There's a growing need for physician-scientists who can see from both sides of the table. Miguel Tovar/University of Houston

Physician-scientists are a group of specialized researchers at the intersection of medicine and technology. Earning both medical degrees and Ph.D.s, they offer a perspective beyond the scope of clinical practice.

Three such researchers discussed how they make the connections between discovery and patient care.

Why a dual education matters

Shaun Xiaoliu Zhang, director of the Center for Nuclear Receptors and Cell Signaling at the University of Houston and M.D. Anderson professor of biology and biochemistry, knows exactly what the clinical demands are.

"I can see from the M.D. perspective, but at the same time I have a Ph.D. — I know how to design research properly," he says. "In the clinic, you're faced with reality that a patient is struggling but you don't have the tools to treat those patients. If you engage in research you can create a tool."

Zhang says clinicians know the need but may struggle to design a solution. A Ph.D., on the other hand, may only know basic research.

Renowned hormone researcher Jan-Åke Gustafsson, Robert A. Welch professor of biology and biochemistry and founding director of the Center for Nuclear Receptors and Cell Signaling, agrees.

"The dual education makes it possible for you to see which diseases are in need of more research, drugs and so on," he says.

Physician-scientists are the driving force behind many advances of modern medicine.

"The way I look at it is, practicing medicine is relatively easy but coming up with the next diagnostic device or the next treatment for a disease is way more difficult, way more challenging," says Chandra Mohan, Hugh Roy and Lillie Cranz Cullen Endowed professor of biomedical engineering at UH.

"You see patients with certain diseases, and you know there's a dire need for better diagnostics, earlier treatment, earlier diagnosis with fewer side effects," he says.

While researchers spend time primarily in the laboratory and clinical practitioners interact with patients, they both want to make an impact.

"We have made some discoveries which have led to the development of new drugs and better understanding of certain diseases," says Gustafsson. "There's a great satisfaction that it may help people to get healthy."

Traditional research brings value to a university

The synergy of this dual education makes these investigators valuable not only to academia, but also to medical science.

"I can't imagine doing translational research without medical training," Zhang says. "If you have this part without the other, you don't know where to go. With medical training, you know exactly which direction to go."

Mohan echos that assessment.

"When you start doing research there are so many questions you can answer," he says. "Sometimes there are questions which are just too basic. They're too far removed from how it will impact a patient's life. So what are the most important questions? I think questions that really make a difference in the patient's life are the most important."

Zhang notes that the National Institutes of Health has switched its funding philosophy — once focused on basic science, it now is more interested in translational research, with a direct relationship to patient health.

As physician-scientists, these "translators" of medical research are able to bridge the chasm.

Amr Elnashai, vice president/vice chancellor of research and technology transfer at UH, says physician-scientists play an important role.

"The increasing importance of deploying technology in medicine renders it essential for a progressive research university to hire medical Ph.D. holders who are in an ideal position to bridge the gap between engineering and science on the one hand, and the broad field of medicine on the other," he says.

Research groups that bring both fields together not only have a much higher probability of impacting lives by adopting the latest technology in medical applications, he adds, but they also give interdisciplinary teams greater access to specific funding pursue such solutions.

In that sense, says Elnashai, medical Ph.D. researchers play an important part of the future research university.

------

This article originally appeared on the University of Houston's The Big Idea.

Nitiya Spearman is the internal communications coordinator for the UH Division of Research.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston energy trailblazer Fervo closes $462 million Series E

Fresh Funds

Houston-based geothermal energy company Fervo Energy has closed an oversubscribed $462 million series E funding round, led by new investor B Capital.

“Fervo is setting the pace for the next era of clean, affordable, and reliable power in the U.S.,” Jeff Johnson, general partner at B Capital, said in a news release.

“With surging demand from AI and electrification, the grid urgently needs scalable, always-on solutions, and we believe enhanced geothermal energy is uniquely positioned to deliver. We’re proud to support a team with the technical leadership, commercial traction, and leading execution capabilities to bring the world’s largest next-generation geothermal project online and make 24/7 carbon-free power a reality.”

The financing reflects “strong market confidence in Fervo’s opportunity to make geothermal energy a cornerstone of the 24/7 carbon-free power future,” according to the company. The round also included participation from Google, a longtime Fervo Partner, and other new and returning investors like Devon Energy, Mitsui & Co., Ltd., Mitsubishi Heavy Industries and Centaurus Capital. Centaurus Capital also recently committed $75 million in preferred equity to support the construction of Cape Station Phase I, Fervo noted in the release.

The latest funding will support the continued buildout of Fervo’s Utah-based Cape Station development, which is slated to start delivering 100 MW of clean power to the grid beginning in 2026. Cape Station is expected to be the world's largest next-generation geothermal development, according to Fervo. The development of several other projects will also be included in the new round of funding.

“This funding sharpens our path from breakthrough technology to large-scale deployment at Cape Station and beyond,” Tim Latimer, CEO and co-founder of Fervo, added in the news release. “We’re building the clean, firm power fleet the next decade requires, and we’re doing it now.”

Fervo recently won Scaleup of the Year at the 2025 Houston Innovation Awards, and previously raised $205.6 million in capital to help finance the Cape Station earlier this year. The company fully contracted the project's capacity with the addition of a major power purchase agreement from Shell this spring. Fervo’s valuation has been estimated at $1.4 billion and includes investments and support from Bill Gates.

“This new investment makes one thing clear: the time for geothermal is now,” Latimer added in a LinkedIn post. “The world desperately needs new power sources, and with geothermal, that power is clean and reliable. We are ready to meet the moment, and thrilled to have so many great partners on board.”

---

This article originally appeared on EnergyCapitalHTX.com.

Baylor center receives $10M NIH grant to continue rare disease research

NIH funding

Baylor College of Medicine’s Center for Precision Medicine Models received a $10 million, five-year grant from the National Institutes of Health last month that will allow it to continue its work studying rare genetic diseases.

The Center for Precision Medicine Models creates customized cell, fly and mouse models that mimic specific genetic variations found in patients, helping scientists to better understand how genetic changes cause disease and explore potential treatments.

The center was originally funded by an NIH grant, and its models have contributed to the discovery of several new rare disease genes and new symptoms caused by known disease genes. It hosts an online portal that allows physicians, families and advocacy groups to nominate genetic variants or rare diseases that need further investigation or new treatments.

Since its founding in 2020, it has received 156 disease/variant nominations, accepted 63 for modeling and produced more than 200 precision models, according to Baylor.

The center plans to use the latest round of funding to bring together more experts in rare disease research, animal modeling and bioinformatics, and to expand its focus and model more complex diseases.

Dr. Jason Heaney, associate professor in the Department of Molecular and Human Genetics at BCM, serves as the lead principal investigator of the center.

“The Department of Molecular and Human Genetics is uniquely equipped to bring together the diverse expertise needed to connect clinical human genetics, animal research and advanced bioinformatics tools,” Heaney added in the release. “This integration allows us to drive personalized medicine forward using precision animal models and to turn those discoveries into better care for patients.”

Houston institutions launch Project Metis to position region as global leader in brain health

brain trust

Leaders in Houston's health care and innovation sectors have joined the Center for Houston’s Future to launch an initiative that aims to make the Greater Houston Area "the global leader of brain health."

The multi-year Project Metis, named after the Greek goddess of wisdom and deep thought, will be led by the newly formed Rice Brain Institute, The University of Texas Medical Branch's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department. The initiative comes on the heels of Texas voters overwhelmingly approving a ballot measure to launch the $3 billion, state-funded Dementia Prevention and Research Institute of Texas (DPRIT).

According to organizers, initial plans for Project Metis include:

  • Creating working teams focused on brain health across all life stages, science and medical advances, and innovation and commercialization
  • Developing a regional Brain Health Index to track progress and equity
  • Implanting pilot projects in areas such as clinical care, education and workplace wellness
  • Sharing Houston’s progress and learnings at major international forums, including Davos and the UN General Assembly

The initiative will be chaired by:

  • Founding Chair: Dr. Jochen Reiser, President of UTMB and CEO of the UTMB Health System
  • Project Chair: Amy Dittmar, Howard R. Hughes Provost and Executive Vice President of Rice University
  • Project Chair: Dr. David L. Callender, President and CEO of Memorial Hermann Health System

The leaders will work with David Gow, Center for Houston’s Future president and CEO. Gow is the founder and chairman of Gow Media, InnovationMap's parent company.

“Now is exactly the right time for Project Metis and the Houston-Galveston Region is exactly the right place,” Gow said in a news release. “Texas voters, by approving the state-funded Dementia Prevention Institute, have shown a strong commitment to brain health, as scientific advances continue daily. The initiative aims to harness the Houston’s regions unique strengths: its concentration of leading medical and academic institutions, a vibrant innovation ecosystem, and a history of entrepreneurial leadership in health and life sciences.”

Lime Rock Resources, BP and The University of Texas MD Anderson Cancer Center served as early steering members for Project Metis. HKS, Houston Methodist and the American Psychiatric Association Foundation have also supported the project.

An estimated 460,000 Texans are living with dementia, according to the Alzheimer’s Association, and more than one million caregivers support them.

“Through our work, we see both the immense human toll of brain-related illness and the tremendous potential of early intervention, coordinated care and long-term prevention," Callender added in the release. "That’s why this bold new initiative matters so much."