UH is investing in a nanotechnology developed on its own campus that can help prevent the spread of COVID-19. Photo courtesy of University of Houston

A nanotechnology developed at the University of Houston is about to make a big difference right on campus.

UH's Facilities/Construction Management Preventive Maintenance team is working on a project that will install air filters that are nanocoated with a material that was first developed at the UH Technology Bridge. UH Professor of Physics Seamus Curran has an extensive background in nanotech, and, as he learned more about COVID-19 and how it spreads, he started nano-coating facemasks to make them more resistant to the small particles that enable the spread of the virus.

Originally developed for the construction business, Curran's coating material could also be used to create hydrophobic facemasks, Curran discovered, and he founded a spin off company, Curran Biotech, to develop his next pandemic-proof innovation: nano-coated air filters.

"The big thing for me when we were shut down was that people couldn't go to work or school. The country can't live that way — but you can't send people back to work in a world that's not safe," Curran said last October in an interview for the Houston Innovators Podcast. "How do you create a safer environment? That's the thing that really got me going in the beginning in the summer. We looked at filters."

Listen to Professor Curran on the Houston Innovators Podcast:

Curran, who says he's learned more about air filters than he ever cared to, realized that even the most expensive air filters can only protect from 10 to 25 percent of viruses. And most buildings' HVAC systems would have to be replaced completely to allow for these pricier, more protective filters. But Curran Biotech's Capture Coating can be used on existing filters and HVAC systems.

Air filters coated with Curran Biotech's sealant were then tested at the New York Family Court Building, by DCAS-Energy Management Division, and now, ahead of the fall semester, UH is implementing the innovation in all buildings that have less than MERV-13 rated filters.

Curran Biotech's sealant can be used on existing air filters and HVAC systems. Photo via UH.edu

Houston-based NanoTech Inc. has announced it's closed its seed round of funding. Photo courtesy of NanoTech

Houston startup closes $5M seed round led by Austin VC

Fresh funds

It's payday for a Houston startup that is housed out of the new Halliburton Labs. Nanotech Inc., which material science for fire-proofing and insulation, has announced the close of its $5 million seed round.

According to NanoTech's news release, Austin-based Ecliptic Capital led the investment round. Additionally, the deal also resulted in the conversion of a simple agreement for future equity, or SAFE, that was previously issued to Halliburton Labs.

"The investment from Ecliptic Capital will allow us to scale our business to achieve our mission of fireproofing the world and reducing global energy consumption. Additionally, our participation with Halliburton Labs provides us with the support of a Fortune 500 company." says NanoTech's CEO Mike Francis in the release.

Based in Austin, Ecliptic Capital is a fund focused on early-stage startups and supports a wide range of technologies across neglected geographies and industries.

"Ecliptic is proud to partner with NanoTech as the company's founding institutional investor," says Mike W. Erwin, founder of Ecliptic Capital, in the release. "We're excited to work with the company and leverage our operational expertise to rapidly scale this impactful, world-changing technology. We look forward to a new world where NanoTech accelerates the thermal management market from science-fiction to science-fact."

Halliburton Company chose NanoTech among a round of contenders to be the first participant of their 12-month program located at their Houston headquarters. Halliburton provides Nanotech with its own office space, access to Halliburton facilities, technical expertise, and an extensive network to accelerate their product to market.

'We are thrilled to see a Halliburton Labs participant secure their first round of financing, and congratulate the Ecliptic and NanoTech teams,' says Scott Gale, Halliburton Labs executive director, in the release. 'We are confident in the path forward as they work towards achieving a clean energy future.'

NanoTech's proprietary technology has the ability to be utilized for various industries — including commercial construction, chemical plants, oil and gas, aviation, utilities and much more — for eco-friendly spray-on insulation and fireproofing.

"As a company, we are just scratching the surface on where our technology will be used and can't wait to see the business scale." adds Mike Francis.

University of Houston professor and entrepreneur, Seamus Curran, has pivoted amid the pandemic to use his nanotechnology expertise to help reduce the spread of COVID-19. Photo courtesy of Integricote

Houston scientist taps nanotech in masks and air filters to use to prevent COVID-19 spread

HOUSTON INNOVATORS PODCAST EPISODE 52

For over a decade, Seamus Curran, a physics professor at the University of Houston, has worked on his nanotechnology coating substance. He first thought the innovation could be used on fabrics and textile coating, but he realized, once getting acquainted with the industry, he realized there wasn't an interest for a hydrophobic coating that could be used to prevent the spread of germs — at least, not yet.

"Like anything small startup company, one of the things you have to learn is you have to pivot — or you will die," says Curran, who had created his company Integricote (neé C-Voltaics) to take his innovation to market.

So pivot is what he did. Integricote now markets toward coating and sealing materials within the construction industry — wood, concrete, etc. — to protect from water damage and rotting. As Curran shares on this week's episode of the Houston Innovators Podcast, business was growing steadily. That is until COVID-19 hit.

His construction coating business slowed, much like the rest of business across the country, and classes at UH switched to online. Curran used this newfound time at home to dig deeper into the details of the virus, when an idea hit him.

"I learned the virus traveled in a wet medium," Curran says, "(our coating) is hydrophobic, meaning we can stop it from penetrating any fabrics."

Curran worked to create hydrophobic facemasks using his sealant, and the technology was lauded and covered by various news organizations. He created a new company under Integricote, called Curran Biotech, and he started thinking of the next pandemic-proof innovation he could create using his sealant.

"The big thing for me when we were shut down was that people couldn't go to work or school. The country can't live that way — but you can't send people back to work in a world that's not safe," Curran says. "How do you create a safer environment? That's the thing that really got me going in the beginning in the summer. We looked at filters."

Curran, learning more about air filters than he ever cared to, realized that even the most expensive air filters can only protect from 10 to 25 percent of viruses. And most buildings' HVAC systems would have to be replaced completely to allow for these pricier, more protective filters.

"So, you'd have to replace your equipment and your filter prices go up — and you're still not blocking the virus," Curran says.

Curran Biotech's solution is a spray coating that can be used on air filters to make them more protected from COVID-19 spread.

Curran shared more about his nanotechnology innovation — as well as his excitement for being named one of MassChallenge Texas's finalist within the 2020 Houston cohort — in the episode of the podcast. You can listen to the full interview below — or wherever you stream your podcasts — and subscribe for weekly episodes.


Houston-based Nanotech was the first company to be selected for Halliburton Labs, a recently announced startup incubator. Photo via halliburtonlabs.com

Houston startup — buoyed by Halliburton — plans to scale

in the lab

A Houston-based material science startup that uses nanotechnology for thermal insulation and fireproofing has been chosen as the first participant of Halliburton Labs, an innovation incubator, announced late last month by the oil and gas giant.

Halliburton Company chose Nanotech Inc., among a round of contenders to be the first participant of their 12-month program located at their Houston headquarters. Halliburton will provide Nanotech with its own office space, access to Halliburton facilities, technical expertise, and an extensive network to accelerate their product to market.

"With Nanotech's shield material we can have fireproofing infrastructure, saving lives and helping save the planet," says Mike Francis, CEO of Nanotech. "But it's tremendously difficult to scale our small lab to take our product globally, so when we heard about this opportunity with Halliburton Labs, we jumped immediately on it."

Nanotech Inc., started with a singular technology and a simple mission to fireproof the world and reduce energy consumption globally. The base nano shield, flex shield, and forged shield products contain nanoparticles ranging from 1 micrometer to 1 nanometer in a water-based solution with other inorganic compounds. The coating is heat resistant, non-flammable, and the nontoxic properties ensure it is sustainable for the environment.

"We see the Nanotech team as part of our team," says Scott Gale, executive director of Halliburton Labs. "We see them as an extension of the founding Halliburton Labs team, during our initial conversations, we saw their product development cycle and founding team and found a lot of great overlap."

From Francis' perspective, Halliburton Labs allows his company to live the best of both worlds, with access to the garage-style office of any startup and a lab equipped with the full muscle of the Halliburton resources and knowledge.

"What they are providing us is incredible," says Francis. "We have access to this world-class multimillion-dollar laboratory that would take us years to build up, we also have access to our own startup garage. You don't lose the magic of that startup phase, but we also get that bump."

According to Francis, they have already began using the lab to conduct tests that will accelerate the rate to take their nano shield technology to market faster.

"The product stands in and of itself but having access to Halliburton Lab's has changed our trajectory dramatically," says Francis. "If Nanotech had to use a third-party lab, the turnaround would take longer, and many of these tests we have been able to conduct in-house with a one or two-day turnaround."

Nanotech is aiming to move quickly, with its funding process well underway, they expect to reach full capitalization in one or two months. From there they will be looking for a home of their own after they graduate from the incubator, constructing a plant that accommodates their infrastructure and their goals of a global operation. Since the announcement of their participation in Halliburton Labs, many investors have reached out to them.

"By this time next year we'll have our fully operational plant that's going to be able to do hundreds of thousands of tons of product per year," says Francis. "We'll be able to iron out the kinks while we use the Halliburton Labs facilities and figure out what we need in our own lab."

Houston researchers are working to provide COVID-19 solutions amid the pandemic. Getty Images

These 5 Houston-area research institutions have bright minds at work to battle COVID-19

research roundup

Since even the early days of COVID-19's existence, researchers all over the world were rallying to find a cure or potential vaccine — which usually take years to make, test, and get approved.

Houston researchers were among this group to put their thinking caps on to come up with solutions to the many problems of the coronavirus. From the testing of existing drugs to tapping into tech to map the disease, here are some research projects that are happening in Houston and are emerging to fight the pandemic.

Baylor College of Medicine evaluating potential COVID-fighting drug

Human Body Organs (Lungs Anatomy)

Baylor College of Medicine has identified a drug that could potentially help heal COVID-19 patients. Photo via bcm.edu

While Baylor College of Medicine has professionals attacking COVID-19 from all angles, one recent discovery at BCM includes a new drug for treating COVID-caused pneumonia.

BCM researchers are looking into Tocilizumab's (TCZ), an immunomodulator drug, effect on patients at Baylor St. Luke's Medical Center and Harris Health System's Ben Taub Hospital.

"The organ most commonly affected by COVID-19 is the lung, causing pneumonia for some patients and leading to difficulty breathing," says Dr. Ivan O. Rosas, chief of the pulmonary, critical care and sleep medicine section at BCM, in a news release.

TCZ, which has been used to successfully treat hyperimmune responses in cancer patients being treated with immunotherapy, targets the immune response to the coronavirus. It isn't expected to get rid of the virus, but hopefully will reduce the "cytokine storm," which is described as "the hyper-immune response triggered by the viral pneumonia" in the release.

The randomized clinical trial is looking to treat 330 participants and estimates completion of enrollment early next month and is sponsored by Genentech, a biotechnology company.

Texas A&M University leads drug testing

A Texas A&M University researcher is trying to figure out if an existing vaccine has an effect on COVID-19. Screenshot via youtube.com

A researcher from Texas A&M University is working with his colleagues on a short-term response to COVID-19. A vaccine, called BDG, has already been deemed safe and used for treatment for bladder cancer. BDG can work to strengthen the immune system.

"It's not going to prevent people from getting infected," says Dr. Jeffrey D. Cirillo, a Regent's Professor of Microbial Pathogenesis and Immunology at the Texas A&M Health Science Center, in a news release. "This vaccine has the very broad ability to strengthen your immune response. We call it 'trained immunity.'"

A&M leads the study in partnership with the University of Texas MD Anderson Cancer Center and Baylor College of Medicine in Houston, as well as Harvard University's School of Public Health and Cedars Sinai Medical Center in Los Angeles.

Texas A&M Chancellor John Sharp last week set aside $2.5 million from the Chancellor's Research Initiative for the study. This has freed up Cirillo's team's time that was previously being used to apply for grants.

"If there was ever a time to invest in medical research, it is now," Sharp says in the release. "Dr. Cirillo has a head start on a possible coronavirus treatment, and I want to make sure he has what he needs to protect the world from more of the horrible effects of this pandemic."

Currently, the research team is recruiting 1,800 volunteers for the trial that is already underway in College Station and Houston — with the potential for expansion in Los Angeles and Boston. Medical professionals interested in the trial can contact Gabriel Neal, MD at gneal@tamu.edu or Jeffrey Cirillo, PhD at jdcirillo@tamu.edu or George Udeani, PharmD DSc at udeani@tamu.edu.

"This could make a huge difference in the next two to three years while the development of a specific vaccine is developed for COVID-19," Cirillo says in the release.

Rice University is creating a COVID-19 map

Researchers at Rice University's Center for Research Computing's Spatial Studies Lab have mapped out all cases of COVID-19 across Texas by tapping into public health data. The map, which is accessible at coronavirusintexas.org, also identifies the number of people tested across the state, hospital bed utilization rate, and more.

The project is led by Farès el-Dahdah, director of Rice's Humanities Research Center. El-Dahdah used open source code made available by ESRI and data from the Texas Department of State Health Services and Definitive Healthcare.

"Now that the Texas Division of Emergency Management released its own GIS hub, our dashboard will move away from duplicating information in order to correlate other numbers such as those of available beds and the potential for increasing the number of beds in relation to the location of available COVID providers," el-Dahdah says in a press release.

"We're now adding another layer, which is the number of available nurses," el-Dahdah continues. "Because if this explodes, as a doctor friend recently told me, we could be running out of nurses before running out of beds."


Texas Heart Institute is making vaccines more effective

A new compound being developed at Texas Heart Institute could revolutionize the effect of vaccines. Photo via texasheart.org

Molecular technology coming out of the Texas Heart Institute and 7 HIlls Pharma could make vaccines — like a potential coronavirus vaccine — more effective. The oral integrin activator has been licensed to 7 Hills and is slated to a part of a Phase 1 healthy volunteer study to support solid tumor and infectious disease indications in the fall, according to a press release.

The program is led by Dr. Peter Vanderslice, director of biology at the Molecular Cardiology Research Laboratory at Texas Heart Institute. The compound was first envisioned to improve stem cell therapy for potential use as an immunotherapeutic for certain cancers.

"Our research and clinical colleagues are working diligently every day to advance promising discoveries for at risk patients," says Dr. Darren Woodside, co-inventor and vice president for research at the Texas Heart Institute, in the release. "This platform could be an important therapeutic agent for cardiac and cancer patients as well as older individuals at higher risk for infections."

University of Houston's nanotech health monitor

UH researchers have developed a pliable, thin material that can monitor changes in temperature. Photo via uh.edu

While developed prior to the pandemic, nanotechnology out of the University of Houston could be useful in monitoring COVID patients' temperatures. The material, as described in a paper published by ACS Applied Nano Materials, is made up of carbon nanotubes and can indicate slight body temperature changes. It's thin and pliable, making it ideal for a wearable health tech device.

"Your body can tell you something is wrong before it becomes obvious," says Seamus Curran, a physics professor at the University of Houston and co-author on the paper, in a news release.

Curran's nanotechnology research with fellow researchers Kang-Shyang Liao and Alexander J. Wang, which also has applications in making particle-blocking face masks, began almost 10 years ago.

The new technology from University of Houston could make any mask more resistant to viruses. Photo courtesy of Seamus Curran/Integricote

Physics professor at University of Houston puts nanotech to work to fight the spread of COVID-19

making better masks

The start of 2020, though most didn't know it at the time, meant a huge change to society. Though coronavirus didn't yet seem to be an issue for the United States, the world was entering into a new normal where wearing face masks in public is common and necessary to prevent the spread of COVID-19.

"We left normal in December," says Seamus Curran, a professor of physics at the University of Houston, "and, when everyone was planning their New Year's resolutions, little did we know that the old normal of before is gone. None of us saw that life passing away — and it was taken away by a bug 1,000 times smaller than lice. And like lice, it's going to be with us for a long time."

To that end, Curran, who is well-known for his work commercializing nanotechnologies, is pulling from his past to deal with a future demand. The professor is using a hydrophobic coating he developed nearly 10 years ago to improve the ability of surgical masks to protect against transmission of the virus.

It's no secret that good face masks are a dire, worldwide need. But Curran notes that standard masks are "somewhat porous, and especially if they get wet, they can allow the virus to penetrate." People infected with the virus, he adds, could spread it even through a mask, while people who aren't sick could still become infected, despite wearing a less-protective mask.

Curran calls N95 masks, "the gold standard, able to filter very small particles and offering better protection than standard surgical masks." But he notes that they are hard to manufacture, and global demand is for tens of millions of items. His work will make masks impervious to water, thus improving protection, he explains.

That means those who already own masks are in luck: Curran's team is planning to sell spray for the hydrophobic coatings so that people can apply it themselves at home or at work. "However, it's cheaper and far more effective to be able to apply it in large batch quantities that manufacturers can do," Curran adds.

The globally minded Curran has only one local requirement: "We will only sell to U.S. manufacturers that manufacture here in the U.S. It's not a limiting factor and may change in the future, but right now, I have to deal with my community here in Houston, Texas, and the U.S. It has to be my priority."

University of Houston's Dr. Seamus Curran. Photo courtesy of University of Houston

Curran and his team are working though the process to make sure their coatings are compliant with all federal rules. "Sometimes, this is making sure your materials are registered and allowed," he says. "Sometimes it's making sure the products follow relevant EPA and FDA guidelines. However, we are very close, as in weeks, and not some arbitrary academic timeline in the distant future."

He first launched a nanotechnology business in 2013, according to UH. His company, Integricote, based at the UH Technology Bridge, focuses on manufacturing sealers for masonry, wood, and concrete. The professor has developed nanotech coatings for fabrics since 2011, technology that he now is using to demonstrate a way to provide more protection against SARS and COVID-19.

Curran, who often says he hates to "play defense," hopes to get a jump on the virus spread with his new technology and take a proactive approach to a long-term issue. "Remember, H1N1 affected 61 million Americans and 12,500 people died from it between 2009 and 2010," he notes. "Do we think that's it? Did we think Ike was the last big hurricane to hit us, or do we expect more? Yet, we have compensated for this and found a way to be resilient and have a normal life."

Technical and scientific in his work, the passionate professor says he is galvanized by a simple, primal motive. "This is personal, this virus has threatened my family and I'm not sitting back, ideally, just letting this happen," Curran says. "I'm just like any other husband, father, son, brother, and uncle: I will do all I can to protect those dearest to me and I will not have it any other way."

------

This article originally ran on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Looking back: Top 5 most-read Houston research-focused stories of 2021

2022 in review

Editor's note: As 2022 comes to a close, InnovationMap is looking back at the year's top stories in Houston innovation. In many cases, innovative startups originate from meticulous research deep within institutions. This past year, InnovationMap featured stories on these research institutions — from their breakthrough innovations to funding fueling it all. Here are five Houston research-focused articles that stood out to readers this year — be sure to click through to read the full story.


Texas nonprofit cancer research funder doles out millions to health professionals moving to Houston

These cancer research professionals just got fresh funding from a statewide organization. Photo by Dwight C. Andrews/Greater Houston Convention and Visitors Bureau

Thanks in part to multimillion-dollar grants from the Cancer Prevention and Research Institute of Texas, two top-flight cancer researchers are taking key positions at Houston’s Baylor College of Medicine.

Dr. Pavan Reddy and Dr. Michael Taylor each recently received a grant of $6 million from the Cancer Prevention and Research Institute of Texas.

Reddy is leaving his position as chief of hematology-oncology and deputy director at the University of Michigan’s Rogel Cancer Center to become director of the Baylor College of Medicine’s Dan L. Duncan Comprehensive Cancer Center. Dr. C. Kent Osborne stepped down as the center’s director in 2020; Dr. Helen Heslop has been the interim director. Continue reading.

Rice University deploys grant funding to 9 innovative Houston research projects

Nine research projects at Rice University have been granted $25,000 to advance their innovative solutions. Photo courtesy of Rice

Over a dozen Houston researchers wrapped up 2021 with the news of fresh funding thanks to an initiative and investment fund from Rice University.

The Technology Development Fund is a part of the university’s Creative Ventures initiative, which has awarded more than $4 million in grants since its inception in 2016. Rice's Office of Technology Transfer orchestrated the $25,000 grants across nine projects. Submissions were accepted through October and the winners were announced a few weeks ago. Continue reading.

Houston researchers create unprecedented solar energy technology that improves on efficiency

Two researchers out of the University of Houston have ideated a way to efficiently harvest carbon-free energy 24 hours a day. Photo via Getty Images

Two Houstonians have developed a new system of harvesting solar energy more efficiently.

Bo Zhao, the Kalsi Assistant Professor of mechanical engineering at the University of Houston, along with his doctoral student Sina Jafari Ghalekohneh, have created a technology that theoretically allows solar energy to be harvested to the thermodynamic limit, which is the absolute maximum rate sunlight can be converted into electricity, as reported in a September article for Physical Review Applied.

Traditional solar thermophotovoltaics (STPVs), or the engines used to extract electrical power from thermal radiation, run at an efficiency limit of 85.4 percent, according to a statement from UH. Zhao and Ghalekohneh's system was able to reach a rate of 93.3 percent, also known as the Landsberg Limit. Continue reading.

Texas A&M receives $10M to create cybersecurity research program

Texas A&M University has announced a new cybersecurity-focused initiative. Photo via tamu.edu

Texas A&M University has launched an institute for research and education regarding cybersecurity.

The Texas A&M Global Cyber Research Institute is a collaboration between the university and a Texas A&M University System engineering research agency, the Texas A&M Engineering Experiment Station. The research agency and Texas A&M are also home to the Texas A&M Cybersecurity Center.

The institute is funded by $10 million in gifts from former Texas A&M student Ray Rothrock, a venture capitalist and cybersecurity expert, and other donors. Continue reading.

Houston research organization doles out $28M in grants to innovators across Texas

Houston-based Welch Foundation has awarded almost $28 million in chemical research grants throughout Texas this year. Photo via Getty Images

Chemical researchers at seven institutions in the Houston area are receiving nearly $12.9 million grants from the Houston-based Welch Foundation.

In the Houston area, 43 grants are going to seven institutions:

  • Baylor College of Medicine
  • Rice University
  • Texas A&M University
  • Texas A&M University Health Science Center
  • University of Houston
  • University of Texas Health Science Center at Houston
  • University of Texas Medical Branch in Galveston

The Welch Foundation is awarding almost $28 million in chemical research grants throughout Texas this year. The money will be allocated over a three-year period. Continue reading.

University of Houston powers up first robot food server in a U.S. restaurant

order up

The University of Houston is taking a bold step — or, in this case, roll — in foodservice delivery. UH's Conrad N. Hilton College of Global Hospitality Leadership is now deploying a robot server in Eric’s Restaurant at its Hilton College.

Booting up this new service is major bragging rights for the Coogs, as UH is now the only college in the country — and the only restaurant facility in Houston — to utilize a robotic food delivery.

These rolling delivery bots come from the state-of-the-art food service robot called Servi. The bots, created by Bear Robotics, are armed with LiDar sensors, cameras, and trays, and automatically return to their posts when internal weight sensors detect a delivery has been completed.

Not surprisingly, these futuristic food staffers are booting up plenty of buzz at UH.

“People are excited about it,” says Dennis Reynolds, who is dean of the Conrad N. Hilton College of Global Hospitality Leadership and oversees the only hospitality program in the world where students work and take classes in an internationally branded, full-service hotel. Launching robot waitstaff at UH as a test market makes sense, he notes, for practical use and larger implications.

The Servi robots deliver food from the kitchen to the table. Photo courtesy of the University of Houston

“Robotics and the general fear of technology we see today are really untested in the restaurant industry,” he says in an announcement. “At Hilton College, it’s not just about using tomorrow’s technology today. We always want to be the leader in learning how that technology impacts the industry.”

Bear Robotics, a tech company founded by restaurant experts and tech entrepreneurs, hosted a Servi showcase at the National Restaurant Show in Chicago earlier this year. After seeing the demo, Reynolds was hooked. UH's Servi robot arrived at Eric’s Restaurant in October.

Before sending the bot to diners' tables, the bot was prepped by Tanner Lucas, the executive chef and foodservice director at Eric’s. That meant weeks of mapping, programming, and — not surprisingly — “test driving” around the restaurant.

Tanner even created a digital map of the restaurant to teach the Servi its pathways and designated service points, such as table numbers. “Then, we sent it back and forth to all of those points from the kitchen with food to make sure it wouldn’t run into anything," he adds.

But does having a robot deliver food create friction between human and automated staff? Not at Eric's. “The robot helps my workflow,” Joel Tatum, a server at Eric’s says. “It lets me spend more time with my customers instead of just chasing and running food.”

Once loaded, the kitchen staff can tell the Servi robots where to take the dishes. Photo courtesy of the University of Houston

Reynolds believes robots will complement their human counterparts and actually enhance the customer experience, even in unlikely settings.

“Studies have been conducted in senior living facilities where you might think a robot wouldn’t be well received, but it’s been just the opposite,” Reynolds says. “Those residents saw the change in their lives and loved it.”

To that end, he plans to use Servi bots in other UH venues. “The ballroom would be a fantastic place to showcase Servi – not as a labor-saving device, but as an excitement generator,” Reynolds notes. “To have it rotating through a big event delivering appetizers would be really fun.”

Critics who denounce robot servers and suggest they will soon displace humans are missing the point, Reynolds adds. “This isn’t about cutting our labor costs. It’s about building our top-line revenues and expanding our brand as a global hospitality innovator,” Reynolds says. “People will come to expect more robotics, more artificial intelligence in all segments of hospitality, and our students will be right there at the forefront.”

Servi bots come at a time of dynamic growth for Hilton College. A recent rebrand to “Global Hospitality Leadership” comes as the college hotel is undergoing a $30 million expansion and renovation, which includes a new five-story, 70-room guest tower. The student-run Cougar Grounds coffeehouse reopened this semester in a larger space with plenty of updates. The neighboring Eric’s Club Center for Student Success helps with recruitment and enrollment, undergraduate academic services, and career development.

“To be the first university in the country to introduce robotics in the dining room is remarkable,” Reynolds adds. “There are a lot of unique things we’re doing at Hilton College.”

------

This article originally ran on CultureMap.

Houston innovator on seeing a greener future on built environment

HOUSTON INNOVATORS PODCAST EPISODE 162

An architect by trade, Anas Al Kassas says he was used to solving problems in his line of work. Each project architects take on requires building designers to be innovative and creative. A few years ago, Kassas took his problem-solving background into the entrepreneurship world to scale a process that allows for retrofitting window facades for energy efficiency.

“If you look at buildings today, they are the largest energy-consuming sector — more than industrial and more than transportation,” Kassas, founder and CEO of INOVUES, says on the Houston Innovators Podcast. “They account for up to 40 percent of energy consumption and carbon emissions.”

To meet their climate goals, companies within the built environment are making moves to transition to electric systems. This has to be done with energy efficiency in mind, otherwise it will result in grid instability.

"Energy efficiency goes hand in hand with energy transition," he explains.

Kassas says that he first had the idea for his company when he was living in Boston. He chose to start the business in Houston, attracted to the city by its central location, affordable labor market, and manufacturing opportunities here.

Last year, INOVUES raised its first round of funding — a $2.75 million seed round — to scale up the team and identify the best markets to target customers. Kassas says he was looking for regions with rising energy rates and sizable incentives for companies making energy efficient changes.

"We were able to now implement our technology in over 4 million square feet of building space — from Boston, Seattle, Los Angeles, New York City, Portland, and very soon in Canada," he says.

Notably missing from that list is any Texas cities. Kassas says that he believes Houston is a great city for startups and he has his operations and manufacturing is based here, but he's not yet seen the right opportunity and adaption

"Unfortunately most of our customers are not in Texas," "A lot of work can be done here to incentivize building owners. There are a lot of existing buildings and construction happening here, but there has to be more incentives."

Kassas shares more about his growth over the past year, as well as what he has planned for 2023 on the podcast. Listen to the interview below — or wherever you stream your podcasts — and subscribe for weekly episodes.