Just like any workplace, labs can get toxic. Graphic by Miguel Tovar/University of Houston

There are many types of toxic bosses. The Micromanager. The Narcissist. The Incompetent Boss. The list goes on. But labs led by toxic PIs not only make for an abysmal workplace they can actually encourage research misconduct.

According to Charles Wood, author of “When lab leaders take too much control,” there are two types of toxic labs most at risk for this type of behavior: the executive model and the competition model.

Executive model

Wood described the executive approach to lab management as one where the mentor sets expectations for trainees, often with a particular goal in mind. In its negative form, this includes specifying experimental outcomes and instructing trainees on particular experiments to achieve a desired result.

It comes as no surprise that experimenting with the answer already in mind goes against scientific principles. Spiking biological samples, manipulating instruments – all these things have been suspected in labs according to the U.S. government’s Office of Research Integrity. The first line of defense is having the investigators replicate their experiment while being closely supervised. The consequences of misconduct, if the allegations are found to be credible, can include being debarred from further federal funding and having data sequestered.

Competition model

The competition model pits graduate students or postdocs against one another. In this case, whoever gets the result first is rewarded, while the others are punished. This makes a perfect breeding ground for misconduct. Imagine if a foreign student’s citizenship status is affected by whether or not they can produce the results their PI wants them to obtain. Of the competition model, Wood said that what students and postdocs learn can be catastrophic: “competition over collaboration and conformity over creativity.” He posits that researchers graduating from the PI’s toxic lab may be influenced to drop out of science completely or go on to run their own labs in a toxic way.

A correlation between mentors and ethical decision-making

Michael D. Mumford, et al. in “Environmental influences on ethical decision making: Climate and environmental predictors of research integrity” (Ethics & Behavior journal) found that for first-year doctoral students, “environmental experiences (including professional leadership) exert stronger effects on ethical decision making than the climate of the work group.”

Wood also noted that, regardless of the management style, certain scientists may be more prone to cheating. However, active involvement and openness by the principal investigator can serve as a preventive measure against this.

What can you do about it?

Chris Sowers in the “Toxic Boss Syndrome: How To Recover and Get Your Mojo Back” episode of his Better Humans podcast, shared how a few toxic bosses affected his job performance, self esteem and even interpersonal relationships. His first piece of advice is to get out quickly, even if you need to take a pay cut – he says a few thousand dollars are not worth the hit to your mental and physical health.

Vetting your lab’s PI will help enormously. Does the PI have a good track record of being a fair and kind mentor?

“If your principal investigator starts to exhibit toxic behavior, address this with him or her,” said Wood. He goes on to advise that “if you find yourself in a truly toxic environment, seek guidance from a graduate coordinator, assistant dean or other authority figure who oversees the pre- or postdoctoral training programs — and ask for help in finding another mentor.”

The Big Idea

No one has time or energy to dedicate to a toxic workplace. The costs are way too high to risk manipulating data. For one, all authors on a paper will be held responsible for the misconduct– not to mention the physical and mental stress a toxic lab will invite into your life.

------

This article originally appeared on the University of Houston's The Big Idea. Sarah Hill, the author of this piece, is the communications manager for the UH Division of Research.

A team of researchers out of the Texas Center for Superconductivity at the University of Houston has discovered a faster way of transportation. Photo via UH.edu

Houston researchers identify new tech for unprecedented transportation speeds

zoom, zoom

Researchers at the University of Houston and in Germany released a proof-of-concept paper this month that uncovers a new, fuel efficient means of transportation that they say could one day make air travel and traditional freight transport obsolete.

"I call it a world-changing technology,” Zhifeng Ren, director of the Texas Center for Superconductivity at UH and author of the paper, said in a statement.

Published in the journal APL Energy, the paper demonstrates a new way of using superconductors to move vehicles along existing highways while transporting liquified hydrogen at the same time. Until now, the costs of using superconductivity for transportation has held back innovation in the field. This model also reduces the need for a separate specialized pipeline system to transport liquified hydrogen that's able to keep the fuel source at minus 424 degrees Fahrenheit.

The model uses a similar concept to what's behind already existing magnetically levitating trains that operate on a magnetized rail, with superconductors embedded in the train's undercarriage. In Ren's model, superconductors would be embedded into existing highway infrastructure and magnets added to the undercarriages of vehicles. Liquified hydrogen would be used to cool the superconductor highway as vehicles move across it.

The idea could apply to trains, cargo trucks, and even personal cars, according to the paper. Better yet, the vehicles could travel up to 400 mph while on the highway. Drivers would then use the vehicle's traditional or electric motor once they exit.

"Instead of 75 mph, you could go 400 mph, from Houston to Los Angeles, or Houston to New York in just a few hours," Ren said in a statement.

Ren adds that this method would also require drivers to consume less fuel or power, cutting down on cost and environmental impact.

Technical and economic details still need to be addressed. But Ren believes "the project’s potential long-term economic and environmental benefits, would outweigh the upfront costs," according to a statement.

The paper joins a number of other innovative concepts coming out of UH in recent months. Recently, a research team at the university upgraded at-home rapid COVID-19 testing to make results more detectable via glow-in-the-dark materials.

Late last year the university also opened its

new tech transfer facility, and early this year it signed an agreement with India to bring a data center focused on energy to campus.


cropfilter_vintageloyaltyshopping_cartlocal_librarydeleteThe illustration shows the theorized superconducting highway for energy transport and storage and superconductor levitation. Image via UH.edu

UH has found a way to instantly zap COVID-10. Andriy Onufriyenko/Getty Images

University of Houston designs device that instantly kills COVID-19

ZAPPING COVID-19

While the world rushes to find a COVID-19 vaccine, scientists from the University of Houston have found a way to trap and kill the virus — instantly.

The team has designed a "catch and kill" air filter that can nullify the virus responsible for COVID-19. Researchers reported that tests at the Galveston National Laboratory found 99.8 percent of the novel SARS-CoV-2 — which causes COVID-19 — was killed in a single pass through the filter.

Zhifeng Ren, director of the Texas Center for Superconductivity at UH, collaborated with Monzer Hourani, CEO of Medistar, a Houston-based medical real estate development firm, plus other researchers to design the filter, which is described in a paper published in Materials Today Physics.

Researchers were aware the virus can remain in the air for about three hours, which required a filter that could quickly remove it. The added pressure of businesses reopening created an urgency in controlling the spread of the virus in air conditioned spaces, according to UH.

Meanwhile, to scorch the virus — which can't survive above around 158 degrees Fahrenheit — researchers instilled a heated filter. By blasting the temperature to around 392 F, they were able to kill the virus almost instantly.

The filter also killed 99.9 percent of the anthrax spores, according to researchers.

A prototype was built by a local workshop and first tested at Ren's lab for the relationship between voltage/current and temperature; it then went to the Galveston lab to be tested for its ability to kill the virus. Ren says it satisfies the requirements for conventional heating, ventilation and air conditioning (HVAC) systems.

"This filter could be useful in airports and in airplanes, in office buildings, schools and cruise ships to stop the spread of COVID-19," said Ren, MD Anderson Chair Professor of Physics at UH and co-corresponding author for the paper, in a statement. "Its ability to help control the spread of the virus could be very useful for society."

Medistar executives are also proposing a desk-top model, capable of purifying the air in an office worker's immediate surroundings, Ren added.

Developers have called for a phased roll-out of the device, with a priority on "high-priority venues, where essential workers are at elevated risk of exposure — particularly schools, hospitals and health care facilities, as well as public transit environs such as airplanes."

The hope, developers add, is that the filter will protect frontline workers in essential industries and allow nonessential workers to return to public work spaces.

Three UH researchers are revolutionizing the way we think the brain works. Andriy Onufriyenko/Getty Images

3 ways University of Houston researchers are innovating brain treatments and technologies

Brain teasers

While a lot of scientists and researchers have long been scratching their heads over complicated brain functionality challenges, these three University of Houston researchers have made crucial discoveries in their research.

From dissecting the immediate moment a memory is made or incorporating technology to solve mobility problems or concussion research, here are the three brain innovations and findings these UH professors have developed.

Brains on the move

Professor of biomedical engineering Joe Francis is reporting work that represents a significant step forward for prosthetics that perform more naturally. Photo courtesy of UH Research

Brain prosthetics have come a long way in the past few years, but a UH professor and his team have discovered a key feature of a brain-computer interface that allows for an advancement in the technology.

Joe Francis,a UH professor of biomedical engineering, reported in eNeuro that the BCI device is able to learn on its own when its user is expecting a reward through translating interactions "between single-neuron activities and the information flowing to these neurons, called the local field potential," according to a UH news release. This is all happening without the machine being specifically programmed for this capability.

"This will help prosthetics work the way the user wants them to," says Francis in the release. "The BCI quickly interprets what you're going to do and what you expect as far as whether the outcome will be good or bad."

Using implanted electrodes, Francis tracked the effects of reward on the brain's motor cortex activity.

"We assume intention is in there, and we decode that information by an algorithm and have it control either a computer cursor, for example, or a robotic arm," says Francis in the release.

A BCI device would be used for patients with various brain conditions that, as a result of their circumstances, don't have full motor functionality.

"This is important because we are going to have to extract this information and brain activity out of people who cannot actually move, so this is our way of showing we can still get the information even if there is no movement," says Francis.

Demystifying the memory making moments

Margaret Cheung, a UH professor, is looking into what happens when a memory is formed in the brain. Photo courtesy of UH Research

What happens when a brain forms a new memory? Margaret Cheung, a UH professor in the school of physics, computer science, and chemistry, is trying to find out.

Cheung is analyzing the exact moment a neuron forms a memory in our brains and says this research will open doors to enhancing memory making in the future.

"The 2000 Nobel laureate Eric Kandel said that human consciousness will eventually be explained in terms of molecular signaling pathways. I want to see how far we can go to understand the signals," says Cheung in a release.

Cheung is looking at calcium in particular, since this element impacts most of cellular life.

"How the information is transmitted from the calcium to the calmodulin and how CaM uses that information to activate decisions is what we are exploring," says Cheung in the release. "This interaction explains the mechanism of human cognition."

Her work is being funded by a $1.1 million grant from the National Institute of General Medical Science from the National Institutes of Health, and she's venturing into uncharted territories with her calcium signaling studies. Previous research hasn't been precise or conclusive enough for real-world application.

"In this work we seek to understand the dynamics between calcium signaling and the resulting encoded CaM states using a multiphysics approach," says Cheung. "Our expected outcome will advance modeling of the space-time distribution of general secondary messengers and increase the predictive power of biophysical simulations."

New tech for brain damage treatment

Badri Roysam, chair of the University of Houston Department of Electrical and Computer Engineering, is leading the project that uncovering new details surrounding concussions. Photo courtesy of UH Research

Concussions and brain damage have both had their fair shares of question marks, but this UH faculty member is tapping into new technologies to lift the curtain a little.

Badri Roysam, the chair of the University of Houston Department of Electrical and Computer Engineering, is heading up a multimillion-dollar project that includes "super microscopes" and the UH supercomputer at the Hewlett Packard Enterprise Data Science Institute. Roysam calls the $3.19 million project a marriage between these two devices.

"By allowing us to see the effects of the injury, treatments and the body's own healing processes at once, the combination offers unprecedented potential to accelerate investigation and development of next-generation treatments for brain pathologies," says Roysam in a release.

The project, which is funded by the National Institute of Neurological Disorders and Stroke (NINDS), is lead by Roysam and co-principal investigator John Redell, assistant professor at UTHealth McGovern Medical School. The team also includes NINDS scientist Dragan Maric and UH professors Hien Van Nguyen and Saurabh Prasad.

Concussions, which affect millions of people, have long been mysterious to scientists due to technological limitations that hinder treatment options and opportunities.

"We can now go in with eyes wide open whereas before we had only a very incomplete view with insufficient detail," says Roysam in the release. "The combinations of proteins we can now see are very informative. For each cell, they tell us what kind of brain cell it is, and what is going on with that cell."

The technology and research can be extended to other brain conditions, such as strokes, brain cancer, and more.

A startup without funding is just a great idea. Miguel Tovar/University of Houston

Startup funding: Know the bucks behind the business

Houston Voices

A Cadillac with an empty gas tank is just a really nice, really expensive decoration for your driveway.

Change my mind.

A startup company without funding, is just a really great idea. A dream. Just like a car without gas will never get out on the road, a startup without funding will never get its product out on the market.

"There are opportunities for startup funding out there, your job is to find them and take advantage," says Daniel Weisfeld, CEO and founder of Resthetics, a blossoming startup that takes waste anesthetics and converts them into safe, renewable resources.

Mohamed Hashim, Resthetics co-founder and chemist, chimes in, "You have to do your homework. It's a slow process and hard work, but it'll be rewarding once the money comes in."

Putting the fun in startup funding

According to Weisfeld and Hashim, Resthetics joined the Texas A&M New Venture Competition and won admittance to the Texas Medical Center Accelerator, in addition to funding. In fact, their company is backed by the Texas Medical Center to date.

Business plan competitions give hopeful entrepreneurs the chance to vie for funding of their technology's development. They also give young entrepreneurs real-world experience and a chance to refine their business plans. Business plan competitions offer entrepreneurs a better understanding of what it's like to get a new venture off the ground and helps them learn to commercialize their technology.

You can browse a few business plan competitions here, including a Houston-based one.

Angel networks

While on the surface, an angel network may seem like a religious TV station, it's actually something a little more beneficial to your search for funding. Angel networks are composed of angel investors, i.e., people who invest their own funds into the beginning stages of a startup, with the hope of seeing a big return on their investment later on. Angel investors who invest in startups that end up failing will lose their money. It's a big risk.

They are called "angel" investors because these individuals give their own money to support startups, unlike venture capitalists who use funds pooled together from a group of investors.

Weisfeld suggests that, "Even if you don't think that your company fits someone's investment criteria, you should still reach out to them. Always ask. An investor might like you or your tech enough that they'll make an exception, or they may even recommend you to someone they know who is willing to invest."

Fun fact: In the early part of the 20th century, wealthy business owners gave their own money to support stage plays, so the term "angel investor" was born from Broadway.

You can find local angel investors in Houston here.

Non-dilutive funding sources

Often times, a startup will garner funding but will have to give up partial ownership of their company in return. This is not the case with non-dilutive funding sources. One example of non-dilutive funding is a bank loan. Sure, you'll have to pay a monthly interest rate, but you'll also get to keep absolute ownership of your startup.

Another example of a non-dilutive funding source is revenue sharing. Revenue sharing places more emphasis on a company's growth rather than its equity (your assets vs. your debts). This is important because it is congruent with the interests of entities who provide non-dilutive funding. Funding entities are more concerned with how sustainable your startup is projected to be rather than how much it is worth. This makes non-dilutive funding one of the best avenues through which to receive monetary sponsorship

Accelerators

Startup accelerators support startups as they are, well, starting up. Focused on the early stages of companies, accelerators offer startup funding, mentorship, connections in the industry, and education. Resthetics, a finalist for the 2018 MassChallenge accelerator in Austin, was able to expand its young company thanks in part to the connections made at the MassChallenge accelerator. Weisfeld and Hashim gained access to global mentor networks through the MassChallenge accelerator. Mentors helped them with manufacturing, quality management systems, and guided them as they developed Resthetics.

One of the primary differences between accelerators and business plan competitions is that accelerators offer intensive training and rigorous mentoring to push entrepreneurs to learn the ins and outs of running a business in the span of a few months. It's a hands-on crash course in business, and not for the weak at heart.

Brave souls can find Texas accelerators here.

Bang for your buck

So you've finally received the funding you need for your startup. Now what?

As a kid, my old man never let a teachable moment pass him by. After I spent ten bucks on a single Pog, my dad's new mission in life was to teach me the value of a dollar.

This lesson becomes all the more important after you finally receive funding for your startup. Weisfeld stresses the importance of budgeting after funding is acquired.

"What's the furthest you can go with the smallest amount of money?" asks Weisfeld.

Weisfeld opines that while you must be comfortable spending money, you also have to be confident with your budgeting strategy so that you spend each dollar as efficiently as possible as you take your product to market. After all, what funder is going to want to invest in someone who is wasteful with money?

Whether it's negotiating with vendors, outsourcing, cutting costs, or using independent contractors, it is incontrovertible that financial efficiency should be your next goal after you've finally acquired your startup funding. As Weisfeld proclaims, "Every dollar you spend should in turn create the same amount of value to the company."

------

This article originally appeared on the University of Houston's The Big Idea.

Rene Cantu is the writer and editor at UH Division of Research.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Baylor center receives $10M NIH grant to continue rare disease research

NIH funding

Baylor College of Medicine’s Center for Precision Medicine Models received a $10 million, five-year grant from the National Institutes of Health last month that will allow it to continue its work studying rare genetic diseases.

The Center for Precision Medicine Models creates customized cell, fly and mouse models that mimic specific genetic variations found in patients, helping scientists to better understand how genetic changes cause disease and explore potential treatments.

The center was originally funded by an NIH grant, and its models have contributed to the discovery of several new rare disease genes and new symptoms caused by known disease genes. It hosts an online portal that allows physicians, families and advocacy groups to nominate genetic variants or rare diseases that need further investigation or new treatments.

Since its founding in 2020, it has received 156 disease/variant nominations, accepted 63 for modeling and produced more than 200 precision models, according to Baylor.

The center plans to use the latest round of funding to bring together more experts in rare disease research, animal modeling and bioinformatics, and to expand its focus and model more complex diseases.

Dr. Jason Heaney, associate professor in the Department of Molecular and Human Genetics at BCM, serves as the lead principal investigator of the center.

“The Department of Molecular and Human Genetics is uniquely equipped to bring together the diverse expertise needed to connect clinical human genetics, animal research and advanced bioinformatics tools,” Heaney added in the release. “This integration allows us to drive personalized medicine forward using precision animal models and to turn those discoveries into better care for patients.”

Houston institutions launch Project Metis to position region as global leader in brain health

brain trust

Leaders in Houston's health care and innovation sectors have joined the Center for Houston’s Future to launch an initiative that aims to make the Greater Houston Area "the global leader of brain health."

The multi-year Project Metis, named after the Greek goddess of wisdom and deep thought, will be led by the newly formed Rice Brain Institute, The University of Texas Medical Branch's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department. The initiative comes on the heels of Texas voters overwhelmingly approving a ballot measure to launch the $3 billion, state-funded Dementia Prevention and Research Institute of Texas (DPRIT).

According to organizers, initial plans for Project Metis include:

  • Creating working teams focused on brain health across all life stages, science and medical advances, and innovation and commercialization
  • Developing a regional Brain Health Index to track progress and equity
  • Implanting pilot projects in areas such as clinical care, education and workplace wellness
  • Sharing Houston’s progress and learnings at major international forums, including Davos and the UN General Assembly

The initiative will be chaired by:

  • Founding Chair: Dr. Jochen Reiser, President of UTMB and CEO of the UTMB Health System
  • Project Chair: Amy Dittmar, Howard R. Hughes Provost and Executive Vice President of Rice University
  • Project Chair: Dr. David L. Callender, President and CEO of Memorial Hermann Health System

The leaders will work with David Gow, Center for Houston’s Future president and CEO. Gow is the founder and chairman of Gow Media, InnovationMap's parent company.

“Now is exactly the right time for Project Metis and the Houston-Galveston Region is exactly the right place,” Gow said in a news release. “Texas voters, by approving the state-funded Dementia Prevention Institute, have shown a strong commitment to brain health, as scientific advances continue daily. The initiative aims to harness the Houston’s regions unique strengths: its concentration of leading medical and academic institutions, a vibrant innovation ecosystem, and a history of entrepreneurial leadership in health and life sciences.”

Lime Rock Resources, BP and The University of Texas MD Anderson Cancer Center served as early steering members for Project Metis. HKS, Houston Methodist and the American Psychiatric Association Foundation have also supported the project.

An estimated 460,000 Texans are living with dementia, according to the Alzheimer’s Association, and more than one million caregivers support them.

“Through our work, we see both the immense human toll of brain-related illness and the tremendous potential of early intervention, coordinated care and long-term prevention," Callender added in the release. "That’s why this bold new initiative matters so much."

Texas launches cryptocurrency reserve with $5 million Bitcoin purchase

Money Talks

Texas has launched its new cryptocurrency reserve with a $5 million purchase of Bitcoin as the state continues to embrace the volatile and controversial digital currency.

The Texas Comptroller’s Office confirmed the purchase was made last month as a “placeholder investment” while the office works to contract with a cryptocurrency bank to manage its portfolio.

The purchase is one of the first of its kind by a state government, made during a year where the price of Bitcoin has exploded amid the embrace of the digital currency by President Donald Trump’s administration and the rapid expansion of crypto mines in Texas.

“The Texas Legislature passed a bold mandate to create the nation’s first Strategic Bitcoin Reserve,” acting Comptroller Kelly Hancock wrote in a statement. “Our goal for implementation is simple: build a secure reserve that strengthens the state’s balance sheet. Texas is leading the way once again, and we’re proud to do it.”

The purchase represents half of the $10 million the Legislature appropriated for the strategic reserve during this year’s legislative session, but just a sliver of the state’s $338 billion budget.

However, the purchase is still significant, making Texas the first state to fund a strategic cryptocurrency reserve. Arizona and New Hampshire have also passed laws to create similar strategic funds but have not yet purchased cryptocurrency.

Wisconsin and Michigan made pension fund investments in cryptocurrency last year.

The Comptroller’s office purchased the Bitcoin the morning of Nov. 20 when the price of a single bitcoin was $91,336, according to the Comptroller’s office. As of Friday afternoon, Bitcoin was worth slightly less than the price Texas paid, trading for $89,406.

University of Houston energy economist Ed Hirs questioned the state’s investment, pointing to Bitcoin’s volatility. That makes it a bad investment of taxpayer dollars when compared to more common investments in the stock and bond markets, he said.

“The ordinary mix [in investing] is one that goes away from volatility,” Hirs said. “The goal is to not lose to the market. Once the public decides this really has no intrinsic value, then it will be over, and taxpayers will be left holding the bag.”

The price of Bitcoin is down significantly from an all-time high of $126,080 in early October.

Lee Bratcher, president of the Texas Blockchain Council, argued the state is making a good investment because the price of Bitcoin has trended upward ever since it first launched in early 2009.

“It’s only a 16-year-old asset, so the volatility, both in the up and down direction, will smooth out over time,” Bratcher said. “We still want it to retain some of those volatility characteristics because that’s how we could see those upward moves that will benefit the state’s finances in the future.”

Bratcher said the timing of the state’s investment was shrewd because he believes it is unlikely to be valued this low again.

The investment comes at a time that the crypto industry has found a home in Texas.

Rural counties have become magnets for crypto mines ever since China banned crypto mining in 2021 and Gov. Greg Abbott declared “Texas is open for crypto business” in a post on social media.

The state is home to at least 27 Bitcoin facilities, according to the Texas Blockchain Council, making it the world’s top crypto mining spot. The two largest crypto mining facilities in the world call Texas home.

The industry has also come under criticism as it expands.

Critics point to the industry’s significant energy usage, with crypto mines in the state consuming 2,717 megawatts of power in 2023, according to the comptroller’s office. That is enough electricity to power roughly 680,000 homes.

Crypto mines use large amounts of electricity to run computers that run constantly to produce cryptocurrencies, which are decentralized digital currencies used as alternatives to government-backed traditional currencies.

A 2023 study by energy research and consulting firm Wood Mackenzie commissioned by The New York Times found that Texans’ electric bills had risen nearly 5%, or $1.8 billion per year, due to the increase in demand on the state power grid created by crypto mines.

Residents living near crypto mines have also complained that the amount of job creation promised by the facilities has not materialized and the noise of their operation is a nuisance.

“Texas should be reinvesting Texan’s tax money in things that truly bolster the economy long term, living wage, access to quality healthcare, world class public schools,” said state Sen. Molly Cook, D-Houston, who voted against the creation of the strategic fund. “Instead it feels like they’re almost gambling our money on something that is known to be really volatile and has not shown to be a tide that raises all boats.”

State Sen. Charles Schwertner, R-Georgetown, who authored the bill that created the fund, said at the time it passed that it will allow Texas to “lead and compete in the digital economy.”

___

This story was originally published by The Texas Tribune and distributed through a partnership with The Associated Press.