The partnership between Japan-based Mitsui Fudosan Co. Ltd. and the National Cancer Center will focus on advancing cancer treatments, providing a pathway for Japanese innovators to expand in the U.S. market. Photo courtesy of TMC

Houston's Texas Medical Center announced the launch of its new TMC Japan BioBridge and Japan-Accelerator Cancer Therapeutics and Medical Devices, or JACT, this month.

The strategic partnership between Japan-based Mitsui Fudosan Co. Ltd. and the National Cancer Center will focus on advancing cancer treatments and providing a pathway for Japanese innovators to expand in the U.S. market. A delegation from TMC recently visited Tokyo, and William F. McKeon, president and CEO of TMC, signed the TMC Japan BioBridge Memorandum of Understanding with Takeshi Ozane, general manager of Mitsui Fudosan, and Hitoshi Nakagama, president of the National Cancer Center of Japan.

“The launch of TMC Japan BioBridge is a vital step forward in connecting two global leaders in healthcare innovation,” McKeon says in a statement. “Japan’s leadership has demonstrated an impressive commitment to advance medical cures and life sciences technologies and through this partnership, we are opening necessary doors for Japanese researchers and innovators to access the US market and collaborate with our TMC ecosystem. Together, we aim to accelerate critical breakthroughs to make a difference for patients all around the world.”

The new JACT will offer cancer-treatment companies a structured process to prepare for a U.S. expansion and will allow for meetings with pharmaceutical companies, hospital systems and investors and provide insights on U.S. regulatory approvals. It'll focus on three key areas, according to the statement:

  1. Milestone development and financial planning
  2. Clinical and regulatory expertise
  3. Strategic partnerships and market insights

“This TMC Japan BioBridge and JACT Program will enable us to promote the advancement of start-up companies aiming to commercialize innovative medical technologies originating in Japan into the U.S." Nakagama says in a statement. "We also hope this collaboration will not be limited to our (Japan Agency for Medical Research and Development)-supported project, but will lead to further cooperation between TMC, NCC, and other Japanese institutions in various fields.”

This is the sixth international strategic partnership for the TMC. It launched its first BioBridge, which focus on partnerships to support international healthcare companies preparing for U.S. expansion, with the Health Informatics Society of Australia in 2016. It also has BioBridge partnerships with the Netherlands, Ireland, Denmark and the United Kingdom.

Houston-based Galen Data, a provider of cloud-based connectivity software for medical devices, has been acquired. Photo via Getty Images

Houston startup acquired, plans to expand global medical device software solutions

exit this way

Houston-based Galen Data, a provider of cloud-based connectivity software for medical devices, has been acquired by health care-focused asset manager Lauxera Capital Partners. Financial terms weren’t disclosed.

Lauxera, based in France, says the Galen Data acquisition complements its 2022 purchase of Germany-based Matrix Requirements, a provider of software for medical device R&D and quality control teams.

“The Galen team has built an exceptional product providing medical device companies a cost-effective, compliant, and secure solution for medical device cloud connectivity,” Samuel Levy, founding partner of Lauxera, says in a news release.

Chris DuPont, co-founder and CEO of Galen Data, says the Lauxera deal “empowers us to take our business to the next level and better serve our clients while pushing forward the innovation that’s at the core of everything we do.”

Chris DuPont is the co-founder and CEO of Galen Data. Photo via LinkedIn

Galen Data had raised $7.21 million in venture capital since its founding in 2016, according to PitchBook. Investors included the Texas HALO Fund, the Houston Angel Network, Tamiami Angel Fund IV, and Zeeland Ventures. As of November 2023, Galen Data was valued at $18 million, according to Dealroom.co.

Customers of Galen Data include Austin-based Cardi/o, Houston-based Delphi Diagnostics, Houston-based Future Caridia, Austin-based Harmonic Bionics, Houston-based Tienovix, and Houston-based Zibrio.

Yaxin Wang is director of THI's Innovative Device & Engineering Applications Lab. Photo via texasheart.org

Houston health tech innovator collaborates on promising medical device funded by DOD

team work

The United States Department of Defense has awarded a grant that will allow the Texas Heart Institute and Rice University to continue to break ground on a novel left ventricular assist device (LVAD) that could be an alternative to current devices that prevent heart transplantation and are a long-term option in end-stage heart failure.

The grant is part of the DOD’s Congressionally Directed Medical Research Programs (CDMRP). It was awarded to Georgia Institute of Technology, one of four collaborators on the project that will be designed and evaluated by the co-investigator Yaxin Wang. Wang is part of O.H. “Bud” Frazier’s team at Texas Heart Institute, where she is director of Innovative Device & Engineering Applications Lab. The other institution working on the new LVAD is North Carolina State University.

The project is funded by a four-year, $7.8 million grant. THI will use about $2.94 million of that to fund its part of the research. As Wang explained to us last year, an LVAD is a minimally invasive device that mechanically pumps a person’s own heart. Frazier claims to have performed more than 900 LVAD implantations, but the devices are far from perfect.

The team working on this new research seeks to minimize near-eventualities like blood clot formation, blood damage, and driveline complications such as infection and limitations in mobility. The four institutions will try to innovate with a device featuring new engineering designs, antithrombotic slippery hydrophilic coatings (SLIC), wireless power transfer systems, and magnetically levitated driving systems.

Wang and her team believe that the non-contact-bearing technology will help to decrease the risk of blood clotting and damage when implanting an LVAD. The IDEA Lab will test the efficacy and safety of the SLIC LVAD developed by the multi-institutional team with a lab-bench-based blood flow loop, but also in preclinical models.

“The Texas Heart Institute continues to be a leading center for innovation in mechanical circulatory support systems,” said Joseph G. Rogers, MD, the president and CEO of THI, in a press release.

“This award will further the development and testing of the SLIC LVAD, a device intended to provide an option for a vulnerable patient population and another tool in the armamentarium of the heart failure teams worldwide.”

If it works as hypothesized, the SLIC LVAD will improve upon current LVAD technology, which will boost quality of life for countless heart patients. But the innovation won’t stop there. Technologies that IDEA Lab is testing include wireless power transfer for medical devices and coatings to reduce blood clotting could find applications in many other technologies that could help patients live longer, healthier lives.

The next TMCx cohort begins August 5. Courtesy of TMC

TMCx announces its next medical device cohort with 5 startups hailing from Houston

Health tech

The Texas Medical Center's startup accelerator, TMCx, has added 19 companies from all around the world to join its medical device family.

The TMC Innovation Institute team narrowed down 140 applications to 40 for the second round of the process, which includes face-to-face interviews, according to a release. After those, 18 companies were selected to join the TMCx09 class, which focuses on medical devices. The last cohort, which specialized in digital health, concluded on June 6.

Out of the 18 companies, five are from Houston. Four other startups hail from other corners of the United States, while 10 international companies also made the cohort. The program commences on August 5, and will run for four months before concluding in a demo day event in November.

Here are the medical device startup companies joining the TMCx09 cohort.

See update at the bottom of this story.

Vascular devices

  • Neurescue (Copenhagen, Denmark) — Neurescue has developed a computer-aided aortic occlusion catheter to help save the lives of patients in the emergency care setting.
  • Venari Medical (Galway, Ireland) — Venari Medical is developing BioVena — a medical device that treats varicose veins and venous leg ulcers with a minimally invasive approach intended to reduce pain.
  • Obsidio (Solana Beach, California) — Obsidio is developing a universal gel embolic material to shrink lesions or to treat internal bleeds, aneurysms and vascular malformations.

Novel therapies

  • PATH EX (Houston) — PATH EX is developing an extracorporeal blood cleansing device designed to selectively remove pathogens, including multi-drug resistant bacteria, and endotoxins from circulating blood to diagnose and treat sepsis.
  • Innosphere (Hafia, Israel) — Innosphere is a medical device company developing brain stimulation solutions for treating cognitive disorders, with a focus on ADHD.

Rehab

  • AbiliTech (St. Paul, Minnesota) — AbiliTech is restoring independence to patients with upper limb neuromuscular conditions by offering a wearable assistive device that allows the user to perform independent activities of daily living.
  • Komodo OpenLab (Toronto, Ontario, Canada) — Komodo OpenLab has developed Tecla, an assistive device giving individuals with physical disabilities the ability to communicate, control, and connect with the world.

Surgery

  • CNX Medical (Houston) — CNX Medical is developing a transcutaneous neurostimulator that is placed in the ear and helps reduce inflammation after abdominal surgery, with a focus on post-operative ileus.
  • CorInnova (Houston) — CorInnova has developed a soft robotic non-blood contacting biventricular cardiac assist device for the treatment of heart failure that would eliminate the many adverse events associated with current technologies.
  • Ictero Medical (Houston) — Ictero Medical is developing a minimally invasive ablation solution to treat high-risk patients with gallstone disease and offer patients the benefits of surgery without the risk. The company was among the big winners at the Texas A&M New Ventures Competition.

Diagnostics

  • Artidis (Basel, Switzerland) — InArtidis has developed a nanomechanical biomarker technology using precise tissue measurement in combination with data analytics to personalize cancer diagnosis.
  • Inveox (Munich, Germany) — Inveox automates the pre-analytical process in cancer diagnosis to improve patient safety and lab efficiency.
  • Cambridge Respiratory Innovations Ltd. (Cambridge, United Kingdom) — CRiL has developed, N-Tidal, a device that analyzes CO2 end-tidal breathing to improve respiration monitoring.

Toward home health

  • Kegg (San Francisco) — Kegg is on a mission to simplify every woman's journey towards taking charge of her fertility with a user-friendly monitoring device.
  • TestCard (London) — TestCard is a flat pack urine test kit that functions in combination with a mobile phone application, turning a phone's camera into a clinical grade scanner.
  • Patch'd (New South Wales, Australia, and San Francisco) — Patch'd uses deep learning and wearable devices to predict the onset of sepsis in the at-home patient.

Transplant

  • Volumetric (Houston) — Volumetric's 3D bioprinting platform creates materials with living cells with applications in biomaterials, cancer research, and eventually human organ replacements. The company's technology started out of Rice University.
  • Tevosol (Edmonton, Alberta, Canada) — Tevasol is developing organ transplant transportation solutions. Their portable warm perfusion machines will help surgeons transplant more organs today and solve organ shortage tomorrow.

------

Diagnostic Photonics withdrew from the program after the article published.

Houston-based Galen Data is growing its clientbase and just formed two new partnerships with medical device companies. Photo via galendata.com

Houston health care data company grows with new medical device partnerships

Digitizing health

Educated as an engineer, Chris DuPont has stepped outside his professional comfort zone to generate funding for his Houston-based startup, Galen Data Inc. DuPont's pool of technical contacts in Houston is "wide and deep," he says, but his pool of financial contacts had been shallow.

Overcoming obstacles in Houston's business waters, DuPont has raised two rounds of angel funding — he declines to say how much — that have enabled Galen Data to develop and market its cloud-based platform for connecting medical devices to the internet, including pacemakers and glucose monitors. DuPont is the startup's co-founder and CEO. Galen Data's platform meets compliance standards set by the U.S. Food and Drug Administration (FDA), the Health Insurance Portability and Accountability Act of 1996 (HIPPA), cybersecurity organizations, and others.

Galen Data's patent-pending technology lets medical device manufacturers tailor the cloud-based software to their unique needs. DuPont says his company's software is geared toward medical devices that are outside, not inside, hospitals and other healthcare facilities. He declines to divulge how many customers the startup has.

Among the startup's customers is San Clemente, California-based Fresca Medical Inc., developer of a device designed to treat sleep apnea.

DuPont says his company's software allows Fresca to perform such tasks as proactively diagnosing problems with the battery in a sleep apnea device or collecting patient data to back up insurance claims. The software even can monitor trends among various medical devices, he says. Galen Data also is helping Fresca develop its mobile app for patients.

Another customer is Friendswood-based Spark Biomedical Inc., developer of a smartphone-connected device, called a neurostimulator, that eases the symptoms of withdrawal from highly addictive opioids.

Hatched within Houston-based Tietronix Software Inc., DuPont's previous employer, Galen Data launched in 2016 but didn't roll out its first product until 2018.

Galen Data's emergence comes as the market for internet-connected mobile health apps keeps growing. One forecast envisions the global space for mobile health exceeding $94 billion by 2023.

"We want to be at the forefront of that technology curve," DuPont says. "We might be six months early, we might be a year early, but it's starting to happen."

Galen Data vies for customers in a largely untapped market, since the majority of medical devices still aren't connected to the internet, according to DuPont. As a whole, medical device makers have been reluctant to delve into connectivity, given the compliance headaches, DuPont says. That's where Galen Data steps in. It's the startup's job, he says, to ensure its tech platform adheres to myriad compliance regulations.

DuPont says a medical device manufacturer easily could spend $250,000 to $500,000 to create its own compliant, connected tech platform similar to Galen Data's offering — and that doesn't include ongoing operational expenses. Galen Data's platform delivers the same benefits at a fraction of that cost, he says.

The startup strives to accomplish its mission with minimal staffing. Between full-timers (including the three co-founders) and contractors, Galen Data employs fewer than 10 people, DuPont says. As needed, Galen Data taps the software development talent at Tietronix, which owns a minority stake in the startup, according to DuPont.

"I'm very, very capital-efficient with our cash," he says. "I don't like layoffs. We'll never have planned layoffs."

If Galen Data continues to achieve its financial goals (it's not profitable yet), DuPont says, the company's workforce could total 20 to 30 within three years. He foresees opening satellite offices in Austin (a tech hub) and Boston (a life sciences hub) at some point.

As for additional products, DuPont wants to eventually build on Galen Data's existing platform by paving the way for data to be securely transferred from medical devices to electronic medical records.

Anchored in Houston, Galen Data hopes to be a player in what DuPont calls "the next biotech corridor of the United States," encompassing not just Houston but Galveston, Austin, Dallas, and San Antonio.

For Galen Data to thrive in that environment, though, it must conquer what DuPont classifies as his biggest hurdle: raising money from investors in a region rooted in the oil and gas industry. In the first quarter of 2019, Houston startups collected less than 6 percent of the venture capital reported throughout Texas — far below what startups in Austin and Dallas reaped during the same period.

Ramping up investment in Galen Data will require educating local investors about the promising potential of the medical device sector, DuPont says. Meanwhile, he's begun hunting for funding outside Texas.

"It's challenging for a startup to raise money in Houston," says DuPont, who praises local entrepreneurs for their support of Galen Data. "We've done it, but it's been hard."

"If Galen is super successful, hopefully we can invest in other early stage companies," DuPont adds. "That's part of the vision."

Galen Concept Videowww.youtube.com

Houston-based Saranas has received de novo distinction from the FDA for its bleed monitoring technology. Courtesy of Saranas

Houston medical device company gains FDA approval

EarlyBird got the worm

When it comes to early bleeding detection, Houston-based Saranas, which closed $2.8 million in funding last year, is ahead of the game with its Early Bird Bleed Monitoring System. The Food and Drug Administration has recognized the medical device company and granted it De Novo distinction.

"Gaining FDA approval for the Early Bird is a significant milestone for Saranas as it demonstrates our continued commitment to address an unmet need for real-time detection and monitoring of endovascular bleed complications," says Saranas president and CEO, Zaffer Syed in a release. "As the first and only device on the market for early bleed detection, we have the potential to significantly reduce bleeding complications and related healthcare costs, while improving clinical outcomes in patients undergoing endovascular procedures."

The Early Bird technology is designed to detect bleeding from vessel injury caused by a surgery, for instance. One in five patients experienced a bleed complication in over 17,000 large-bore transcatheter procedures, according to the release which cites the National Inpatient Sample Database.

"Bleeding remains an Achilles' heel of advancing minimally-invasive, catheter-based procedures," says Dr. Dimitrios Karmpaliotis, director of Chronic Total Occlusions, Complex and High Risk Angioplasty at Columbia University Medical Center, in the release. "The Early Bird will play a key role in making these procedures safer in the future by providing physicians bleed monitoring in real-time."

In May, Saranas received $2.8 million in funding $2.8 million in funding from investors to enable testing of Early Bird. In all, the startup has collected $12 million from investors. A month after the funding announcement, Saranas was one of 50 startups chosen for the MedTech Innovator program, which nurtures medical technology companies.

Currently in the piloting stage, Saranas plans to commercially launch the Early Bird Bleed Monitoring System in select markets across the United States. Currently, the company hasn't disclosed a timeline for that roll out.

The De Novo distinction's purposes is to review new technologies and mitigate risk as they prepare to enter the market. In December, the FDA proposed new procedures and criteria for the De Novo classification process.

"The De Novo pathway for novel medical devices allows the FDA to conduct a rigorous review of new technologies so that patients have timely access to safe and effective medical devices to improve their health," says FDA Commissioner Scott Gottlieb, in a release. "At the same time, the FDA is modernizing its 510(k) pathway, which is used for clearance of low- to moderate-risk devices that are substantially equivalent to a device already on the market. The De Novo pathway provides a vehicle for establishing new predicates that can reflect modern standards for performance and safety and can serve as the basis for future clearances. Our goal is to make the De Novo pathway significantly more efficient and transparent by clarifying the requirements for submission and our processes for review."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston robotics co. unveils new robot that can handle extreme temperatures

Hot New Robot

Houston- and Boston-based Square Robot Inc.'s newest tank inspection robot is commercially available and certified to operate at extreme temperatures.

The new robot, known as the SR-3HT, can operate from 14°F to 131°F, representing a broader temperature range than previous models in the company's portfolio. According to the company, its previous temperature range reached 32°F to 104°F.

The new robot has received the NEC/CEC Class I Division 2 (C1D2) certification from FM Approvals, allowing it to operate safely in hazardous locations and to perform on-stream inspections of aboveground storage tanks containing products stored at elevated temperatures.

“Our engineering team developed the SR-3HT in response to significant client demand in both the U.S. and international markets. We frequently encounter higher temperatures due to both elevated process temperatures and high ambient temperatures, especially in the hotter regions of the world, such as the Middle East," David Lamont, CEO of Square Robot, said in a news release. "The SR-3HT employs both active and passive cooling technology, greatly expanding our operating envelope. A great job done (again) by our engineers delivering world-leading technology in record time.”

The company's SR-3 submersible robot and Side Launcher received certifications earlier this year. They became commercially available in 2023, after completing initial milestone testing in partnership with ExxonMobil, according to Square Robot.

The company closed a $13 million series B round in December, which it said it would put toward international expansion in Europe and the Middle East.

Square Robot launched its Houston office in 2019. Its autonomous, submersible robots are used for storage tank inspections and eliminate the need for humans to enter dangerous and toxic environments.

---

This article originally appeared on EnergyCapitalHTX.com.

Houston's Ion District to expand with new research and tech space, The Arc

coming soon

Houston's Ion District is set to expand with the addition of a nearly 200,000-square-foot research and technology facility, The Arc at the Ion District.

Rice Real Estate Company and Lincoln Property Company are expected to break ground on the state-of-the-art facility in Q2 2026 with a completion target set for Q1 2028, according to a news release.

Rice University, the new facility's lead tenant, will occupy almost 30,000 square feet of office and lab space in The Arc, which will share a plaza with the Ion and is intended to "extend the district’s success as a hub for innovative ideas and collaboration." Rice research at The Arc will focus on energy, artificial intelligence, data science, robotics and computational engineering, according to the release.

“The Arc will offer Rice the opportunity to deepen its commitment to fostering world-changing innovation by bringing our leading minds and breakthrough discoveries into direct engagement with Houston’s thriving entrepreneurial ecosystem,” Rice President Reginald DesRoches said in the release. “Working side by side with industry experts and actual end users at the Ion District uniquely positions our faculty and students to form partnerships and collaborations that might not be possible elsewhere.”

Developers of the project are targeting LEED Gold certification by incorporating smart building automation and energy-saving features into The Arc's design. Tenants will have the opportunity to lease flexible floor plans ranging from 28,000 to 31,000 square feet with 15-foot-high ceilings. The property will also feature a gym, an amenity lounge, conference and meeting spaces, outdoor plazas, underground parking and on-site retail and dining.

Preleasing has begun for organizations interested in joining Rice in the building.

“The Arc at the Ion District will be more than a building—it will be a catalyst for the partnerships, innovations and discoveries that will define Houston’s future in science and technology,” Ken Jett, president of Rice Real Estate Company, added in the release. “By expanding our urban innovation ecosystem, The Arc will attract leading organizations and talent to Houston, further strengthening our city’s position as a hub for scientific and entrepreneurial progress.”

Intel Corp. and Rice University sign research access agreement

innovation access

Rice University’s Office of Technology Transfer has signed a subscription agreement with California-based Intel Corp., giving the global company access to Rice’s research portfolio and the opportunity to license select patented innovations.

“By partnering with Intel, we are creating opportunities for our research to make a tangible impact in the technology sector,” Patricia Stepp, assistant vice president for technology transfer, said in a news release.

Intel will pay Rice an annual subscription fee to secure the option to evaluate specified Rice-patented technologies, according to the agreement. If Intel chooses to exercise its option rights, it can obtain a license for each selected technology at a fee.

Rice has been a hub for innovation and technology with initiatives like the Rice Biotech Launch Pad, an accelerator focused on expediting the translation of the university’s health and medical technology; RBL LLC, a biotech venture studio in the Texas Medical Center’s Helix Park dedicated to commercializing lifesaving medical technologies from the Launch Pad; and Rice Nexus, an AI-focused "innovation factory" at the Ion.

The university has also inked partnerships with other tech giants in recent months. Rice's OpenStax, a provider of affordable instructional technologies and one of the world’s largest publishers of open educational resources, partnered with Microsoft this summer. Google Public Sector has also teamed up with Rice to launch the Rice AI Venture Accelerator, or RAVA.

“This agreement exemplifies Rice University’s dedication to fostering innovation and accelerating the commercialization of groundbreaking research,” Stepp added in the news release.