Re:3D has moved onto the next phase of a NSF program focused on circular economy innovation. Photo via re3d.org

An innovative project led by Houston-founded re:3D Inc. is one of six to move forward to the next phase of the National Science Foundation's Convergence Accelerator that aims to drive solutions with societal and economic impact.

The sustainable 3D printer company will receive up to $5 million over three years as it advances on to Phase 2 of the program for its ReCreateIt project, according to a statement from the NSF. Co-funded by Australia's national science agency, the Commonwealth Scientific and Industrial Research Organisation, or CSIRO, ReCreateIt enables low-income homeowners to design sustainable home goods using recycled plastic waste through 3D-printing at its net-zero manufacturing lab.

The project is in partnership with Austin Habitat for Humanity ReStores and researchers from the University of Wollongong and Western Sydney University. CSIRO is funding the Australian researchers.

In Phase II the teams will receive training on product development, intellectual property, financial resources, sustainability planning and communications and outreach. The goal of the accelerator is to promote a "circular economy," in which resources are reused, repaired, recycled or refurbished for as long as possible.

"Progress toward a circular economy is vital for our planet's health, but it is a complex challenge to tackle," Douglas Maughan, head of the NSF Convergence Accelerator program, said in the statement. "The NSF Convergence Accelerator program is bringing together a wide range of expertise to develop critical, game-changing solutions to transition toward a regenerative growth model that reduces pressure on natural resources, creates sustainable growth and jobs, drastically reduces waste and ultimately has a positive impact on our environment and society. Phase 2 teams are expected to have strong partnerships to ensure their solutions are sustained beyond NSF support."

Other teams that are moving forward in the accelerator include:

  • FUTUR-IC: A global microchip sustainability alliance led by MIT
  • PFACTS: Led by IBM's Almaden Research Center and aiming to replace, redesign and remediate fluorine-containing per- and polyfluoroalkyl substances (PFAS)
  • SOLAR: A team led by Battelle Memorial Institute using photovoltaic circularity to develop the technology needed to achieve sustainable solar recycling
  • SpheriCity: A cross-sector tool that examines how plastics, organics and construction and demolition materials flow through local communities developed by the University of Georgia Research Foundation Inc.
  • Topological Electric: Another MIT-led team, this group aims to develop electronic and energy-harvesting device prototypes based on topological materials.

Re:3d and 15 other teams were first named to the Convergence Accelerator in 2022 with a total investment of $11.5 million. At the end of Phase 1, the teams participated in a formal Phase 2 proposal and pitch, according to the NSF. The Convergence Accelerator was launched in 2019 as part of the NSF's Directorate for Technology, Innovation and Partnerships.

This is the latest project from re:3D to land national attention and funding. Last year the company was one of 12 to receive up to $850,000 from NASA's SBIR Ignite pilot for its project that aimed to develop a recycling system that uses a 3D printer to turn thermoplastic waste generated in orbit into functional and useful objects, according to the project's proposal.

In 2022, it was also among the winners of an inaugural seed fund expo from the U.S. Small Business Administration. It also earned the prestigious Tibbetts Award from the SBA in 2021. The award honors small businesses that are at the forefront of technology.

Re:3D Inc. was founded in 2013 by NASA contractors Samantha Snabes and Matthew Fiedler and is based in Clear Lake. It's known for its GigaBot 3D printer, which uses recycled materials to create larger devices. The company announced its new Austin headquarters earlier this year.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based HPE wins $931M contract to upgrade military data centers

defense data centers

Hewlett Packard Enterprise (HPE), based in Spring, Texas, which provides AI, cloud, and networking products and services, has received a $931 million contract to modernize data centers run by the federal Defense Information Systems Agency.

HPE says it will supply distributed hybrid multicloud technology to the federal agency, which provides combat support for U.S. troops. The project will feature HPE’s Private Cloud Enterprise and GreenLake offerings. It will allow DISA to scale and accelerate communications, improve AI and data analytics, boost IT efficiencies, reduce costs and more, according to a news release from HPE.

The contract comes after the completion of HPE’s test of distributed hybrid multicloud technology at Defense Information Systems Agency (DISA) data centers in Mechanicsburg, Pennsylvania, and Ogden, Utah. This technology is aimed at managing DISA’s IT infrastructure and resources across public and private clouds through one hybrid multicloud platform, according to Data Center Dynamics.

Fidelma Russo, executive vice president and general manager of hybrid cloud at HPE, said in a news release that the project will enable DISA to “deliver innovative, future-ready managed services to the agencies it supports that are operating across the globe.”

The platform being developed for DISA “is designed to mirror the look and feel of a public cloud, replicating many of the key features” offered by cloud computing businesses such as Amazon Web Services (AWS), Microsoft Azure and Google Cloud Platform, according to The Register.

In the 1990s, DISA consolidated 194 data centers into 16. According to The Register, these are the U.S. military’s most sensitive data centers.

More recently, in 2024, the Fort Meade, Maryland-based agency laid out a five-year strategy to “simplify the network globally with large-scale adoption of command IT environments,” according to Data Center Dynamics.

Astros and Rockets launch new streaming service for Houston sports fans

Sports Talk

Houston sports fans now have a way to watch their favorite teams without a cable or satellite subscription. Launched December 3, the Space City Home Network’s SCHN+ service allows consumers to watch the Houston Astros and Houston Rockets via iOS, Apple TV, Android, Amazon Fire TV, or web browser.

A subscription to SCHN+ allows sports fans to watch all Astros and Rockets games, as well as behind-the-scenes features and other on-demand content. It’s priced at $19.99 per month or $199.99 annually (plus tax). People who watch Space City Network Network via their existing cable or satellite service will be able to access SCHN+ at no additional charge.

As the Houston Chronicle notes, the Astros and Rockets were the only MLB and NBA teams not to offer a direct-to-consumer streaming option.

“We’re thrilled to offer another great option to ensure fans have access to watch games, and the SCHN+ streaming app makes it easier than ever to cheer on the Rockets,” Rockets alternate governor Patrick Fertitta said in a statement.

“Providing fans with a convenient way to watch their favorite teams, along with our network’s award-winning programming, was an essential addition. This season feels special, and we’re committed to exploring new ways to elevate our broadcasts for Rockets fans to enjoy.”

Astros owner Jim Crane echoed Feritta’s comments, adding, “Providing fans options on how they view our games is important as we continue to grow the game – we want to make it accessible to as large an audience as possible. We are looking forward to the 2026 season and more Astros fans watching our players compete for another championship.”

SCHN+ is available to customers in Texas; Louisiana; Arkansas; Oklahoma; and the following counties in New Mexico: Dona Ana, Eddy, Lea, Chaves, Roosevelt, Curry, Quay, Union, and Debaca. Fans outside these areas will need to subscribe to the NBA and MLB out-of-market services.

---

This article originally appeared on CultureMap.com.

Rice University researchers unveil new model that could sharpen MRI scans

MRI innovation

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI.

In a study recently published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Previous models only approximated how water molecules relaxed around contrasting agents. However, through this new model, known as the NMR eigenmodes framework, the research team has uncovered the “full physical equations” to explain the process.

“The concept is similar to how a musical chord consists of many notes,” Thiago Pinheiro, the study’s first author, a Rice doctoral graduate in chemical and biomolecular engineering and postdoctoral researcher in the chemical sciences division at Oak Ridge National Laboratory, said in a news release. “Previous models only captured one or two notes, while ours picks up the full harmony.”

According to Rice, the findings could lead to the development and application of new contrast agents for clearer MRIs in medicine and materials science. Beyond MRIs, the NMR relaxation method could also be applied to other areas like battery design and subsurface fluid flow.

“In the present paper, we developed a comprehensive theory to interpret those previous molecular dynamics simulations and experimental findings,” Dilipkumar Asthagiri, a senior computational biomedical scientist in the National Center for Computational Sciences at Oak Ridge National Laboratory, said in the release. ”The theory, however, is general and can be used to understand NMR relaxation in liquids broadly.”

The team has also made its code available as open source to encourage its adoption and further development by the broader scientific community.

“By better modeling the physics of nuclear magnetic resonance relaxation in liquids, we gain a tool that doesn’t just predict but also explains the phenomenon,” Walter Chapman, a professor of chemical and biomolecular engineering at Rice, added in the release. “That is crucial when lives and technologies depend on accurate scientific understanding.”

The study was backed by The Ken Kennedy Institute, Rice Creative Ventures Fund, Robert A. Welch Foundation and Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory.