funds granted

Houston 3D printing company lands funding from NASA

NASA doled out funding to 12 startups — and one from Houston makes the cut. Photo courtesy of re:3D

Houston-based re:3D Inc was recently one of 12 innovative companies from around the country to be granted Phase II awards from a NASA small business initiative, the space giant announced earlier this week.

The grants of up to $850,000 are awarded to early-stage, high-risk technology concepts that could be commercialized for use in space and on Earth as part of NASA's SBIR Ignite pilot, which is part of NASA’s Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs.

The program was launched to support emerging companies "whose end customers may not be only NASA but are still creating technology that NASA cares about,” Jason L. Kessler, program executive for the NASA SBIR/STTR program, says in a previous statement. And it aims to attract companies that have not yet worked with NASA.

The concepts from the cohort have applications in climate resilience, low-cost solar cells and active debris remediation. Re:3D Inc.'s project looks to develop a recycling system that uses a 3D printer to turn thermoplastic waste generated in orbit into functional and useful objects, according to the project's proposal.

SBIR Ignite made its inaugural Phase I awards in 2022, granting about $2 million in total to the 12 companies, including re:3D Inc. The Phase II grants are intended to help the companies create their prototypes.

“We are proud that all 12 of the small businesses are continuing with our program and persevering through the tough realities of early-stage research and development,” Kessler said in a statement made this month. "These awards foster a unique range of technologies that we hope will have positive impacts on the lives of everyday Americans in the future."

Re3D Inc. is the only company from Texas in the cohort. The other 11 awarded companies and their projects include:

  • Ampaire Inc.: High Efficiency Powertrain for Hybrid Aircraft
  • Canopy Aerospace Inc.: Reusable Heatshields through Additive Manufacturing
  • Cecilia Energy: Catalytic Conversion of Waste Plastic to Hydrogen
  • Crystal Sonic Inc.: Reducing Cost of Space Photovoltaics via Sound-Assisted Substrate Reuse
  • H3X Technologies Inc.: HPDM-30 – A 10 kW/kg Integrated Motor Drive for UAV and Aircraft Electric Propulsion
  • Outpost Technologies Corporation: Outpost Cargo Ferry: A Rapid Cargo Downmass Vehicle
  • Solestial, Inc.: Next Generation Silicon Based Solar Arrays for Space Stations and Other Permanent Space Infrastructure
  • StormImpact Inc.: Optimizing vegetation management to improve the resilience of the electrical power system to extreme weather
  • Terrafuse, Inc.: Wildfire Mitigation through Explainable Risk Predictions
  • Trans Astronautica Corporation: Mini Bee Capture Bag for Active Debris Remediation
  • Turion Space Corp.: Low-Cost CubeSat for Active Removal of Sizable Space Debris Utilizing a Mothership Architecture

Re:3D Inc. was founded in 2013 by NASA contractors Samantha Snabes and Matthew Fiedler and is based in Clear Lake. It's known for its GigaBot 3D printer, which uses recycled materials to create larger devices.

Since its founding it's been named to numerous accelerators and has earned national recognition, like the Tibbetts Award from the U.S. Small Business Administration, which honors small businesses that are at the forefront of technology. It was selected by the SBA to participate in its inaugural America’s Seed Fund Startup Expo last year.

Co-founder Snabes spoke on the Houston Innovators Podcast in 2020. Click here to listen to the full, in-depth interview.

Trending News

 
 

Promoted

A research team housed out of the newly launched Rice Biotech Launch Pad received funding to scale tech that could slash cancer deaths in half. Photo via Rice University

A research funding agency has deployed capital into a team at Rice University that's working to develop a technology that could cut cancer-related deaths in half.

Rice researchers received $45 million from the National Institutes of Health's Advanced Research Projects Agency for Health, or ARPA-H, to scale up development of a sense-and-respond implant technology. Rice bioengineer Omid Veiseh leads the team developing the technology as principal investigator.

“Instead of tethering patients to hospital beds, IV bags and external monitors, we’ll use a minimally invasive procedure to implant a small device that continuously monitors their cancer and adjusts their immunotherapy dose in real time,” he says in a news release. “This kind of ‘closed-loop therapy’ has been used for managing diabetes, where you have a glucose monitor that continuously talks to an insulin pump. But for cancer immunotherapy, it’s revolutionary.”

Joining Veiseh on the 19-person research project named THOR, which stands for “targeted hybrid oncotherapeutic regulation,” is Amir Jazaeri, co-PI and professor of gynecologic oncology at the University of Texas MD Anderson Cancer Center. The device they are developing is called HAMMR, or hybrid advanced molecular manufacturing regulator.

“Cancer cells are continually evolving and adapting to therapy. However, currently available diagnostic tools, including radiologic tests, blood assays and biopsies, provide very infrequent and limited snapshots of this dynamic process," Jazaeri adds. "As a result, today’s therapies treat cancer as if it were a static disease. We believe THOR could transform the status quo by providing real-time data from the tumor environment that can in turn guide more effective and tumor-informed novel therapies.”

With a national team of engineers, physicians, and experts across synthetic biology, materials science, immunology, oncology, and more, the team will receive its funding through the Rice Biotech Launch Pad, a newly launched initiative led by Veiseh that exists to help life-saving medical innovation scale quickly.

"Rice is proud to be the recipient of the second major funding award from the ARPA-H, a new funding agency established last year to support research that catalyzes health breakthroughs," Rice President Reginald DesRoches says. "The research Rice bioengineer Omid Veiseh is doing in leading this team is truly groundbreaking and could potentially save hundreds of thousands of lives each year. This is the type of research that makes a significant impact on the world.”

The initial focus of the technology will be on ovarian cancer, and this funding agreement includes a first-phase clinical trial of HAMMR for the treatment of recurrent ovarian cancer that's expected to take place in the fourth year of THOR’s multi-year project.

“The technology is broadly applicable for peritoneal cancers that affect the pancreas, liver, lungs and other organs,” Veiseh says. “The first clinical trial will focus on refractory recurrent ovarian cancer, and the benefit of that is that we have an ongoing trial for ovarian cancer with our encapsulated cytokine ‘drug factory’ technology. We'll be able to build on that experience. We have already demonstrated a unique model to go from concept to clinical trial within five years, and HAMMR is the next iteration of that approach.”

Trending News

 
 

Promoted