SpaceX's Dragon capsule docked onto the ISS and will return to Earth in February. Photo via SpaceX

The two astronauts stuck at the International Space Station since June welcomed their new ride home with Sunday’s arrival of a SpaceX capsule.

SpaceX launched the rescue mission on Saturday with a downsized crew of two astronauts and two empty seats reserved for Butch Wilmore and Suni Williams, who will return next year. The Dragon capsule docked in darkness as the two craft soared 265 miles (426 kilometers) above Botswana.

NASA switched Wilmore and Williams to SpaceX following concerns over the safety of their Boeing Starliner capsule. It was the first Starliner test flight with a crew, and NASA decided the thruster failures and helium leaks that cropped up after liftoff were too serious and poorly understood to risk the test pilots’ return. So Starliner returned to Earth empty earlier this month.

The Dragon carrying NASA’s Nick Hague and the Russian Space Agency’s Alexander Gorbunov will remain at the space station until February, turning what should have been a weeklong trip for Wilmore and Williams into a mission lasting more than eight months.

Two NASA astronauts were pulled from the mission to make room for Wilmore and Williams on the return leg.

“I just want to say welcome to our new compadres,” Williams, the space station commander, said once Hague and Gorbunov floated inside and were embraced by the nine astronauts awaiting them.

Hague said it was a smooth flight up. “Coming through the hatch and seeing all the smiles, and as much as I've laughed and cried in the last 10 minutes, I know it's going to be an amazing expedition," he said.

NASA likes to replace its station crews every six months or so. SpaceX has provided the taxi service since the company’s first astronaut flight in 2020. NASA also hired Boeing for ferry flights after the space shuttles were retired, but flawed software and other Starliner issues led to years of delays and more than $1 billion in repairs.

Starliner inspections are underway at NASA’s Kennedy Space Center, with post-flight reviews of data set to begin this week.

“We’re a long way from saying, ‘Hey, we’re writing off Boeing,’” NASA’s associate administrator Jim Free said at a pre-launch briefing.

The arrival of two fresh astronauts means the four who have been up there since March can now return to Earth in their own SpaceX capsule in just over a week, bringing the station's crew size back down to the normal seven. Their stay was extended a month because of the Starliner turmoil.

Although Saturday’s liftoff went well, SpaceX said the rocket’s spent upper stage ended up outside its targeted impact zone in the Pacific because of a bad engine firing. The company has halted all Falcon launches until it figures out what went wrong.was extended a month because of the Starliner turmoil.

Who's going to take the ISS out once its retired? SpaceX, according to NASA. Photo via SpaceX.com

Texas space tech company scores $843M to build the vehicle that'll decommission ISS

getting launch ready

NASA has awarded SpaceX an $843 million contract to build the vehicle that will bring the International Space Station out of its longtime orbit of Earth when its operating lifespan ends in a few more years.

SpaceX, a privately held company controlled by technology mogul Elon Musk, who announced the California-founded company's relocation to Texas earlier this year, will build the vehicle that will bring down the space station, but NASA will still oversee the eventual mission.

The International Space Station, launched in 1998, is expected to be needed to be brought out of orbit by 2030. The station is operated by space agencies from the U.S., Europe, Japan, Canada and Russia. All the countries involved have pledged to operate the station until 2030 except Russia, which has only committed to participate until 2028.

Crews of astronauts have been occupying the space station since 2000.

“The orbital laboratory remains a blueprint for science, exploration, and partnerships in space for the benefit of all,” said Ken Bowersox, NASA's associate administrator for space operations mission directorate.

The contract is another vote of confidence in the technological prowess of SpaceX, a rocket maker based in Hawthorne, California, that Musk founded in 2002 to explore new frontiers in space. Musk, 52, then became the driving force behind in Tesla, the electric car maker that accounts for most of his estimated fortune of $220 billion.

A Houston space tech company has also won NASA contracts relating to the future of the ISS. Houston-based tech unicorn Axiom Space is currently building out its Axiom Station, which received a $140 million grant from NASA. The company is also working with NASA on new and innovative spacesuits for the next generation of astronauts.

Earlier this summer, SpaceX celebrated its most successful launch of its mega Starship rocket, which completed its first full test flight Thursday, returning to Earth without exploding after blasting off from Texas.

Houston-based Dr. Theodoros Voloyiannis was one of six involved in a remote surgery in space demonstration. Photo courtesy of Texas Oncology

Houston surgeon takes part in first-of-its-kind surgery in space

remote control health care

A small surgical robot at the International Space Station completed its first surgery demo in zero gravity last week, and one of the surgeons tasked with the remote robotic operations on simulated tissue was Houston-based Dr. Theodoros Voloyiannis.

Voloyiannis took part in what is being referred to as “surgery in space” by being one of the six doctors remotely controlling spaceMIRA — Miniaturized In Vivo Robotic Assistant — that performed several operations on simulated tissue at the lab located in the space station. The surgeons operated remotely from earth in Lincoln, Nebraska. The remote surgeons worked to control the robot's hands to provide tension to the simulated tissue made of rubber bands. They then used the other hand to dissect the elastic tissue with scissors.

“I said during the procedure ‘it was a small rubber band cut, but a great leap for surgery,’“ Voloyiannis tells InnovationMap. “This was a huge milestone for me personally in my career.”

The robot was developed by Virtual Incision Corporation, and made possible through a partnership between NASA and the University of Nebraska. The team of surgeons took part in a demonstration that is considered a common surgical task, as they dissected the correct piece of tissue under pressure.

Latency is the time delay between when the command is sent and the robot receives it, and that was the big challenge the team faced. The delay was about 0.85 of a second according to what the colorectal surgeon who worked on spaceMIRA Dr. Michael Jobst said to CNN. The demo overall was a success according to the team, and posed a new-found adrenaline rush due to the groundbreaking innovation.

“The excitement of the new and the unknown,” Voloyiannis says on the feeling of doing the first operation of its kind. “I never thought I’d be doing something like this when I was in training and in medical school.”

Voloyiannis serves as the chairman of colon and rectal surgery for The US Oncology Network. He was chosen for this experiment due to his experience and expertise performing robotic colorectal surgery. Voloyiannis and the developers are hopeful that this type of technology will soon allow doctors to perform this specialized robotic surgery on patients living in rural areas without a specialized surgeon nearby, military battlefields, as well as regularly in space one day.

“The same concept of remote surgery regularly in space could certainly be entertained,” Voloyiannis says. “When you do things with an absence of gravity and perform a surgery in that environment — of course that changes the way we do things. When you have an absence of gravity with bodily fluids, it is a very hard surgery, but with partial gravity that idea can be entertained.

"Remotely, internet connectivity would have to be considered and you’d have someone remote like me here, while potentially there you’d have someone with less training doing the procedure there guiding the robot," he continues. "It’s quite the concept though.”

The doctors had to account for nearly a second of delay in connectivity. Photo courtesy of Texas Oncology

NASA selected 12 companies to provide services to its ISS program and five hail from just down the road of the program. Photo via nasa.gov

5 Houston-area space companies score ISS contracts with NASA

ready for takeoff

NASA has tapped a dozen companies to work on services for the International Space Station Program, and five come from the greater Houston region.

Houston-based Aegis Aerospace Inc., Cimarron Software Services, JES Tech, and Oceaneering were are all admitted to the program, as was Webster-based Leidos. The companies, along with the other seven selected, will provide research, engineering, and/or mission integration services to the ISS.

The program, which is based at NASA’s Johnson Space Center in Houston, is supported by a $478 million Research, Engineering & Mission Integration Services-2 or REMIS-2 contract, according to NASA.

The other selected companies are:

  • Axient Corp, based in Huntsville, Alabama
  • Consolidated Safety Services, based in Exploration Park, Florida
  • KBR Wyle, based in Fulton, Maryland
  • Metis, based in Albuquerque, New Mexico
  • Tec-Masters, based in Huntsville
  • Teledyne Brown Engineering, based in Huntsville
  • University of Alabama at Birmingham, Alabama

"The companies will provide spaceflight, ground hardware and software, sustaining engineering functions and services, payload facility integration, and research mission integration operations services," reads a NASA news release. "The majority of the work will take place at contractor facilities across the country. Services also may be required at other NASA centers, contractor or subcontractor locations, or vendor facilities as requirements warrant."

Each of the selected companies will receive a "multiple-award, indefinite-quantity contract with firm-fixed price and cost-plus-fixed-fee task orders." The contract officially began January 12 and extends through Sept. 30, 2030, with an option to extend through Sept. 30, 2032.

Half of the selected companies — Aegis, Cimarron, Consolidated Safety Services, JES Tech, Metis, and Tec-Masters — are small businesses and were selected as a part of the contract's small business reserve.

Axiom Space has announced plans for its third commercial space launch and revealed details of its high-tech spacesuit. Photo courtesy of NASA

Houston space tech company secures third NASA mission, reveals new spacesuits

ready for liftoff

A Houston-based space tech company has revealed details on two of its commercial partnerships with NASA.

NASA and Axiom Space have again signed a mission order for a private astronaut mission to the International Space Station. The mission will commence sometime in November or on and will be from the agency’s NASA’s Kennedy Space Center in Florida. Axiom Mission 3 is the third mission of its kind and, according to a statement from NASA, is expected to be a 14-day trip.

The ISS's Multilateral Crew Operations Panel will approve four proposed crew members and two back up crew submitted by Axiom for the Ax-3 mission. The crew will be expected to train for their flight with NASA, international partners, and SpaceX beginning this spring, according to NASA.

“Axiom Space’s selection to lead the next private astronaut mission to the International Space Station enables us to continue expanding access to nations, academia, commercial entities, and emerging industries to research, test, and demonstrate new technologies in microgravity,” says Michael Suffredini, CEO and president of Axiom Space, in the release. “As NASA’s focus shifts back to the Moon and on to Mars, we are committed to transforming low-Earth orbit into a global space marketplace, where access to space moves beyond the partners of the space station to nations, institutions and individuals with new ideas fueling a thriving human economy beyond Earth.”

Axiom's historic first commercial launch was in spring of 2022, and Ax-2, which will launch the first Saudi astronauts to visit the ISS, is expected to launch this spring. In addition to these two missions, Axiom has been tasked by NASA to develop spacesuits and space station technology.

After several months of working on the suits, Axiom has revealed the details of the technology that will be worn by NASA astronauts returning to the moon on the Artemis III mission that's scheduled to land near the lunar south pole in 2025.

The newly revealed spacesuit will be worn by the first woman and first person of color to visit the moon. Photo courtesy of Axiom Space

“We’re carrying on NASA’s legacy by designing an advanced spacesuit that will allow astronauts to operate safely and effectively on the Moon,” says Suffredini in a statement from the company. “Axiom Space’s Artemis III spacesuit will be ready to meet the complex challenges of the lunar south pole and help grow our understanding of the Moon in order to enable a long-term presence there.”

Called the Axiom Extravehicular Mobility Unit, or AxEMU, the prototype was revealed at Space Center Houston’s Moon 2 Mars Festival today, March 15. According to Axiom, a full fleet of training spacesuits will be delivered to NASA by late this summer.

At the same time as the Ax-3 mission announcement, NASA also announced that it has selected Firefly Aerospace of Cedar Park, Texas, to carry multiple payloads to the far side of the Moon. According to NASA, the commercial lander will deliver two agency payloads, as well as communication and data relay satellite for lunar orbit, which is an European Space Agency collaboration with NASA.

The contract — awarded for around $112 million — is targeted to launch in 2026 through NASA’s Commercial Lunar Payload Services, or CLPS, initiative, and part of the agency’s Artemis program. It's the second award to Firefly under the CLPS initiative.

“The diversity of currently available commercial orbital human spaceflight opportunities is truly astounding. NASA’s commercial crew flights to the space station for our government astronauts paved the way for fully private missions to space like Inspiration4 and Polaris as well as private astronaut missions to the orbiting laboratory like the one we are announcing today,” says Phil McAlister, director of commercial space at NASA Headquarters in Washington, in the release. “We are starting to see the incorporation of space into our economic sphere, and it is going to revolutionize the way people see, use, and experience space.”

The ISS houses hundreds of research projects — and the astronauts aboard just got a handful more. Image via NASA.gov

NASA launches new research projects toward astronauts on ISS

ready to research

For the 26th time, SpaceX has sent up supplies to the International Space Station, facilitating several new research projects that will bring valuable information to the future of space.

On Saturday at 1:20 pm, the SpaceX Dragon spacecraft launched on the Falcon 9 rocket from NASA’s Kennedy Space Center in Florida — bringing with it more than 7,700 pounds of science experiments, crew supplies, and other cargo. The anticipated docking time is Sunday morning, and the cargo spacecraft will remain aboard the ISS for 45 days, according to a news release from NASA.

Among the supplies delivered to the seven international astronauts residing on the ISS are six research experiments — from health tech to vegetation. Here's a glimpse of the new projects sent up to the scientists in orbit:

Moon Microscope

Image via NASA.gov

Seeing as astronauts are 254 miles away from a hospital on Earth — and astronauts on the moon would be almost 1,000 times further — the need for health technology in space is top of mind for researchers. One new device, the Moon Microscope, has just been sent up to provide in-flight medical diagnosis. The device includes a portable hand-held microscope and a small self-contained blood sample staining tool, which can communicate information to Earth for diagnosis.

"The kit could provide diagnostic capabilities for crew members in space or on the surface of the Moon or Mars," reads a news release. "The hardware also may provide a variety of other capabilities, such as testing water, food, and surfaces for contamination and imaging lunar surface samples."

Fresh produce production

Salads simply aren't on the ISS menu, but fresh technology might be changing that. Researchers have been testing a plant growth unit on station known as Veggie, which has successfully grown a variety of leafy greens, and the latest addition is Veg-05 — focused on growing dwarf tomatoes.

Expanded solar panels

Thanks to SpaceX's 22nd commercial resupply mission in 2021, the ISS installed Roll-Out Solar Arrays. Headed to the ISS is the second of three packages to complete the panels that will increase power for the station by 20 to 30 percent. This technology was first tested in space in 2017 and is a key ingredient in future ISS and lunar development.

Construction innovation

Image via NASA.gov

Due to the difference of gravity — and lack thereof — astronauts have had to rethink constructing structures in space. Through a process called extrusion, liquid resin is used to create shapes and forms that cannot be created on Earth. Photocurable resin, which uses light to harden the material into its final form, is injected into pre-made flexible forms and a camera captures footage of the process, per the news release.

"The capability for using these forms could enable in-space construction of structures such as space stations, solar arrays, and equipment," reads the release. "The experiment is packed inside a Nanoracks Black Box with several other experiments from the Massachusetts Institute of Technology Media Lab and is sponsored by the ISS National Lab."

Transition goggles

It's a bizarre transition to go from one gravity field to another — and one that can affect spatial orientation, head-eye and hand-eye coordination, balance, and locomotion, and cause some crew members to experience space motion sickness, according to the release.

"The Falcon Goggles hardware captures high-speed video of a subject’s eyes, providing precise data on ocular alignment and balance," reads the release.

On-demand nutrients

Image via NASA.gov

NASA is already thinking about long-term space missions, and vitamins, nutrients, and pharmaceuticals have limited shelf-life. The latest installment in the five-year BioNutrients program is BioNutrients-2 , which tests a system for producing key nutrients from yogurt, a fermented milk product known as kefir, and a yeast-based beverage, per the release.

"The researchers also are working to find efficient ways to use local resources to make bulk products such as plastics, construction binders, and feedstock chemicals. Such technologies are designed to reduce launch costs and increase self-sufficiency, extending the horizons of human exploration," reads the release.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Intuitive Machines to buy satellite maker Lanteris for $800M

space deal

Houston-based aerospace company Intuitive Machines has agreed to buy satellite manufacturer Lanteris Space Systems for $800 million from private equity firm Advent International.

Intuitive Machines co-founder, president and CEO Steve Altemus said the combined revenue of his company and Palo Alto, California-based Lanteris exceeded $850 million as of Sept. 30, and their backlog of orders totaled $920 million.

Until recently, Lanteris operated as Maxar Space Systems. Its origins date back to 1957.

The deal—comprising $450 million in cash and $350 million in Class A shares of Intuitive Machines stock—is expected to close in the first quarter of 2026.

The acquisition “marks the moment Intuitive Machines transitions from a lunar company to a multi-domain space [company], setting the pace for how the industry’s next generation will operate,” Altemus said.

Altemus said the acquisition would enable Intuitive Machines to better compete for Earth orbit, lunar, Mars and deep space projects. Among the opportunities that would open up thanks to the Lanteris deal are the proposed Golden Dome missile defense system and a large lunar lander capable of carrying astronauts, he said.

“The new Intuitive Machines will combine rapid innovation and precision spacecraft production to meet the growing demand for responsive, high-reliability space infrastructure and services,” Altemus said.

Intuitive Machines, founded in 2013, develops lunar landers and provides aerospace services. In 2024, it became the first U.S. company to land a spacecraft on the moon in half a century.

Altemus said Intuitive Machines is already building three satellites for NASA’s near-space network, and it might upsize two more satellites now that it plans to buy Lanteris.

Aside from satellites, Lanteris is developing the power and propulsion element for NASA’s Gateway, a lunar orbiting command module that will support Artemis missions and deep space exploration.


Lanteris was a division of Maxar Technologies, which Advent and minority investor British Columbia Investment Management took private in a 2023 deal valued at $6.4 billion

.

Meet 6 mentors who are helping the Houston startup scene flourish

meet the finalists

Few founders launch successful startups alone — experienced and insightful mentors often play an integral role in helping the business and its founders thrive.

The Houston startup community is home to many mentors who are willing to lend an ear and share advice to help entrepreneurs meet their goals.

The Mentor of the Year category in our 2025 Houston Innovation Awards will honor an individual like this, who dedicates their time and expertise to guide and support budding entrepreneurs. The award is presented by Houston City College Northwest.

Below, meet the six finalists for the 2025 award. They support promising startups in the medical tech, digital health, clean energy and hardware sectors.

Then, join us at the Houston Innovation Awards this Thursday, Nov. 13 at Greentown Labs, when the winner will be unveiled. The event is just days away, so secure your seats now.

Anil Shetty, InformAI

Anil Shetty serves as president and chief medical officer for biotech company Ferronova and chief innovation officer for InformAI. He's mentored numerous medical device and digital health companies at seed or Series A, including Pathex, Neurostasis, Vivifi Medical and many others. He mentors through organizations like Capital Factory, TMC Biodesign, UT Venture Mentoring, UTMB Innovation and Rice's Global Medical Innovation program.

"Being a mentor means empowering early-stage innovators to shape, test, and refine their ideas with clarity and purpose," Shetty says. "I’m driven by the opportunity to help them think strategically and pivot early before resources are wasted. At this critical stage, most founders lack the financial means to bring on seasoned experts and often haven’t yet gained real-world exposure. Mentorship allows me to fill that gap, offering guidance that accelerates their learning curve and increases the chances of meaningful, sustainable impact."

Jason Ethier, EnergyTech Nexus

Jason Ethier is the founding partner of EnergyTech Nexus, through which he has mentored numerous startups and Innovation Awards finalists, including Geokiln, Energy AI Solutions, Capwell Services and Corrolytics. He founded Dynamo Micropower in 2011 and served as its president and CEO. He later co-founded Greentown Labs in Massachusetts and helped bring the accelerator to Houston.

"Being a mentor means using my experience to help founders see a clearer path to success. I’ve spent years navigating the ups and downs of building companies, struggling with cash flow, and making all the mistakes; mentoring gives me the chance to share those lessons and show entrepreneurs the shortcuts I wish I’d known earlier," Ethier says. "At Energytech Nexus, that role goes beyond just helping individual founders — it’s about creating a flywheel effect for Houston’s entire innovation ecosystem."

Jeremy Pitts, Activate Houston

Jeremy Pitts serves as managing director of Activate Houston, which launched in Houston last year. He was one of the founders of Greentown Labs in the Boston area and served in a leadership role for the organization between 2011 and 2015. Through Activate, he has mentored numerous impactful startups and Innovation Awards finalists, including Solidec, Coflux Purification, Bairitone Health, Newfound Materials, Deep Anchor Solutions and others.

"Being a mentor to me is very much about supporting the person in whatever they need. Oftentimes that means supporting the business—providing guidance and advice, feedback, introductions, etc," But just as important is recognizing the person and helping them with whatever challenges they are going through ... Sometimes they need a hype man to tell them how awesome they are and that they can go do whatever hard thing they need to do. Sometimes they just need an empathetic listener who can relate to how hard these things are. Being there for the person and supporting them on their journey is key to my mentorship style."

Joe Alapat, Liongard

Joe Alapat founded and serves as chief strategy officer at Houston software company Liongard and chief information officer at Empact IT, which he also owns. He mentors through Founder Fridays Houston Group, Software Day by Mercury Fund, SUPERGirls SHINE Foundation, Cup of Joey and at the Ion. He's worked with founders of FlowCare, STEAM OnDemand, Lokum and many other early stage startups.

"Being a mentor to me means unleashing an individual’s 10x—their purpose, their ikigai (a Japanese concept that speaks to a person’s reason for being)," Alapat says. "Mentoring founders in the Houston community of early stage, high-growth startups is an honor for me. I get to live vicariously through a founder’s vision of the future. Once they show me that compelling vision, I’m drawn to bring the future forward with them so the vision becomes reality with a sense of urgency."

Neal Dikeman, Energy Transition Ventures

Neal Dikeman serves as partner at early stage venture fund Energy Transition Ventures, executive in residence at Greentown Labs, and offices in and supports Rice Nexus at the Ion. He mentors startups, like Geokiln, personally. He also mentored Helix Earth through Greentown Labs. The company went on to win in the Smart Cities, Transportation & Sustainability contest at SXSW earlier this year. Dikeman has helped launch several successful startups himself, most recently serving on the board of directors for Resilient Power Systems, which was acquired by Eaton Corp for $150 million.

"Founders have to find their own path, and most founders need a safe space where they can discuss hard truths outside of being 'on' in sales mode with their team or board or investors, to let them be able to work on their business, not just in it," Dikeman says.

Nisha Desai, Intention

Nisha Desai serves as CEO of investment firm Intention and mentors through Greentown Labs, TEX-E, Open Minds, the Rice Alliance Clean Energy Accelerator, Avatar Innovations and The Greenhouse. She currently works with founders from Solidec, Deep Anchor Solutions, CLS Wind and several other local startups, several of which have been nominated for Innovation Awards this year. She's served a board member for Greentown Labs since 2021.

"When I first started mentoring, I viewed my role as someone who was supposed to prevent the founder from making bad decisions. Now, I see my role as a mentor as enabling the founder to develop their own decision-making capability," Desai says. "Sometimes that means giving them the space to make decisions that might be good, that might be bad, but that they can be accountable for. At the end of the day, being a mentor is like being granted a place on the founder's leadership development journey, and it's a privilege I'm grateful for."

---

The Houston Innovation Awards program is sponsored by Houston City College Northwest, Houston Powder Coaters, FLIGHT by Yuengling, and more to be announced soon. For sponsorship opportunities, please contact sales@innovationmap.com.

Rice, Houston Methodist developing soft 'sleep cap' for brain health research

Researchers and scientists at Rice University and Houston Methodist are developing a “sleep cap” that aims to protect the brain against dementia and other similar diseases by measuring and improving deep sleep.

The project is a collaboration between Rice University engineering professors Daniel Preston, Vanessa Sanchez and Behnaam Aazhang; and Houston Methodist neurologist Dr. Timea Hodics and Dr. Gavin Britz, director of the Houston Methodist Neurological Institute and chairman of the Department of Neurosurgery.

According to Rice, deep sleep is essential for clearing waste products from the brain and nightly “cleaning cycles” help remove toxic proteins. These toxic proteins, like amyloids, can accumulate during the day and are linked to Alzheimer’s disease and other neurological issues.

Aazhang, director of the Rice Neuroengineering Initiative, and his team are building a system that not only tracks the brain’s clearing process but can also stimulate it, improving natural mechanisms that protect against neurodegeneration.

Earlier proof-of-concept versions of the caps successfully demonstrated the promise of this approach; however, they were rigid and uncomfortable for sleep.

Preston and Sanchez will work to transform the design of the cap into a soft, lightweight, textile-based version to make sleep easier, while also allowing the caps to be customizable and tailored for each patient.

“One of the areas of expertise we have here at Rice is designing wearable devices from soft and flexible materials,” Preston, an assistant professor of mechanical engineering, said in a news release. “We’ve already shown this concept works in rigid device prototypes. Now we’re building a soft, breathable cap that people can comfortably wear while they sleep.”

Additionally, the research team is pursuing ways to adapt their technology to measure neuroinflammation and stimulate the brain’s natural plasticity. Neuroinflammation, or swelling in the brain, can be caused by injury, stroke, disease or lifestyle factors and is increasingly recognized as a driver of neurodegeneration, according to Rice.

“Our brain has an incredible ability to rewire itself,” Aazhang added in the release. “If we can harness that through technology, we can open new doors for treating not just dementia but also traumatic brain injury, stroke, Parkinson’s disease and more.”

The project represents Rice’s broader commitment to brain health research and its support for the Dementia Prevention Research Institute of Texas (DPRIT), which passed voter approval last week. The university also recently launched its Rice Brain Institute.

As part of the project, Houston Methodist will provide access to clinicians and patients for early trials, which include studies on patients who have suffered traumatic brain injury and stroke.

“We have entered an era in neuroscience that will result in transformational cures in diseases of the brain and spinal cord,” Britz said in the release. “DPRIT could make Texas the hub of these discoveries.”