The program will allow students to learn at their own pace, and is supported seven days a week by tutorial and technical staff, and offers flexible payment options with a low initial registration fee. Photo by Brett Sayles/Pexels

University of Houston-Downtown announced a new Wind Turbine Technician Certificate Program.

UHD’s goal with the new program is to address the global need for workers skilled in servicing, diagnosing, repairing and installing wind turbines and other associated equipment.

The program will allow students to learn at their own pace, and is supported seven days a week by tutorial and technical staff, and offers flexible payment options with a low initial registration fee.

Some courses can be purchased as students work through them.The total cost is $1,750 for the entire program.

The course will be delivered in partnership with George Brown College in Toronto. George Brown College is a leader in distance learning, and one program highlight will be its 3D interactive wind turbine simulator. The wind turbine simulator will have key features like real-time visualization, interactive operation, pre-built lab projects, and Pitch and Yaw Ladder Logic applications, which shows how Programmable Logic Controllers (PLCs) are used to provide automatic control of wind turbines.

“The programs we develop at George Brown College feature robust technical simulation software so we can reach different students, like those looking to diversify their skills and can’t attend full time because of family or work commitments,” Colin Simpson, dean of continuous learning, says in a news release. “Additionally, our partnership with University of Houston-Downtown allows us to extend our reach to help train the U.S. clean energy workforce.”

According to Global Wind Energy Council’s Global Wind Report 2023, over half a million new wind technicians will be needed by 2026 to service the expected capacity increases, as wind generation is expected to more than double by 2030. Texas produces 26 percent of all U.S. wind-sourced electricity.

“Wind energy is one of the fastest-growing energy sources in the world, and as the largest wind producer in the United States, there is a growing need for skilled technicians in Texas,” UHD President Loren J. Blanchard adds. “By partnering with George Brown College, we’re able to leverage a unique online program to develop a skilled workforce for the wind energy sector in the state and beyond.”

------

This article originally ran on EnergyCapital.

The Chancellor's Technology Bridging Fund will provide grants to UH faculty to help them bring their research and ideas into reality. Natalie Harms/InnovationMap

UH launches $2 million fund for faculty innovators to help them bring their ideas to the market

Funding the faculty

The University of Houston Technology Bridge exists to help transition university research and ideas into the marketplace, and now the UH System has gone one step further to aid in that transition process.

UH has announced a $2 million fund for faculty inventors who then could use the grants — estimated to range between $25,000 to $75,000 — to bring their invention to the commercialization stage. The fund, called the Chancellor's Technology Bridging Fund, was revealed on July 18.

"University faculty are working to solve some of the most critical problems of the day, from energy and the environment to medicine," says Renu Khator, chancellor of the UH System and president of UH, in a release. "It often requires an additional boost to get technologies from the lab to the commercial arena, and this fund is designed to help our faculty take that leap."

According to the release, UH officials plan to give out anywhere from four to 10 grants each year for the next five years.

The grants are intended to aid in the prototyping or product testing process, says Tom Campbell, executive director of the Office of Technology Transfer and Innovation in the UH Division of Research. He adds that usually that ideas in that stage of growth aren't usually granted basic research funding.

"The Technology Bridging Fund will fill a gap. It's really difficult to find funding at this early stage of development, and as a consequence, a lot of innovative concepts sit on the shelf," Campbell says in the release.

The fund directly aligns with the institution's goal of taking these UH-originated ideas, companies, and technologies and introducing them to the world, where they can be used by other companies.

"It's a way to de-risk these technologies and attract external interest," Campbell says in the release. "We want to move people and ideas closer to the market. Having access to this type of funding to do that can be extremely valuable."

Last year, UH transitioned its Energy Research Park into the Technology Bridge to better facilitate the growth for its innovators and research. The organization also works to bring in corporations that are looking to expand in Houston, and, earlier this year, two organizations set up shop in the Tech Bridge.

Earlier this year, a new ranking, new ranking, published by the National Academy of Inventors and the Intellectual Property Owners Association, puts UH at No. 88 among the world's top 100 universities for patent activity in 2018. And, according to Campbell, UH will continue this patent growth.

"As the UH research portfolio grows and the medical school starts up, we would continue to anticipate a strong IP portfolio going forward for UH," Campbell tells InnovationMap in a previous article.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Axiom Space-tested cancer drug advances to clinical trials

mission critical

A cancer-fighting drug tested aboard several Axiom Space missions is moving forward to clinical trials.

Rebecsinib, which targets a cancer cloning and immune evasion gene, ADAR1, has received FDA approval to enter clinical trials under active Investigational New Drug (IND) status, according to a news release. The drug was tested aboard Axiom Mission 2 (Ax-2) and Axiom Mission 3 (Ax-3). It was developed by Aspera Biomedicine, led by Dr. Catriona Jamieson, director of the UC San Diego Sanford Stem Cell Institute (SSCI).

The San Diego-based Aspera team and Houston-based Axiom partnered to allow Rebecsinib to be tested in microgravity. Tumors have been shown to grow more rapidly in microgravity and even mimic how aggressive cancers can develop in patients.

“In terms of tumor growth, we see a doubling in growth of these little mini-tumors in just 10 days,” Jamieson explained in the release.

Rebecsinib took part in the patient-derived tumor organoid testing aboard the International Space Station. Similar testing is planned to continue on Axiom Station, the company's commercial space station that's currently under development.

Additionally, the drug will be tested aboard Ax-4 under its active IND status, which was targeted to launch June 25.

“We anticipate that this monumental mission will inform the expanded development of the first ADAR1 inhibitory cancer stem cell targeting drug for a broad array of cancers," Jamieson added.

According to Axiom, the milestone represents the potential for commercial space collaborations.

“We’re proud to work with Aspera Biomedicines and the UC San Diego Sanford Stem Cell Institute, as together we have achieved a historic milestone, and we’re even more excited for what’s to come,” Tejpaul Bhatia, the new CEO of Axiom Space, said in the release. “This is how we crack the code of the space economy – uniting public and private partners to turn microgravity into a launchpad for breakthroughs.”

Chevron enters the lithium market with major Texas land acquisition

to market

Chevron U.S.A., a subsidiary of Houston-based energy company Chevron, has taken its first big step toward establishing a commercial-scale lithium business.

Chevron acquired leaseholds totaling about 125,000 acres in Northeast Texas and southwest Arkansas from TerraVolta Resources and East Texas Natural Resources. The acreage contains a high amount of lithium, which Chevron plans to extract from brines produced from the subsurface.

Lithium-ion batteries are used in an array of technologies, such as smartwatches, e-bikes, pacemakers, and batteries for electric vehicles, according to Chevron. The International Energy Agency estimates lithium demand could grow more than 400 percent by 2040.

“This acquisition represents a strategic investment to support energy manufacturing and expand U.S.-based critical mineral supplies,” Jeff Gustavson, president of Chevron New Energies, said in a news release. “Establishing domestic and resilient lithium supply chains is essential not only to maintaining U.S. energy leadership but also to meeting the growing demand from customers.”

Rania Yacoub, corporate business development manager at Chevron New Energies, said that amid heightening demand, lithium is “one of the world’s most sought-after natural resources.”

“Chevron is looking to help meet that demand and drive U.S. energy competitiveness by sourcing lithium domestically,” Yacoub said.

---

This article originally appeared on EnergyCapital.