Michelle Stansbury, vice president of innovation and IT applications at Houston Methodist, joins the Houston Innovators Podcast. Photo courtesy of Houston Methodist

It might surprise most to know that Houston Methodist doesn't have an innovation department within their hospital system — at least not one set up as you'd imagine, with a team specifically dedicated to innovation. Instead, Houston Methodist's Digital Innovation Obsessed People, or DIOP, consists of leaders across departments.

Michelle Stansbury is one of those leaders. As vice president of innovation and IT applications at Houston Methodist, she oversees the system's IT department and serves as a leader within its innovation efforts. This includes the Center for Innovation Technology Hub — which opened in 2020 in the Texas Medical Center location and opened its Ion outpost last week.

Stansbury explains on the Houston Innovators Podcast how effective this distribution of innovation responsibilities has been for Houston Methodist. With everyone having a seat at the table — operations knows the biggest problems that need solutions, IT knows how to deploy technology, etc. — implementation of new innovations has been sped up.

"If we partner together, we should be able to succeed fast or fail fast," she says on the show. "We've been able to find a solution, pilot it, and, if it works well, roll it out at a speed that most other organizations have not been able to do. It's been highly successful for us."

The newest way Houston Methodist is mixing up how it brings in innovative solutions to its team and patients is by taking its team outside of the Texas Medical Center and its hospitals in general. Now, Houston Methodist has a permanent tech hub in the Ion, owned and operated by Rice Management Company, on the lower level of the building, completely open to any of the Ion's visitors.

"We've always had a great partnership with Rice. This almost felt like an extension with Houston Methodist and our Rice collaboration with the Ion," Stansbury says. "Our main goals have been how can we utilize the talent that's housed out of that facility."

She explains that the new hub is an extension of the original hub in the TMC hospital, and that innovators who are interested in collaborating with Houston Methodist — especially those with solutions applicable to health care — can visit the Ion hub as an entry point.

Both hub locations showcase pilot technology Houston Methodist is working on, and that technology will then get deployed out into its hospital locations — and especially its Cypress hospital, which is being billed as being the "smart hospital of the future." The construction is underway and expected to deliver in 2025.

Stansbury shares more about this ninth location for Houston Methodist as well as more details on the new tech hub on the podcast. Listen to the interview here — or wherever you stream your podcasts — and subscribe for weekly episodes.

Meet MIA — Houston Methodist's new voice technology assistant. Photo via Getty Images

Houston hospital introduces first-of-its-kind voice technology into its operating rooms

Hey, MIA

Hey, MIA. Start surgery.

These are the words Houston doctors are learning to say in the operating rooms, thanks to a first-of-its-kind voice technology developed by the Houston Methodist's Center for Innovation in collaboration with Amazon Web Services. In the same way we use programs like Alexa or Siri to make our everyday tasks easier, the Methodist Intelligent Automation, or MIA, is allowing medical professionals to improve the way they interact both with technology and patients alike.

"There's been a push in the industry for a long time that people sitting behind computers and typing and staring at a computer screen is inadequate," says Houston Methodist Chief Innovation Officer Roberta Schwartz. "There's been a desire to return people back to each other rather than physicians and look at a screen and patients look at a doctor looking at a screen."

Currently in its pilot phase, MIA is working to do just that through two key functions that shift the way medical professionals work in what Schwartz calls the "era of electronic medical records."

The first is through operating room voice commands. Here medical professionals can run through a series or checklists and initiate important actions, such as starting timers or reviewing time of anesthesia, through voice instead of by typing or clicking, which can become cumbersome during lengthy and highly detailed surgeries. Information is displayed on a large 80-inch TV in the operating suite and following surgery all of the data captured is imported into the traditional EMR program. The technology has been prototyped in two Houston Methodist O.R. suites so far and the hub aims to trial it in a simulation surgery by the end of the year.

Additionally, the hub is developing ambient listening technology to be used in a clinical setting with the same goal. Houston Methodist and AWS have partnered with Dallas-based Pariveda to create specialized hardware that (after gaining patient permission) will listen into doctor-patient conversations, transcribe the interaction, and draft a note that is then coded and imported directly into the EMR.

"For EMR the feedback is that it's clunky, it's click-heavy, it's very task oriented," says Josh Sol, who leads digital and clinical innovation for Houston Methodist. "Our goal with the Center for Innovation and this technology hub is to really transform that terminology and bring back this collaboration and the patient-physician relationship by removing the computer but still capturing all the pertinent information."

The ambient listening technology is further off and is currently in user acceptance testing with clinicians.

"They've had some great feedback, whether it's changing how the note is created, changing the look and feel of the application itself," Sol adds. "All feedback is good feedback at this point. So we've taken it in, we prioritize the work, and we continue to improve the application."

And the hub doesn't plan to stop there. Schwartz and Sol agree that the next step for this type of medical technology will be patient facing. They envision that in the near future appointment or surgery prep can be done through Alexa push notifications and medication reminders or follow up assessments could be done via voice applications.

"It's all going to be of tremendous value and it's coming," Schwartz says. "We may be taking the first baby steps, but each one of these voice technologies for our patients is out there on the horizon."

The new tech hub at Houston Methodist has trained hundreds of physicians in telemedicine practices. Natalie Harms/InnovationMap

Houston Methodist tech hub focuses on telemedicine training amid COVID-19 outbreak

virtual care

Houston Methodist's recently opened its new Center for Innovation's Technology Hub in January, and the new wing has already been challenged by a global pandemic — one that's validating a real need for telemedicine.

The 3,500-square-foot tech testing ground was renovated from an 18-room patient wing and showcases new digital health technologies like virtual reality, ambient listening, wearables, voice control, and more. The hub was focused on giving tours to medical professionals and executives to get them excited about health tech, but in the middle of March, Josh Sol, administrative director of Innovation and Ambulatory Clinical Systems at Houston Methodist, says they saw a greater need for the space.

"We turned the technology hub into a training center where physicians could come on site and learn telemedicine," Sol says. "We had some foresight from our leadership who thought that telemedicine was going to be heavily utilized in order to protect our patients who might go into isolation based on the outbreak."

The hub has trained over 500 physicians — both onsite and digitally. Sol says that at the start of March, there were 66 providers offering virtual care, and by March 25, there were over 900 providers operating virtually. On March 12, Houston Methodist had 167 virtual visits, Sol says, and on March 25, they had 2,421. This new 2,000-plus number is now the daily average.

"Telemedicine is here to stay now with the rapid adoption that just happened," Sol says. "The landscape will change tremendously."

Another way new technology has affected doctors' day-to-day work has been through tele-rounding — especially when it comes to interacting with patients with COVID-19.

"We are putting iPads in those rooms with Vidyo as the video application, and our physicians can tele-visit into that room," Sol says.

It's all hands on deck for the tech hub so that physicians who need support have someone to turn to. Sol says the hub used to have a two-person support team and now there are eight people in that role.

Sol says the iPads are a key technology for tele-rounding and patient care — and they are working with Apple directly to secure inventory. But other tech tools, like an artificial intelligence-backed phone system, an online symptom checker, and chatbots are key to engaging with patients.

"We're looking at how we can get our patients in the right place at the right time," Sol says. "It's very confusing right now. We're hoping we can streamline that for our patients."

The hub was designed so that in case of emergency, the display hospital rooms could be transitioned to patient care rooms. Sol says that would be a call made by Roberta Schwartz, executive vice president and chief innovation officer of Houston Methodist Hospital.

The Center for Innovation at Houston Methodist has opened its new Technology Hub to showcase its efforts to advance digital health. Natalie Harms/InnovationMap

Photos: Houston Methodist opens new hub to showcase health tech of the future

what's next for health care?

Houston Methodist is regularly exploring new digital health technologies, but, until recently, lacked a proper space to demonstrate their vision for the future of health care. Now, with the Center for Innovation's Technology Hub, the hospital has just that.

The tech hub opened earlier this month in Houston Methodist Hospital in the Texas Medical Center. The 3,500-square-foot tech testing ground was renovated from an 18-room patient wing and showcases new digital health technologies like virtual reality, ambient listening, wearables, voice control, and more.

"Basically this space is like a laboratory for digital health innovations," says Josh Sol, administrative director of Innovation and Ambulatory Clinical Systems at Houston Methodist. "It's an opportunity to bring doctors, administrators, and subject matter experts to talk through what digital health could be at Houston Methodist."

The tech hub has re-imagined the experiences patients have and demonstrated the effect technology can have in various experiences — from the waiting room or outpatient care to at-home health and a voice control-optimized patient room. There's a virtual reality demo room that showcases the hospital's use of VR for distraction therapy, as well as for a doctor to demonstrate a surgical procedure for his or her patient.

"Part of this space is to change culture within the organization to promote this type of technology and really grow it because we think we can have some really positive impacts with our patients with these collaboration tools.

The space also features coworking space for industry experts — like Amazon or Microsoft — to come in to co-create, Sol says. Houston Methodist was also the first hospital in Houston to sign up for Apple Health's beta program.

Tours are open to industry professionals, vendors, and staff.

"We're excited for what the future can bring with this space," Sol tells InnovationMap.

Click through the slideshow to see some of the tech hub's rooms and the technology featured.

An interactive space

Natalie Harms/InnovationMap

The purpose of the new tech hub is to allow visitors to interact with technology Houston Methodist is exploring, as well as to tell the story of the hospital's innovations and its patients. The screen upon entry to the hub is one of the only 8K touch-screen monitors and allows a viewer to tap through to see a layout of the hub as well as to hear a story of one of Methodist's patients.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers develop material to boost AI speed and cut energy use

ai research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.

Houston to become 'global leader in brain health' and more innovation news

Top Topics

Editor's note: The most-read Houston innovation news this month is centered around brain health, from the launch of Project Metis to Rice''s new Amyloid Mechanism and Disease Center. Here are the five most popular InnovationMap stories from December 1-15, 2025:

1. Houston institutions launch Project Metis to position region as global leader in brain health

The Rice Brain Institute, UTMB's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department will lead Project Metis. Photo via Unsplash.

Leaders in Houston's health care and innovation sectors have joined the Center for Houston’s Future to launch an initiative that aims to make the Greater Houston Area "the global leader of brain health." The multi-year Project Metis, named after the Greek goddess of wisdom and deep thought, will be led by the newly formed Rice Brain Institute, The University of Texas Medical Branch's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department. The initiative comes on the heels of Texas voters overwhelmingly approving a ballot measure to launch the $3 billion, state-funded Dementia Prevention and Research Institute of Texas (DPRIT). Continue reading.

2.Rice University researchers unveil new model that could sharpen MRI scans

New findings from a team of Rice University researchers could enhance MRI clarity. Photo via Unsplash.

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI. In a study published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Continue reading.

3. Rice University launches new center to study roots of Alzheimer’s and Parkinson’s

The new Amyloid Mechanism and Disease Center will serve as the neuroscience branch of Rice’s Brain Institute. Photo via Unsplash.

Rice University has launched its new Amyloid Mechanism and Disease Center, which aims to uncover the molecular origins of Alzheimer’s, Parkinson’s and other amyloid-related diseases. The center will bring together Rice faculty in chemistry, biophysics, cell biology and biochemistry to study how protein aggregates called amyloids form, spread and harm brain cells. It will serve as the neuroscience branch of the Rice Brain Institute, which was also recently established. Continue reading.

4. Baylor center receives $10M NIH grant to continue rare disease research

BCM's Center for Precision Medicine Models has received funding that will allow it to study more complex diseases. Photo via Getty Images

Baylor College of Medicine’s Center for Precision Medicine Models has received a $10 million, five-year grant from the National Institutes of Health that will allow it to continue its work studying rare genetic diseases. The Center for Precision Medicine Models creates customized cell, fly and mouse models that mimic specific genetic variations found in patients, helping scientists to better understand how genetic changes cause disease and explore potential treatments. Continue reading.

5. Luxury transportation startup connects Houston with Austin and San Antonio

Shutto is a new option for Houston commuters. Photo courtesy of Shutto

Houston business and leisure travelers have a luxe new way to hop between Texas cities. Transportation startup Shutto has launched luxury van service connecting San Antonio, Austin, and Houston, offering travelers a comfortable alternative to flying or long-haul rideshare. Continue reading.

Texas falls to bottom of national list for AI-related job openings

jobs report

For all the hoopla over AI in the American workforce, Texas’ share of AI-related job openings falls short of every state except Pennsylvania and Florida.

A study by Unit4, a provider of cloud-based enterprise resource planning (ERP) software for businesses, puts Texas at No. 49 among the states with the highest share of AI-focused jobs. Just 9.39 percent of Texas job postings examined by Unit4 mentioned AI.

Behind Texas are No. 49 Pennsylvania (9.24 percent of jobs related to AI) and No. 50 Florida (9.04 percent). One spot ahead of Texas, at No. 47, is California (9.56 percent).

Unit4 notes that Texas’ and Florida’s low rankings show “AI hiring concentration isn’t necessarily tied to population size or GDP.”

“For years, California, Texas, and New York dominated tech hiring, but that’s changing fast. High living costs, remote work culture, and the democratization of AI tools mean smaller states can now compete,” Unit4 spokesperson Mark Baars said in a release.

The No. 1 state is Wyoming, where 20.38 percent of job openings were related to AI. The Cowboy State was followed by Vermont at No. 2 (20.34 percent) and Rhode Island at No. 3 (19.74 percent).

“A company in Wyoming can hire an AI engineer from anywhere, and startups in Vermont can build powerful AI systems without being based in Silicon Valley,” Baars added.

The study analyzed LinkedIn job postings across all 50 states to determine which ones were leading in AI employment. Unit4 came up with percentages by dividing the total number of job postings in a state by the total number of AI-related job postings.

Experts suggest that while states like Texas, California and Florida “have a vast number of total job postings, the sheer volume of non-AI jobs dilutes their AI concentration ratio,” according to Unit4. “Moreover, many major tech firms headquartered in California are outsourcing AI roles to smaller, more affordable markets, creating a redistribution of AI employment opportunities.”