School, is taking over as president, CEO and executive dean of Houston’s Baylor College of Medicine on July 1.

Tolar—who’s also vice president for clinical affairs at the University of Minnesota and a university professor—will succeed Dr. Paul Klotman as head of BCM. Klotman is retiring June 30 after leading Texas’ top-ranked medical school since 2010.

In tandem with medical facilities such as Baylor St. Luke’s Medical Center and Texas Children’s Hospital, Baylor trains nearly half of the doctors who work at Texas Medical Center. In addition, Baylor is home to the Dan L Duncan Comprehensive Cancer Center and the Texas Heart Institute.

The hunt for a new leader at Baylor yielded 179 candidates. The medical school’s search firm interviewed 44 candidates, and the pool was narrowed to 10 contenders who were interviewed by the Board of Trustees’ search committee. The full board then interviewed the four finalists, including Tolar.

Greg Brenneman, chair of Baylor’s board and the search committee, says Tolar is “highly accomplished” in the core elements of the medical school’s mission: research, patient care, education and community service.

“Baylor is phenomenal. Baylor is a superpower in academic medicine,” Tolar, a native of the Czech Republic, says in a YouTube video filmed at the medical school. “And everything comes together here because science saves lives. That is the superpower.”

Tolar’s medical specialties include pediatric blood and bone marrow transplants. His research, which he’ll continue at Baylor, focuses on developing cellular therapies for rare genetic disorders. In the research arena, he’s known for his care of patients with recessive dystrophic epidermolysis bullosa, a severe genetic skin disorder.

In a news release, Tolar praises Baylor’s “achievements and foundation,” as well as the school’s potential to advance medicine and health care in “new and impactful ways.”

The Baylor College of Medicine employs more than 9,300 full-time faculty and staff. For the 2025-26 academic year, nearly 1,800 students are enrolled in the School of Medicine, Graduate School of Biomedical Sciences and School of Health Professions. Its M.D. program operates campuses in Houston and Temple.

In the fiscal year that ended June 30, 2024, Baylor recorded $2.72 billion in operating revenue and $2.76 billion in operating expenses.

The college was founded in 1900 in Dallas and relocated to Houston in 1943. It was affiliated with Baylor University in Waco from 1903 to 1969.

​Planned UT Austin med center, anchored by MD Anderson, gets $100M gift​

med funding

The University of Texas at Austin’s planned multibillion-dollar medical center, which will include a hospital run by Houston’s University of Texas MD Anderson Cancer Center, just received a $100 million boost from a billionaire husband-and-wife duo.

Tench Coxe, a former venture capitalist who’s a major shareholder in chipmaking giant Nvidia, and Simone Coxe, co-founder and former CEO of the Blanc & Otus PR firm, contributed the $100 million—one of the largest gifts in UT history. The Coxes live in Austin.

“Great medical care changes lives,” says Simone Coxe, “and we want more people to have access to it.”

The University of Texas System announced the medical center project in 2023 and cited an estimated price tag of $2.5 billion. UT initially said the medical center would be built on the site of the Frank Erwin Center, a sports and entertainment venue on the UT Austin campus that was demolished in 2024. The 20-acre site, north of downtown and the state Capitol, is near Dell Seton Medical Center, UT Dell Medical School and UT Health Austin.

Now, UT officials are considering a bigger, still-unidentified site near the Domain mixed-use district in North Austin, although they haven’t ruled out the Erwin Center site. The Domain development is near St. David’s North Medical Center.

As originally planned, the medical center would house a cancer center built and operated by MD Anderson and a specialty hospital built and operated by UT Austin. Construction on the two hospitals is scheduled to start this year and be completed in 2030. According to a 2025 bid notice for contractors, each hospital is expected to encompass about 1.5 million square feet, meaning the medical center would span about 3 million square feet.

Features of the MD Anderson hospital will include:

  • Inpatient care
  • Outpatient clinics
  • Surgery suites
  • Radiation, chemotherapy, cell, and proton treatments
  • Diagnostic imaging
  • Clinical drug trials

UT says the new medical center will fuse the university’s academic and research capabilities with the medical and research capabilities of MD Anderson and Dell Medical School.

UT officials say priorities for spending the Coxes’ gift include:

  • Recruiting world-class medical professionals and scientists
  • Supporting construction
  • Investing in technology
  • Expanding community programs that promote healthy living and access to care

Tench says the opportunity to contribute to building an institution from the ground up helped prompt the donation. He and others say that thanks to MD Anderson’s participation, the medical center will bring world-renowned cancer care to the Austin area.

“We have a close friend who had to travel to Houston for care she should have been able to get here at home. … Supporting the vision for the UT medical center is exactly the opportunity Austin needed,” he says.

The rate of patients who leave the Austin area to seek care for serious medical issues runs as high as 25 percent, according to UT.