The WaTER Institute is housed in Rice University's Ralph S. O'Connor Building. Photo via Rice.edu

Researchers at Rice University are making cleaner water through the use of nanotech.

Decades of research have culminated in the creation of the Water Technologies Entrepreneurship and Research (WaTER) Institute launched in January 2024 and its new Rice PFAS Alternatives and Remediation Center (R-PARC).

“Access to safe drinking water is a major limiting factor to human capacity, and providing access to clean water has the potential to save more lives than doctors,” Rice’s George R. Brown Professor of Civil and Environmental Engineering Pedro Alvarez says in a news release.

The WaTER Institute has made advancements in clean water technology research and applications established during a 10-year period of Nanotechnology Enabled Water Treatment (NEWT), which was funded by the National Science Foundation. R-PARC will use the institutional investments, which include an array of PFAS-dedicated advanced analytical equipment.

Alvarez currently serves as director of NEWT and the WaTER Institute. He’s joined by researchers that include Michael Wong, Rice’s Tina and Sunit Patel Professor in Molecular Nanotechnology, chair and professor of chemical and biomolecular engineering and leader of the WaTER Institute’s public health research thrust, and James Tour, Rice’s T.T. and W.F. Chao Professor of Chemistry and professor of materials science and nanoengineering.

“We are the leaders in water technologies using nano,” adds Wong. “Things that we’ve discovered within the NEWT Center, we’ve already started to realize will be great for real-world applications.”

The NEWT center plans to equip over 200 students to address water safety issues, and assist/launch startups.

“Across the world, we’re seeing more serious contamination by emerging chemical and biological pollutants, and climate change is exacerbating freshwater scarcity with more frequent droughts and uncertainty about water resources,” Alvarez said in a news release. “The Rice WaTER Institute is growing research and alliances in the water domain that were built by our NEWT Center.”

NanoTech is targeting new overseas markets for its energy efficiency products. Photo via Getty Images

Promising Houston startup expands energy efficiency product to Middle East, Singapore

big move

NanoTech Materials has announced a big expansion for its business.

The Houston company, which created a roof coating using nanotechnology that optimizes energy efficiency, has partnered with Terminal Subsea Solutions Marine Service SP to bring its products to the Gulf Cooperation Council and Singapore. TSSM will become a partner of Houston’s NanoTech Materials products, which will include the Cool Roof Coat, Vehicular Coat, and Insulative Coat for the GCC countries and Singapore.

NanoTech Materials technology that ranges from roof coatings on mid- to low-rise buildings to shipping container insulation to coating trucks and transportation vehicles will be utilized by TSSM in the partnership. NanoTech’s efforts are focused on heat mitigation that can reduce energy costs, enhance worker safety, and minimize business risks in the process.

“Businesses and communities within the GCC and Singapore feel the impact of extreme temperatures and longer Summers more acutely than any other region in the world,” Mike Francis, CEO of NanoTech Materials, says in a news release. “We have an opportunity to make a real impact here through reduced energy load, cooler and safer working conditions, and a reduced carbon emissions output from the hottest, driest place on earth. We are incredibly excited to be partnering with our colleagues at TSSM to bring this powerful technology to the region.”

One of the areas that will benefit from this collaboration is the Middle East. The GCC region is characterized by a desert climate, which has average annual temperature reaching 107.6°F and summer peaks climbing as high as 130°F. The effects of these extreme conditions can be dangerous for workers especially with strict labor laws mandating midday work bans under black flag conditions, which can result in productivity losses as well.

NanoTech’s proprietary technology, the Insulative Ceramic Particle (ICP), will be used to address challenges in energy efficiency and heat control in the logistics and built environment sector. The platform can be integrated into many applications, and the impact can range from reducing greenhouse gas emissions to protecting communities that are wildfire-prone. The core of the technology has a lower conductivity than aerogels. It also has a “near-perfect emissivity score” according to the company. The NanoTech ICP is integrated with base matrix carriers; building materials, coatings, and substrates, which gives the materials heat conservation, rejection, or containment properties.

By combining the ICP into an acrylic roof coating, NanoTech has created the Cool Roof Coat, which reflects sunlight and increases the material's heat resistance. This can lower indoor temperatures by 25 to 45°F in single-story buildings and reduce the carbon emissions of mid to low-rise buildings. This can potentially equal energy savings from 20 percent up to 50 percent, which would surpass the average 15 percent savings of traditional reflective only coatings.

“This technology will have a huge impact on supporting the region's aggressive climate initiatives, such as Saudi Arabia’s Green Initiative, aiming to reduce carbon emissions by 278 million tons annually by 2030,” Jameel Ahmed, managing director at TSSM, says in the release. “The regional efforts to enhance climate action and economic opportunities through substantial investments in green technologies and projects are evident, and we are proud to be offering a product that can make a difference.”

NanoTech says its coating maintains its effectiveness over time and doesn’t suffer UV degradation issues which are helpful, especially in extreme weather conditions workers and businesses face in regions like the Middle East.

------

This article originally ran on EnergyCapital.

NanoTech Materials celebrated its move into a new facility — a 43,000-square-foot space in Katy, Texas, this week. Photo courtesy of NanoTech Materials

Growing Houston startup moves into 43,000-square-foot facility amid 'hypergrowth phase'

major milestone

A Houston startup has moved into a new space that's more than four times larger than its previous setup — a move that's setting the company up to scale its business.

NanoTech Materials celebrated its move into a new facility — a 43,000-square-foot space in Katy, Texas, this week. The materials science company currently distributes a roof coating that features its novel heat-control technology across the company. Originally founded in a garage, the company has now moved from its 10,000-square-foot space at Halliburton Labs into the larger location to support its growth.

“The new facility allows us to not just focus on the roofing, and that’s growing at a pretty rapid pace, but also stand up different production lines for our next iteration of technologies coming-out," Mike Francis, co-founder and CEO of NanoTech tells InnovationMap.

The space allows for a 340 percent increase in the manufacturing and operational capabilities, including producing 55 million square feet a year of roof coating. Francis says the new products he's focused on launching and scaling include a wildfire protectant coating and liquid applied insulation for trucks and containers to control heat for driver and worker safety.

Francis adds that he will be expanding the company's team to support this growth.

“We’re constantly hiring now,” he says. “We have about 25 employees right now. Next year, we’ll probably be double that. We’re kind of in a hypergrowth phase."

Francis likes to credit Houston in part for NanoTech's ability to grow at this pace and to be successful.

Mike Francis is the CEO and co-founder of NanoTech Materials. Photo via LinkedIn

“Houston has a shot at being one of the top startup cities of the world — I think it’s going to take a lot of time and capital, but what makes Houston different is its ability to scale existing technologies,” Francis says.

“I really think that Houston is already the spot to take an existing technology and build a team around it to turn it into a company because you have all of the players — whether it’s the end customer or the incubators and 'scalerators' — and you have all of these pieces coming into place," he continues. "Maybe it’s not the best place to start a company, but it’s definitely the best place to scale a company because of the ecosystem is really willing to participate and raise up startups like ours."

As the first company selected for Halliburton's incubator, Halliburton Labs, when it launched in 2020, NanoTech has worked closely with the company that housed and supported them for years.

“Once you’re in the Halliburton Labs fold, they are always just a phone call away from making something happen," he says. “We’re transferring all that knowledge into a bigger facility — growing up and graduating from what they gave us.”

Last year, NanoTech raised an oversubscribed funding round that brought on a handful of new investors. The details of the round were not disclosed, but NanoTech did release that the round included participation from three institutional investors, two corporate-strategic investors, and seven family offices. The company originally raised its seed round in 2020.

The NanoTech team, including Francis and Carrie Horazeck, chief commercial officer, joined the Houston Innovators Podcast last year to discuss how they've rolled out their first line of business.


NanoTech's Chief Commercial Officer Carrie Horazeck and Co-Founder and CEO Mike Francis join the Houston Innovators Podcast to celebrate the nationwide launch of their roof coating product. Photo via LinkedIn

Houston material science company strategically rolls out flagship product nationwide

houston innovators podcast episode 174

A Houston startup is celebrating its nationwide launch of its flagship product that coats roofs to reduce energy waste.

NanoTech's Nano Shield Cool Roof Coat is a unique product that can be added onto roofs to reduce energy waste on buildings. Co-founder and CEO Mike Francis and Chief Commercial Officer Carrie Horazeck joined the Houston Innovators Podcast to share more details about the product.

"It's just a coating that can go on top of existing structure — any type of commercial roof," Horazeck says on the show. "We have a pretty good amount of data from 2022 showcasing that we can reduce HVAC consumption within the building by about 30 to 40 percent.

"Our clients really see a immediate benefit in their energy bill, and, of course, if you reduce the HVAC consumption, that automatically translates to a decrease in your scope one emissions," she continues.

Now, NanoTech is playing in the climatetech materials space, the duo explains, and is able to offer clients the opportunity of sustainability with a return — and provide the data for them to prove it.

When deciding how to roll out the product nationally, Francis and Horazeck decided to create a partner enablement program of around 20 companies rather than going with one big distributor.

"We wanted to make sure we developed really strong relationships with our partners and brought on partners that really believed in our vision and understood what we're trying to do at NanoTech — not just with the roof coating, but the whole vision of our company," Horazecks says, explaining that NanoTech has 12 partner companies already and is actively interviewing for the last eight spots.

The roof coating is just the beginning, Francis and Horazeck say about the growing company. NanoTech, which also has a fireproofing product that can protect against fires of up to 1,800 degree Celcius temperatures, also is working on a clear coating product for windows and even solar panels.

"We have the technologies — we're filing multiple patents almost every month to enter different areas of the green building and fireproofing spaces. We're working with more than 40 Fortune 500 companies — things are really clicking," Francis says on the show. "What I think is the next period in our company history is hiring the best talent we can possibly find."

Francis and Horazeck share more about the future of NanoTech on the podcast, and each share their thoughts on the vast opportunities in Houston's networking community and innovation ecosystem. Listen to the interview below — or wherever you stream your podcasts — and subscribe for weekly episodes.


UH is investing in a nanotechnology developed on its own campus that can help prevent the spread of COVID-19. Photo courtesy of University of Houston

University of Houston to install nanotech-coated air filters on campus to prevent COVID-19 spread

who's house

A nanotechnology developed at the University of Houston is about to make a big difference right on campus.

UH's Facilities/Construction Management Preventive Maintenance team is working on a project that will install air filters that are nanocoated with a material that was first developed at the UH Technology Bridge. UH Professor of Physics Seamus Curran has an extensive background in nanotech, and, as he learned more about COVID-19 and how it spreads, he started nano-coating facemasks to make them more resistant to the small particles that enable the spread of the virus.

Originally developed for the construction business, Curran's coating material could also be used to create hydrophobic facemasks, Curran discovered, and he founded a spin off company, Curran Biotech, to develop his next pandemic-proof innovation: nano-coated air filters.

"The big thing for me when we were shut down was that people couldn't go to work or school. The country can't live that way — but you can't send people back to work in a world that's not safe," Curran said last October in an interview for the Houston Innovators Podcast. "How do you create a safer environment? That's the thing that really got me going in the beginning in the summer. We looked at filters."

Listen to Professor Curran on the Houston Innovators Podcast:

Curran, who says he's learned more about air filters than he ever cared to, realized that even the most expensive air filters can only protect from 10 to 25 percent of viruses. And most buildings' HVAC systems would have to be replaced completely to allow for these pricier, more protective filters. But Curran Biotech's Capture Coating can be used on existing filters and HVAC systems.

Air filters coated with Curran Biotech's sealant were then tested at the New York Family Court Building, by DCAS-Energy Management Division, and now, ahead of the fall semester, UH is implementing the innovation in all buildings that have less than MERV-13 rated filters.

Curran Biotech's sealant can be used on existing air filters and HVAC systems. Photo via UH.edu

Houston-based NanoTech Inc. has announced it's closed its seed round of funding. Photo courtesy of NanoTech

Houston startup closes $5M seed round led by Austin VC

Fresh funds

It's payday for a Houston startup that is housed out of the new Halliburton Labs. Nanotech Inc., which material science for fire-proofing and insulation, has announced the close of its $5 million seed round.

According to NanoTech's news release, Austin-based Ecliptic Capital led the investment round. Additionally, the deal also resulted in the conversion of a simple agreement for future equity, or SAFE, that was previously issued to Halliburton Labs.

"The investment from Ecliptic Capital will allow us to scale our business to achieve our mission of fireproofing the world and reducing global energy consumption. Additionally, our participation with Halliburton Labs provides us with the support of a Fortune 500 company." says NanoTech's CEO Mike Francis in the release.

Based in Austin, Ecliptic Capital is a fund focused on early-stage startups and supports a wide range of technologies across neglected geographies and industries.

"Ecliptic is proud to partner with NanoTech as the company's founding institutional investor," says Mike W. Erwin, founder of Ecliptic Capital, in the release. "We're excited to work with the company and leverage our operational expertise to rapidly scale this impactful, world-changing technology. We look forward to a new world where NanoTech accelerates the thermal management market from science-fiction to science-fact."

Halliburton Company chose NanoTech among a round of contenders to be the first participant of their 12-month program located at their Houston headquarters. Halliburton provides Nanotech with its own office space, access to Halliburton facilities, technical expertise, and an extensive network to accelerate their product to market.

'We are thrilled to see a Halliburton Labs participant secure their first round of financing, and congratulate the Ecliptic and NanoTech teams,' says Scott Gale, Halliburton Labs executive director, in the release. 'We are confident in the path forward as they work towards achieving a clean energy future.'

NanoTech's proprietary technology has the ability to be utilized for various industries — including commercial construction, chemical plants, oil and gas, aviation, utilities and much more — for eco-friendly spray-on insulation and fireproofing.

"As a company, we are just scratching the surface on where our technology will be used and can't wait to see the business scale." adds Mike Francis.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University launches hub in India to drive education, tech innovation abroad

global mission

Rice University is launching Rice Global India, which is a strategic initiative to expand India’s rapidly growing education and technology sectors.

“India is a country of tremendous opportunity, one where we see the potential to make a meaningful impact through collaboration in research, innovation and education,” Rice President Reginald DesRoches says in a news release. “Our presence in India is a critical step in expanding our global reach, and we are excited to engage more with India’s academic leaders and industries to address some of the most pressing challenges of our time.”

The new hub will be in the country’s third-largest city and the center of the country’s high-tech industry, Bengaluru, India, and will include collaborations with top-tier research and academic institutions.

Rice continues its collaborations with institutions like the Indian Institute of Technology (IIT) Kanpur and the Indian Institute of Science (IISc) Bengaluru. The partnerships are expected to advance research initiatives, student and faculty exchanges and collaborations in artificial intelligence, biotechnology and sustainable energy.

India was a prime spot for the location due to the energy, climate change, artificial intelligence and biotechnology studies that align with Rice’s research that is outlined in its strategic plan Momentous: Personalized Scale for Global Impact.

“India’s position as one of the world’s fastest-growing education and technology markets makes it a crucial partner for Rice’s global vision,” vice president for global at Rice Caroline Levander adds. “The U.S.-India relationship, underscored by initiatives like the U.S.-India Initiative on Critical and Emerging Technology, provides fertile ground for educational, technological and research exchanges.”

On November 18, the university hosted a ribbon-cutting ceremony in Bengaluru, India to help launch the project.

“This expansion reflects our commitment to fostering a more interconnected world where education and research transcend borders,” DesRoches says.

UH-backed project secures $3.6M to transform CO2 into sustainable fuel with cutting-edge tech

funds granted

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

------

This article originally ran on EnergyCapital.

Houston innovator drives collaboration, access to investment with female-focused group

HOUSTON INNOVATORS PODCAST EPISODE 262

After working in technology in her home country of Pakistan, Samina Farid, who was raised in the United States, found her way to Houston in the '70s where business was booming.

She was recruited to work at Houston Natural Gas — a company that would later merge and create Enron — where she rose through the ranks and oversaw systems development for the company before taking on a role running the pipelines.

"When you're in technology, you're always looking for inefficiencies, and you always see areas where you can improve," Farid says on the Houston Innovators Podcast, explaining that she moved on from Enron in the mid-'80s, which was an exciting time for the industry.

"We had these silos of data across the industry, and I felt like we needed to be communicating better, having a good source of data, and making sure we weren't continuing to have the problems we were having," she says. "That was really the seed that got me started in the idea of building a company."

She co-founded Merrick Systems, a software solutions business for managing oil and gas production, with her nephew, and thus began her own entrepreneurial journey. She came to another crossroads in her career after selling that business in 2014 and surviving her own battle with breast cancer.

"I got involved in investing because the guys used to talk about it — there was always men around me," Farid says. "I was curious."

In 2019, she joined an organization called Golden Seeds. Founded in 2005 in New York, the network of angel investors funding female-founded enterprises has grown to around 280 members across eight chapters. Suzan Deison, CEO of the Houston Women's Chamber, was integral in bringing the organization to Houston, and now Farid leads it as head of the Houston Chapter of Golden Seeds.

For Farid, the opportunity for Houston is the national network of investors — both to connect local female founders to potential capital from coast to coast and to give Houston investors deal flow from across the country.

"It was so hard for me to get funding for my own company," Farid says. "Having access to capital was only on the coasts. Software and startups was too risky."

Now, with Golden Seeds, the opportunity is there — and Farid says its an extremely collaborative investor network, working with local organizations like the Houston Angel Network and TiE Houston.

"With angel investing, when we put our money in, we want these companies to succeed," she says."We want more people to see these companies and to invest in them. We're not competing. We want to work with others to help these companies succeed."