The University of Michigan's Intero Biosystems was the star of the show at the 2025 Rice Business Plan Competition, bringing home both the top-place finish and the largest total investment. Photo courtesy Rice University.

Celebrating its 25th year, the Rice Alliance for Technology and Entrepreneurship hosted the celebrated Rice Business Plan Competition this month, doling out more than $2 million in investment and cash prizes to the top-performing teams.

“For 25 years, the Rice Business Plan Competition has helped shape how Rice Business shows up in the world by creating a platform where student-entrepreneurs can tackle some of the most complex challenges of our time in energy, in health care, in technology and beyond,” Peter Rodriguez, dean of Rice Business, the presenting sponsor of the event, said in a news release. “If we’re serious about changing the world — and I believe we are — then it’s our responsibility to open doors for students everywhere to imagine bold solutions and build what comes next.”

Over the course of the three-day event, the 42 startups competing this year from colleges or universities around the world presented their plans before more than 300 angel, venture capital, and corporate investors. The teams were selected from the event’s largest applicant pool to date and represented 34 universities across four countries, according to Rice. Winners were announced at the company showcase and awards ceremony April 12 in downtown Houston.

Seven finalists were selected, though each team left the competition with some form of funding, according to Rice. The University of Michigan's Intero Biosystems was the star of the show, bringing home both the top-place finish and the largest total investment. Rice's own Pattern Materials also had a strong showing, placing fourth in the pitch competition and also earning the fourth-highest investment total.

Here are the teams that won big in 2025. See a full list of winners and prizes here.

Intero Biosystems, University of Michigan - $902,000

The team finished in first place for its GastroScreen, the first stem cell-driven human “mini gut” that is ideal for organ function testing before testing on humans, and also claimed the largest total investments among the competition.

  • $150,000 Goose Capital Investment Grand Prize
  • $250,000 Goose Capital Investment Prize
  • $200,000 The OWL Investment Prize
  • $100,000 Houston Angel Network Investment Prize
  • $100,000 nCourage Investment Network’s Courageous Women Entrepreneur Investment Prize
  • $100,000 Investment Prize from Nancy Chang
  • $1,000 Mercury Elevator Pitch Competition - Overall Winner
  • $1,000 Anbarci Family Company Showcase Prize
  • TMC Innovation Healthcare Accelerator Bootcamp Invitation Prize

MabLab, Harvard University – $301,500

The team placed second for its rapid test capable of detecting multiple adulterants in laced drugs and spiked drinks.

  • $100,000 Investment Prize, sponsored by David Anderson, Anderson Family Fund, Jon Finger and Finger Interests
  • $100,000 The Indus Entrepreneurs (TiE) Texas Angels Investment Prize
  • $25,000 nCourage Investment Network’s Courageous Women Entrepreneur Investment Prize
  • $50,000 Valhalla Investment Network Investment Prize
  • $25,000 The Eagles Investor Investment Prize
  • $500 Mercury Elevator Pitch Competition - Life Science*
  • $1,000 Anbarci Family Company Showcase Prize

re.solution, RWTH Aachen University — $76,500

The team placed third for its water-based technology that recycles polyesters without generating salt waste, making textile recycling viable.

  • $50,000 Investment Prize, sponsored by David Anderson, Anderson Family Fund, Jon Finger and Finger Interests
  • $25,000 Pearland EDC Spirit of Entrepreneurship Cash Prize
  • $500 Mercury Elevator Pitch Competition - Energy/Cleantech
  • $1,000 Anbarci Family Company Showcase Prize

Pattern Materials, Rice University – $134,500

The Houston-based team placed fourth for its laser-induced graphene technology that can be rapidly performed, enabling low-cost, scalable production of the material.

  • $5,000 prize, sponsored by Norton Rose Fulbright
  • $50,000 Valhalla Investment Network Investment Prize
  • $25,000 Pearland EDC Spirit of Entrepreneurship Cash Prize
  • $25,000 New Climate Ventures Sustainable Investment Prize
  • $25,000 Amentum and WRX Companies Rising Stars Space Technology and Commercial Aerospace Cash Prize
  • $500 Mercury Elevator Pitch Competition - Hard Tech
  • $1,000 Anbarci Family Company Showcase Prize
  • $3,000 Venture Builder Innovation Prizes

Xatoms, Western University and University of Toronto — $30,000

The team placed fifth for its AI- and quantum-driven platform for discovering solar-activated semiconductor materials.

  • $5,000 prize, sponsored by EY
  • $25,000 nCourage Investment Network’s Courageous Women Entrepreneur Investment Prize

Mito Robotics, Carnegie Mellon University— $5,000

The team placed sixth for its automated manual cell culture with AI-powered robotic scientists for life science research

  • $5,000 prize, sponsored by Chevron Technology Ventures

FarmSmart.ai, LSU – $106,000

The team placed seventh for its AI—driven assistant that synthesizes vast agricultural research into actionable, tailored intelligence, but earned the fifth-most investments among the group.

  • $5,000 prize, sponsored by Shell Ventures
  • $100,000 The OWL Investment Prize
  • $1,000 Anbarci Family Company Showcase Prize
  • Edward H. Molter Memorial Prizes for Wildcard Round - 1st place - Advance to Finals


Other significant awards

GreenLIB Materials, University of Ottawa – $152,000

  • $150,000 Goose Capital Investment Prize
  • $2,000 Venture Builder Innovation Prizes

Microvitality, Tufts University – $26,500

  • $25,000 Southwest National Pediatric Device Consortium Pediatric Device Cash Prize
  • $1,500 Edward H. Molter Memorial Prizes for Wildcard Round - 3rd place overall in WC

Nanoborne, University of Texas at Austin - $25,000

  • $25,000 NOV Golden Ticket to Supernova Accelerator and Cash Prize

Last year, the Rice Business Plan Competition facilitated over $1.5 million in investment and cash prizes. MesaQuantum from Harvard University landed the highest total investment last year, although it was not named a finalist. Protein Pints from Michigan State University won the pitch competition.

According to Rice, 910 startups have raised more than $6.9 billion in capital through the competition over the last 25 years.

The winners of the hackathon included a contact tracing tool for schools, a soap dispenser to promote handwashing, a virus-killing filter, and more. Photo via Rice University Public Relations

College students design COVID-19 innovations at Rice University competition

coronavirus creations

As fall creeps closer, the need for a safe way to reopen schools becomes more and more dire. A team of Rice University students created a software that might help on that front.

SchoolTrace, a software that uses the schedules of students and faculty for COVID-19 contact tracing in schools, won top honors in the 2020 Rice Design-A-Thon, which took place July 17 to 19 online this year due to the pandemic. The hackathon was planned to be held in person during the fall semester, but organizers moved up the date to focus on coronavirus solutions. Twenty-three teams — comprised of 116 undergraduate competitors — participated.

"We wanted to provide students with a meaningful summer opportunity and the potential for a significant public health impact," says Carrigan Hudgins, a Sid Richardson College senior and co-coordinator, in a news release. "At one point, we considered cancelling, but hosting it virtually instead actually allowed us to reach a broader base of students across Texas and out of state."

SchoolTrace and its contact tracing tech that doesn't raise privacy concerns with tracking sensors or mobile phone apps took the $1,000 first price. Justin Cheung, Nick Glaze, Mit Mehta, Tyler Montague and Huzaifah Shamim — all juniors majoring in electrical and computer engineering — also received $500 for excelling in the digital age of health care track.

The teams that came in second and third place received $800 and $600, respectively, and the winners of each of the three design tracks also scored $500. The prizes were sponsored by Rice's George R. Brown School of Engineering, Rice's student chapter of the Biomedical Engineering Society and the Southwest National Pediatric Device Innovation Consortium.

Aside from the cash prizes, the students also received valuable guidances and feedback from industry experts.

"Having the judges and our team vouch for the actual solution, when we can propose it to different competitions and incubators around Texas and the country, is more important than the cash prizes," says co-coordinator Franklin Briones, a Brown College senior who competed in previous design-a-thons at Rice. Briones and Hudgins co-coordinated this year's event with Wiess College senior Eric Torres.

Here were the other award-winning innovations to come out of the program:

  • Second place and pediatric track winner — "Team SARS Wars: A New Hope." The team created a soap dispenser attachment that plays music and rewards children with stickers if they wash their hands for 20 seconds. Team members included: Anyssa Castorina, Aman Eujayl, Diego Lopez-Bernal, Janet Lu, Rubén Sebastián Marroquín, and Belén Szentes, all sophomores from Rice.
  • Third place — "The (d^3x/dt^3)(s)." COV-COM is a wall-mounted filtration system that catches and kills COVID-19 created by a team of juniors and seniors from the University of Texas at San Antonio. Team members included: Olivia Garza, Juan Herrera, Frida Montoya, Aishwarya Sathish, Samantha Strahan, and Morgan Struthers.
  • Global health track winner — "The Duncaroo Designers." The team from Rice created affordable desk partitions that could be used in schools with limited funds. Team members included: senior Rachel Bui and sophomores Jacob Duplantis, Charlie Gorton, Andrei Mitrofan, Anh Nguyen, and Vivian Wong.

Each of the teams were tasked Friday (July 17) evening with the prompt to "design and present a solution (either a product or a method) to address the treatment, prevention or non-medical related needs of the COVID-19 pandemic." Final presentations took place final presentations Sunday afternoon.

"The needs-finding for those problems was the most cumbersome part," Briones says in the release. "Not because it's hard to find problems, but because COVID-19 is so continually changing. It was hard to find which problem was the most important one."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston scientists develop breakthrough AI-driven process to design, decode genetic circuits

biotech breakthrough

Researchers at Rice University have developed an innovative process that uses artificial intelligence to better understand complex genetic circuits.

A study, published in the journal Nature, shows how the new technique, known as “Combining Long- and Short-range Sequencing to Investigate Genetic Complexity,” or CLASSIC, can generate and test millions of DNA designs at the same time, which, according to Rice.

The work was led by Rice’s Caleb Bashor, deputy director for the Rice Synthetic Biology Institute and member of the Ken Kennedy Institute. Bashor has been working with Kshitij Rai and Ronan O’Connell, co-first authors on the study, on the CLASSIC for over four years, according to a news release.

“Our work is the first demonstration that you can use AI for designing these circuits,” Bashor said in the release.

Genetic circuits program cells to perform specific functions. Finding the circuit that matches a desired function or performance "can be like looking for a needle in a haystack," Bashor explained. This work looked to find a solution to this long-standing challenge in synthetic biology.

First, the team developed a library of proof-of-concept genetic circuits. It then pooled the circuits and inserted them into human cells. Next, they used long-read and short-read DNA sequencing to create "a master map" that linked each circuit to how it performed.

The data was then used to train AI and machine learning models to analyze circuits and make accurate predictions for how untested circuits might perform.

“We end up with measurements for a lot of the possible designs but not all of them, and that is where building the (machine learning) model comes in,” O’Connell explained in the release. “We use the data to train a model that can understand this landscape and predict things we were not able to generate data on.”

Ultimately, the researchers believe the circuit characterization and AI-driven understanding can speed up synthetic biology, lead to faster development of biotechnology and potentially support more cell-based therapy breakthroughs by shedding new light on how gene circuits behave, according to Rice.

“We think AI/ML-driven design is the future of synthetic biology,” Bashor added in the release. “As we collect more data using CLASSIC, we can train more complex models to make predictions for how to design even more sophisticated and useful cellular biotechnology.”

The team at Rice also worked with Pankaj Mehta’s group in the department of physics at Boston University and Todd Treangen’s group in Rice’s computer science department. Research was supported by the National Institutes of Health, Office of Naval Research, the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation, the American Heart Association, National Library of Medicine, the National Science Foundation, Rice’s Ken Kennedy Institute and the Rice Institute of Synthetic Biology.

James Collins, a biomedical engineer at MIT who helped establish synthetic biology as a field, added that CLASSIC is a new, defining milestone.

“Twenty-five years ago, those early circuits showed that we could program living cells, but they were built one at a time, each requiring months of tuning,” said Collins, who was one of the inventors of the toggle switch. “Bashor and colleagues have now delivered a transformative leap: CLASSIC brings high-throughput engineering to gene circuit design, allowing exploration of combinatorial spaces that were previously out of reach. Their platform doesn’t just accelerate the design-build-test-learn cycle; it redefines its scale, marking a new era of data-driven synthetic biology.”

Axiom Space wins NASA contract for fifth private mission, lands $350M in financing

ready for takeoff

Editor's note: This story has been updated to include information about Axiom's recent funding.

Axiom Space, a Houston-based space infrastructure company that’s developing the first commercial space station, has forged a deal with NASA to carry out the fifth civilian-staffed mission to the International Space Station.

Axiom Mission 5 is scheduled to launch in January 2027, at the earliest, from NASA’s Kennedy Space Center in Florida. The crew of non-government astronauts is expected to spend up to 14 days docked at the International Space Station (ISS). Various science and research activities will take place during the mission.

The crew for the upcoming mission hasn’t been announced. Previous Axiom missions were commanded by retired NASA astronauts Michael López-Alegría, the company’s chief astronaut, and Peggy Whitson, the company’s vice president of human spaceflight.

“All four previous [Axiom] missions have expanded the global community of space explorers, diversifying scientific investigations in microgravity, and providing significant insight that is benefiting the development of our next-generation space station, Axiom Station,” Jonathan Cirtain, president and CEO of Axiom, said in a news release.

As part of Axiom’s new contract with NASA, Voyager Technologies will provide payload services for Axiom’s fifth mission. Voyager, a defense, national security, and space technology company, recently announced a four-year, $24.5 million contract with NASA’s Johnson Space Center in Houston to provide mission management services for the ISS.

Axiom also announced today, Feb. 12, that it has secured $350 million in a financing round led by Type One Ventures and Qatar Investment Authority.

The company shared in a news release that the funding will support the continued development of its commercial space station, known as Axiom Station, and the production of its Axiom Extravehicular Mobility Unit (AxEMU) under its NASA spacesuit contract.

NASA awarded Axiom a contract in January 2020 to create Axiom Station. The project is currently underway.

"Axiom Space isn’t just building hardware, it’s building the backbone of humanity’s next era in orbit," Tarek Waked, Founding General Partner at Type One Ventures, said in a news release. "Their rare combination of execution, government trust, and global partnerships positions them as the clear successor-architect for life after the ISS. This is how the United States continues to lead in space.”

Houston edtech company closes oversubscribed $3M seed round

fresh funding

Houston-based edtech company TrueLeap Inc. closed an oversubscribed seed round last month.

The $3.3 million round was led by Joe Swinbank Family Limited Partnership, a venture capital firm based in Houston. Gamper Ventures, another Houston firm, also participated with additional strategic partners.

TrueLeap reports that the funding will support the large-scale rollout of its "edge AI, integrated learning systems and last-mile broadband across underserved communities."

“The last mile is where most digital transformation efforts break down,” Sandip Bordoloi, CEO and president of TrueLeap, said in a news release. “TrueLeap was built to operate where bandwidth is limited, power is unreliable, and institutions need real systems—not pilots. This round allows us to scale infrastructure that actually works on the ground.”

True Leap works to address the digital divide in education through its AI-powered education, workforce systems and digital services that are designed for underserved and low-connectivity communities.

The company has created infrastructure in Africa, India and rural America. Just this week, it announced an agreement with the City of Kinshasa in the Democratic Republic of Congo to deploy a digital twin platform for its public education system that will allow provincial leaders to manage enrollment, staffing, infrastructure and performance with live data.

“What sets TrueLeap apart is their infrastructure mindset,” Joe Swinbank, General Partner at Joe Swinbank Family Limited Partnership, added in the news release. “They are building the physical and digital rails that allow entire ecosystems to function. The convergence of edge compute, connectivity, and services makes this a compelling global infrastructure opportunity.”

TrueLeap was founded by Bordoloi and Sunny Zhang and developed out of Born Global Ventures, a Houston venture studio focused on advancing immigrant-founded technology. It closed an oversubscribed pre-seed in 2024.