A new partnership will allow Memorial Hermann employees and physicians to participate in the TMC Center for Device Innovation. Photo via tmc.edu

Texas Medical Center and Memorial Hermann Health System have launched a new collaboration for developing patient care technology.

Through the partnership, Memorial Hermann employees and physicians will now be able to participate in the TMC Center for Device Innovation (CDI), which will assist them in translating product innovation ideas into working prototypes. The first group of entrepreneurs will pitch their innovations in early 2026, according to a release from TMC.

“Memorial Hermann is excited to launch this new partnership with the TMC CDI,” Ini Ekiko Thomas, vice president of information technology at Memorial Hermann, said in the news release. “As we continue to grow (a) culture of innovation, we look forward to supporting our employees, affiliated physicians and providers in new ways.”

Mentors from Memorial Hermann, TMC Innovation and industry experts with specialties in medicine, regulatory strategy, reimbursement planning and investor readiness will assist with the program. The innovators will also gain access to support systems like product innovation and translation strategy, get dedicated engineering and machinist resources and personal workbench space at the CDI.

“The prototyping facilities and opportunities at TMC are world-class and globally recognized, attracting innovators from around the world to advance their technologies,” Tom Luby, chief innovation officer at TMC Innovation Factor, said in the release.

Memorial Hermann says the partnership will support its innovation hub’s “pilot and scale approach” and hopes that it will extend the hub’s impact in “supporting researchers, clinicians and staff in developing patentable, commercially viable products.”

“We are excited to expand our partnership with Memorial Hermann and open the doors of our Center for Device Innovation to their employees and physicians—already among the best in medical care,” Luby added in the release. “We look forward to seeing what they accomplish next, utilizing our labs and gaining insights from top leaders across our campus.”

Eleven medtech startups, hailing from Houston to the Netherlands, have been selected to join TMCi's HealthTech Accelerator. Photo via tmc.edu

TMCi names 11 global startups to latest HealthTech Accelerator cohort

new class

Texas Medical Center Innovation has named 11 medtech startups from around the world to its latest HealthTech Accelerator cohort.

Members of the accelerator's 19th cohort will participate in the six-month program, which kicked off this month. They range from startups developing on-the-go pelvic floor monitoring to 3D-printed craniofacial and orthopedic implants. Each previously participated in TMCi's bootcamp before being selected to join the accelerator. Through the HealthTech Accelerator, founders will work closely with TMC specialists, researchers, top-tier hospital experts and seasoned advisors to help grow their companies and hone their clinical trials, intellectual property, fundraising and more.

“This cohort of startups is tackling some of today’s most pressing clinical challenges, from surgery and respiratory care to diagnostics and women’s health," Tom Luby, chief innovation officer at Texas Medical Center, said in a news release. "At TMC, we bring together the minds behind innovation—entrepreneurs, technology leaders, and strategic partners—to help emerging companies validate, scale, and deliver solutions that make a real difference for patients here and around the world. We look forward to seeing their progress and global impact through the HealthTech Accelerator and the support of our broader ecosystem.”

The 2025 HealthTech Accelerator cohort includes:

  • Houston-based Respiree, which has created an all-in-one cardiopulmonary platform with wearable sensors for respiratory monitoring that uses AI to track breathing patterns and detect early signs of distress
  • College Station-based SageSpectra, which designs an innovative patch system for real-time, remote monitoring of temperature and StO2 for assessing vascular occlusion, infection, and other surgical flap complications
  • Austin-based Dynamic Light, which has developed a non-invasive imaging technology that enables surgeons to visualize blood flow in real-time without the need for traditional dyes
  • Bangkok, Thailand-based OsseoLabs, which develops AI-assisted, 3D-printed patient-specific implants for craniofacial and orthopedic surgeries
  • Sydney, Australia-based Roam Technologies, which has developed a portable oxygen therapy system (JUNO) that provides real-time oxygen delivery optimization for patients with chronic conditions
  • OptiLung, which develops 3D-printed extracorporeal blood oxygenation devices designed to optimize blood flow and reduce complications
  • Bengaluru, India-based Dozee, which has created a smart remote patient monitor platform that uses under-the-mattress bed sensors to capture vital signs through continuous monitoring
  • Montclair, New Jersey-based Endomedix, which has developed a biosurgical fast-acting absorbable hemostat designed to eliminate the risk of paralysis and reoperation due to device swelling
  • Williston, Vermont-based Xander Medical, which has designed a biomechanical innovation that addresses the complications and cost burdens associated with the current methods of removing stripped and broken surgical screws
  • Salt Lake City, Utah-based Freyya, which has developed an on-the-go pelvic floor monitoring and feedback device for people with pelvic floor dysfunction
  • The Netherlands-based Scinvivo, which has developed optical imaging catheters for bladder cancer diagnostics
The partnership between Japan-based Mitsui Fudosan Co. Ltd. and the National Cancer Center will focus on advancing cancer treatments, providing a pathway for Japanese innovators to expand in the U.S. market. Photo courtesy of TMC

TMC launches cancer-focused partnership with Japan

global collaboration

Houston's Texas Medical Center announced the launch of its new TMC Japan BioBridge and Japan-Accelerator Cancer Therapeutics and Medical Devices, or JACT, this month.

The strategic partnership between Japan-based Mitsui Fudosan Co. Ltd. and the National Cancer Center will focus on advancing cancer treatments and providing a pathway for Japanese innovators to expand in the U.S. market. A delegation from TMC recently visited Tokyo, and William F. McKeon, president and CEO of TMC, signed the TMC Japan BioBridge Memorandum of Understanding with Takeshi Ozane, general manager of Mitsui Fudosan, and Hitoshi Nakagama, president of the National Cancer Center of Japan.

“The launch of TMC Japan BioBridge is a vital step forward in connecting two global leaders in healthcare innovation,” McKeon says in a statement. “Japan’s leadership has demonstrated an impressive commitment to advance medical cures and life sciences technologies and through this partnership, we are opening necessary doors for Japanese researchers and innovators to access the US market and collaborate with our TMC ecosystem. Together, we aim to accelerate critical breakthroughs to make a difference for patients all around the world.”

The new JACT will offer cancer-treatment companies a structured process to prepare for a U.S. expansion and will allow for meetings with pharmaceutical companies, hospital systems and investors and provide insights on U.S. regulatory approvals. It'll focus on three key areas, according to the statement:

  1. Milestone development and financial planning
  2. Clinical and regulatory expertise
  3. Strategic partnerships and market insights

“This TMC Japan BioBridge and JACT Program will enable us to promote the advancement of start-up companies aiming to commercialize innovative medical technologies originating in Japan into the U.S." Nakagama says in a statement. "We also hope this collaboration will not be limited to our (Japan Agency for Medical Research and Development)-supported project, but will lead to further cooperation between TMC, NCC, and other Japanese institutions in various fields.”

This is the sixth international strategic partnership for the TMC. It launched its first BioBridge, which focus on partnerships to support international healthcare companies preparing for U.S. expansion, with the Health Informatics Society of Australia in 2016. It also has BioBridge partnerships with the Netherlands, Ireland, Denmark and the United Kingdom.

Houston-based Galen Data, a provider of cloud-based connectivity software for medical devices, has been acquired. Photo via Getty Images

Houston startup acquired, plans to expand global medical device software solutions

exit this way

Houston-based Galen Data, a provider of cloud-based connectivity software for medical devices, has been acquired by health care-focused asset manager Lauxera Capital Partners. Financial terms weren’t disclosed.

Lauxera, based in France, says the Galen Data acquisition complements its 2022 purchase of Germany-based Matrix Requirements, a provider of software for medical device R&D and quality control teams.

“The Galen team has built an exceptional product providing medical device companies a cost-effective, compliant, and secure solution for medical device cloud connectivity,” Samuel Levy, founding partner of Lauxera, says in a news release.

Chris DuPont, co-founder and CEO of Galen Data, says the Lauxera deal “empowers us to take our business to the next level and better serve our clients while pushing forward the innovation that’s at the core of everything we do.”

Chris DuPont is the co-founder and CEO of Galen Data. Photo via LinkedIn

Galen Data had raised $7.21 million in venture capital since its founding in 2016, according to PitchBook. Investors included the Texas HALO Fund, the Houston Angel Network, Tamiami Angel Fund IV, and Zeeland Ventures. As of November 2023, Galen Data was valued at $18 million, according to Dealroom.co.

Customers of Galen Data include Austin-based Cardi/o, Houston-based Delphi Diagnostics, Houston-based Future Caridia, Austin-based Harmonic Bionics, Houston-based Tienovix, and Houston-based Zibrio.

Yaxin Wang is director of THI's Innovative Device & Engineering Applications Lab. Photo via texasheart.org

Houston health tech innovator collaborates on promising medical device funded by DOD

team work

The United States Department of Defense has awarded a grant that will allow the Texas Heart Institute and Rice University to continue to break ground on a novel left ventricular assist device (LVAD) that could be an alternative to current devices that prevent heart transplantation and are a long-term option in end-stage heart failure.

The grant is part of the DOD’s Congressionally Directed Medical Research Programs (CDMRP). It was awarded to Georgia Institute of Technology, one of four collaborators on the project that will be designed and evaluated by the co-investigator Yaxin Wang. Wang is part of O.H. “Bud” Frazier’s team at Texas Heart Institute, where she is director of Innovative Device & Engineering Applications Lab. The other institution working on the new LVAD is North Carolina State University.

The project is funded by a four-year, $7.8 million grant. THI will use about $2.94 million of that to fund its part of the research. As Wang explained to us last year, an LVAD is a minimally invasive device that mechanically pumps a person’s own heart. Frazier claims to have performed more than 900 LVAD implantations, but the devices are far from perfect.

The team working on this new research seeks to minimize near-eventualities like blood clot formation, blood damage, and driveline complications such as infection and limitations in mobility. The four institutions will try to innovate with a device featuring new engineering designs, antithrombotic slippery hydrophilic coatings (SLIC), wireless power transfer systems, and magnetically levitated driving systems.

Wang and her team believe that the non-contact-bearing technology will help to decrease the risk of blood clotting and damage when implanting an LVAD. The IDEA Lab will test the efficacy and safety of the SLIC LVAD developed by the multi-institutional team with a lab-bench-based blood flow loop, but also in preclinical models.

“The Texas Heart Institute continues to be a leading center for innovation in mechanical circulatory support systems,” said Joseph G. Rogers, MD, the president and CEO of THI, in a press release.

“This award will further the development and testing of the SLIC LVAD, a device intended to provide an option for a vulnerable patient population and another tool in the armamentarium of the heart failure teams worldwide.”

If it works as hypothesized, the SLIC LVAD will improve upon current LVAD technology, which will boost quality of life for countless heart patients. But the innovation won’t stop there. Technologies that IDEA Lab is testing include wireless power transfer for medical devices and coatings to reduce blood clotting could find applications in many other technologies that could help patients live longer, healthier lives.

The next TMCx cohort begins August 5. Courtesy of TMC

TMCx announces its next medical device cohort with 5 startups hailing from Houston

Health tech

The Texas Medical Center's startup accelerator, TMCx, has added 19 companies from all around the world to join its medical device family.

The TMC Innovation Institute team narrowed down 140 applications to 40 for the second round of the process, which includes face-to-face interviews, according to a release. After those, 18 companies were selected to join the TMCx09 class, which focuses on medical devices. The last cohort, which specialized in digital health, concluded on June 6.

Out of the 18 companies, five are from Houston. Four other startups hail from other corners of the United States, while 10 international companies also made the cohort. The program commences on August 5, and will run for four months before concluding in a demo day event in November.

Here are the medical device startup companies joining the TMCx09 cohort.

See update at the bottom of this story.

Vascular devices

  • Neurescue (Copenhagen, Denmark) — Neurescue has developed a computer-aided aortic occlusion catheter to help save the lives of patients in the emergency care setting.
  • Venari Medical (Galway, Ireland) — Venari Medical is developing BioVena — a medical device that treats varicose veins and venous leg ulcers with a minimally invasive approach intended to reduce pain.
  • Obsidio (Solana Beach, California) — Obsidio is developing a universal gel embolic material to shrink lesions or to treat internal bleeds, aneurysms and vascular malformations.

Novel therapies

  • PATH EX (Houston) — PATH EX is developing an extracorporeal blood cleansing device designed to selectively remove pathogens, including multi-drug resistant bacteria, and endotoxins from circulating blood to diagnose and treat sepsis.
  • Innosphere (Hafia, Israel) — Innosphere is a medical device company developing brain stimulation solutions for treating cognitive disorders, with a focus on ADHD.

Rehab

  • AbiliTech (St. Paul, Minnesota) — AbiliTech is restoring independence to patients with upper limb neuromuscular conditions by offering a wearable assistive device that allows the user to perform independent activities of daily living.
  • Komodo OpenLab (Toronto, Ontario, Canada) — Komodo OpenLab has developed Tecla, an assistive device giving individuals with physical disabilities the ability to communicate, control, and connect with the world.

Surgery

  • CNX Medical (Houston) — CNX Medical is developing a transcutaneous neurostimulator that is placed in the ear and helps reduce inflammation after abdominal surgery, with a focus on post-operative ileus.
  • CorInnova (Houston) — CorInnova has developed a soft robotic non-blood contacting biventricular cardiac assist device for the treatment of heart failure that would eliminate the many adverse events associated with current technologies.
  • Ictero Medical (Houston) — Ictero Medical is developing a minimally invasive ablation solution to treat high-risk patients with gallstone disease and offer patients the benefits of surgery without the risk. The company was among the big winners at the Texas A&M New Ventures Competition.

Diagnostics

  • Artidis (Basel, Switzerland) — InArtidis has developed a nanomechanical biomarker technology using precise tissue measurement in combination with data analytics to personalize cancer diagnosis.
  • Inveox (Munich, Germany) — Inveox automates the pre-analytical process in cancer diagnosis to improve patient safety and lab efficiency.
  • Cambridge Respiratory Innovations Ltd. (Cambridge, United Kingdom) — CRiL has developed, N-Tidal, a device that analyzes CO2 end-tidal breathing to improve respiration monitoring.

Toward home health

  • Kegg (San Francisco) — Kegg is on a mission to simplify every woman's journey towards taking charge of her fertility with a user-friendly monitoring device.
  • TestCard (London) — TestCard is a flat pack urine test kit that functions in combination with a mobile phone application, turning a phone's camera into a clinical grade scanner.
  • Patch'd (New South Wales, Australia, and San Francisco) — Patch'd uses deep learning and wearable devices to predict the onset of sepsis in the at-home patient.

Transplant

  • Volumetric (Houston) — Volumetric's 3D bioprinting platform creates materials with living cells with applications in biomaterials, cancer research, and eventually human organ replacements. The company's technology started out of Rice University.
  • Tevosol (Edmonton, Alberta, Canada) — Tevasol is developing organ transplant transportation solutions. Their portable warm perfusion machines will help surgeons transplant more organs today and solve organ shortage tomorrow.

------

Diagnostic Photonics withdrew from the program after the article published.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston neighbor named richest small town in Texas for 2025

Ranking It

Affluent Houston neighbor Bellaire is cashing in as the richest small town in Texas for 2025, according to new study from GoBankingRates.

The report, "The Richest Small Town in Every State," used data from the U.S. Census Bureau's American Community Survey to determine the 50 richest small towns in America based on their median household income.

Of course, Houstonians realize that describing Bellaire as a "small town" is a bit of misnomer. Located less than 10 miles from downtown and fully surrounded by the City of Houston, Bellaire is a wealthy enclave that boasts a population of just over 17,000 residents. These affluent citizens earn a median $236,311 in income every year, which GoBankingRates says is the 11th highest household median income out of all 50 cities included in the report.

The average home in this city is worth over $1.12 million, but Bellaire's lavish residential reputation often attracts properties with multimillion-dollar price tags.

Bellaire also earned a shining 81 livability score for its top quality schools, health and safety, commute times, and more. The livability index, provided by Toronto, Canada-based data analytics and real estate platform AreaVibes, said Bellaire has "an abundance of exceptional local amenities."

"Among these are conveniently located grocery stores, charming coffee shops, diverse dining options and plenty of spacious parks," AreaVibes said. "These local amenities contribute significantly to its overall appeal, ensuring that [residents'] daily needs are met and offering ample opportunities for leisure and recreation."

Earlier in 2025, GoBankingRates ranked Bellaire as the No. 23 wealthiest suburb in America, and it's no stranger to being named on similar lists comparing the richest American cities.

---

This article originally appeared on CultureMap.com.

How a Houston startup is taking on corrosion, a costly climate threat

now streaming

Corrosion is not something most people think about, but for Houston's industrial backbone pipelines, refineries, chemical plants, and water infrastructure, it is a silent and costly threat. Replacing damaged steel and overusing chemicals adds hundreds of millions of tons of carbon emissions every year. Despite the scale of the problem, corrosion detection has barely changed in decades.

In a recent episode of the Energy Tech Startups Podcast, Anwar Sadek, founder and CEO of Corrolytics, explained why the traditional approach is not working and how his team is delivering real-time visibility into one of the most overlooked challenges in the energy transition.

From Lab Insight to Industrial Breakthrough

Anwar began as a researcher studying how metals degrade and how microbes accelerate corrosion. He quickly noticed a major gap. Companies could detect the presence of microorganisms, but they could not tell whether those microbes were actually causing corrosion or how quickly the damage was happening. Most tests required shipping samples to a lab and waiting months for results, long after conditions inside the asset had changed.

That gap inspired Corrolytics' breakthrough. The company developed a portable, real-time electrochemical test that measures microbial corrosion activity directly from fluid samples. No invasive probes. No complex lab work. Just the immediate data operators can act on.

“It is like switching from film to digital photography,” Anwar says. “What used to take months now takes a couple of hours.”

Why Corrosion Matters in Houston's Energy Transition

Houston's energy transition is a blend of innovation and practicality. While the world builds new low-carbon systems, the region still depends on existing industrial infrastructure. Keeping those assets safe, efficient, and emission-conscious is essential.

This is where Corrolytics fits in. Every leak prevented, every pipeline protected, and every unnecessary gallon of biocide avoided reduces emissions and improves operational safety. The company is already seeing interest across oil and gas, petrochemicals, water and wastewater treatment, HVAC, industrial cooling, and biofuels. If fluids move through metal, microbial corrosion can occur, and Corrolytics can detect it.

Because microbes evolve quickly, slow testing methods simply cannot keep up. “By the time a company gets lab results, the environment has changed completely,” Anwar explains. “You cannot manage what you cannot measure.”

A Scientist Steps Into the CEO Role

Anwar did not plan to become a CEO. But through the National Science Foundation's ICorps program, he interviewed more than 300 industry stakeholders. Over 95 percent cited microbial corrosion as a major issue with no effective tool to address it. That validation pushed him to transform his research into a product.

Since then, Corrolytics has moved from prototype to real-world pilots in Brazil and Houston, with early partners already using the technology and some preparing to invest. Along the way, Anwar learned to lead teams, speak the language of industry, and guide the company through challenges. “When things go wrong, and they do, it is the CEO's job to steady the team,” he says.

Why Houston

Relocating to Houston accelerated everything. Customers, partners, advisors, and manufacturing talent are all here. For industrial and energy tech startups, Houston offers an ecosystem built for scale.

What's Next

Corrolytics is preparing for broader pilots, commercial partnerships, and team growth as it continues its fundraising efforts. For anyone focused on asset integrity, emissions reduction, or industrial innovation, this is a company to watch.

Listen to the full conversation with Anwar Sadek on the Energy Tech Startups Podcast to learn more:

---

Energy Tech Startups Podcast is hosted by Jason Ethier and Nada Ahmed. It delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.

This article originally appeared on our sister site, EnergyCapitalHTX.com.

These 50+ Houston scientists rank among world’s most cited

science stars

Fifty-one scientists and professors from Houston-area universities and institutions were named among the most cited in the world for their research in medicine, materials sciences and an array of other fields.

The Clarivate Highly Cited Researchers considers researchers who have authored multiple "Highly Cited Papers" that rank in the top 1percent by citations for their fields in the Web of Science Core Collection. The final list is then determined by other quantitative and qualitative measures by Clarivate's judges to recognize "researchers whose exceptional and community-wide contributions shape the future of science, technology and academia globally."

This year, 6,868 individual researchers from 60 different countries were named to the list. About 38 percent of the researchers are based in the U.S., with China following in second place at about 20 percent.

However, the Chinese Academy of Sciences brought in the most entries, with 258 researchers recognized. Harvard University with 170 researchers and Stanford University with 141 rounded out the top 3.

Looking more locally, the University of Texas at Austin landed among the top 50 institutions for the first time this year, tying for 46th place with the Mayo Clinic and University of Minnesota Twin Cities, each with 27 researchers recognized.

Houston once again had a strong showing on the list, with MD Anderson leading the pack. Below is a list of the Houston-area highly cited researchers and their fields.

UT MD Anderson Cancer Center

  • Ajani Jaffer (Cross-Field)
  • James P. Allison (Cross-Field)
  • Maria E. Cabanillas (Cross-Field)
  • Boyi Gan (Molecular Biology and Genetics)
  • Maura L. Gillison (Cross-Field)
  • David Hong (Cross-Field)
  • Scott E. Kopetz (Clinical Medicine)
  • Pranavi Koppula (Cross-Field)
  • Guang Lei (Cross-Field)
  • Sattva S. Neelapu (Cross-Field)
  • Padmanee Sharma (Molecular Biology and Genetics)
  • Vivek Subbiah (Clinical Medicine)
  • Jennifer A. Wargo (Molecular Biology and Genetics)
  • William G. Wierda (Clinical Medicine)
  • Ignacio I. Wistuba (Clinical Medicine)
  • Yilei Zhang (Cross-Field)
  • Li Zhuang (Cross-Field)

Rice University

  • Pulickel M. Ajayan (Materials Science)
  • Pedro J. J. Alvarez (Environment and Ecology)
  • Neva C. Durand (Cross-Field)
  • Menachem Elimelech (Chemistry and Environment and Ecology)
  • Zhiwei Fang (Cross-Field)
  • Naomi J. Halas (Cross-Field)
  • Jun Lou (Materials Science)
  • Aditya D. Mohite (Cross-Field)
  • Peter Nordlander (Cross-Field)
  • Andreas S. Tolias (Cross-Field)
  • James M. Tour (Cross-Field)
  • Robert Vajtai (Cross-Field)
  • Haotian Wang (Chemistry and Materials Science)
  • Zhen-Yu Wu (Cross-Field)

Baylor College of Medicine

  • Nadim J. Ajami (Cross-Field)
  • Biykem Bozkurt (Clinical Medicine)
  • Hashem B. El-Serag (Clinical Medicine)
  • Matthew J. Ellis (Cross-Field)
  • Richard A. Gibbs (Cross-Field)
  • Peter H. Jones (Pharmacology and Toxicology)
  • Sanjay J. Mathew (Cross-Field)
  • Joseph F. Petrosino (Cross-Field)
  • Fritz J. Sedlazeck (Biology and Biochemistry)
  • James Versalovic (Cross-Field)

University of Houston

  • Zhifeng Ren (Cross-Field)
  • Yan Yao (Cross-Field)
  • Yufeng Zhao (Cross-Field)
  • UT Health Science Center Houston
  • Hongfang Liu (Cross-Field)
  • Louise D. McCullough (Cross-Field)
  • Claudio Soto (Cross-Field)

UTMB Galveston

  • Erez Lieberman Aiden (Cross-Field)
  • Pei-Yong Shi (Cross-Field)

Houston Methodist

  • Eamonn M. M. Quigley (Cross-Field)