seeing green

Houston researchers snag government funds for net-zero emissions projects

Both Rice University and the University of Houston were selected by the Department of Energy to receive funds for ongoing research projects. Photo via Getty Images

Rice University and the University of Houston were two of four national institutions to receive sizable grants from the Department of Energy last month to go toward the research and development of projects that will improve CO2 storage to help move the country toward the goal of net-zero emissions by 2050.

Each of the four projects works to advance long-term, commercial-scale geologic sequestration of CO2. According to a release from the DOE, the process of carbon capture and storage (known as CSS) separates and captures CO2 from the emissions of industrial processes before it is released into the atmosphere. Once captured, the CO2 is then injected into deep underground geologic formations, known as caprock.

However, during seismic events, like an earthquake or volcanic eruption, the CO2 can leak through the ground and contaminate the water supply.

"Large scale carbon capture efforts are vital to getting America emissions free by 2050, and how we store this CO2 must be safe, secure and permanent," said U.S. Secretary of Energy Jennifer M. Granholm. "The R&D investments in new tools and technology to monitor underground activity near CO2 storage sites will help us minimize risk from natural events like earthquakes, safeguard the environment and water supply, and get us that much closer to our clean energy goals."

Rice was awarded nearly $1.2 million from the DOE for its project that aims to develop a new strategy for monitoring seal integrity in the CCS process. The project "has the potential to provide a powerful platform for identifying CO2 leakage through reactivated faults or fracture zones," the statement said.

UH received a nearly $800,000 grant for its project that will work to determine cost-effective seismic data processing technologies that will automatically detect faults on 3D seismic migration images.

The project is being developed by Yingcai Zheng at the University of Houston in collaboration with Los Alamos National Lab and Vecta Oil and Gas and aims will help not only estimate seismic activity, but will also be able to estimate the fluid leakage pathways in certain regions, according to a separate release from UH.

"Most think of applied geophysics as linked to the oil and gas industry," Zheng said in the statement. "While that is true, when we think of the energy transition and how to achieve our goals, it is important to realize that this cannot happen without studying the geophysics of the subsurface – in a way, it literally holds the well-being of humanity's future."

The remaining two projects that received grants from the DOE come from the Battelle Memorial Institute in Ohio and The New Mexico Institute of Mining and Technology. In total the DOE issues $4 million to support the projects.

A number of Houston energy leaders are looking at smarter ways to store CO2. This spring, Joe Blommaert, the Houston-based president of ExxonMobil Low Carbon Solutions, said that he envisions creating a $100 billion carbon-capture hub along the Houston Ship Channel. And that same month Occidental's venture arm, Oxy Low Carbon Ventures, announced plans to construct and operate a pilot plant that would convert carbon dioxide into feedstocks.

Trending News

Building Houston

 
 

This UH engineer is hoping to make his mark on cancer detection. Photo via UH.edu

Early stage cancer is hard to detect, mostly because traditional diagnostic imaging cannot detect tumors smaller than a certain size. One Houston innovator is looking to change that.

Wei-Chuan Shih, professor of electrical and computer engineering at the University of Houston's Cullen College of Engineering, recently published his findings in IEEE Sensors journal. According to a news release from UH, the cells around cancer tumors are small — ~30-150nm in diameter — and complex, and the precise detection of these exosome-carried biomarkers with molecular specificity has been elusive, until now.

"This work demonstrates, for the first time, that the strong synergy of arrayed radiative coupling and substrate undercut can enable high-performance biosensing in the visible light spectrum where high-quality, low-cost silicon detectors are readily available for point-of-care application," says Shih in the release. "The result is a remarkable sensitivity improvement, with a refractive index sensitivity increase from 207 nm/RIU to 578 nm/RIU."

Wei-Chuan Shih is a professor of electrical and computer engineering at the University of Houston's Cullen College of Engineering. Photo via UH.edu

What Shih has done is essentially restored the electric field around nanodisks, providing accessibility to an otherwise buried enhanced electric field. Nanodisks are antibody-functionalized artificial nanostructures which help capture exosomes with molecular specificity.

"We report radiatively coupled arrayed gold nanodisks on invisible substrate (AGNIS) as a label-free (no need for fluorescent labels), cost-effective, and high-performance platform for molecularly specific exosome biosensing. The AGNIS substrate has been fabricated by wafer-scale nanosphere lithography without the need for costly lithography," says Shih in the release.

This process speeds up screening of the surface proteins of exosomes for diagnostics and biomarker discovery. Current exosome profiling — which relies primarily on DNA sequencing technology, fluorescent techniques such as flow cytometry, or enzyme-linked immunosorbent assay (ELISA) — is labor-intensive and costly. Shih's goal is to amplify the signal by developing the label-free technique, lowering the cost and making diagnosis easier and equitable.

"By decorating the gold nanodisks surface with different antibodies (e.g., CD9, CD63, and CD81), label-free exosome profiling has shown increased expression of all three surface proteins in cancer-derived exosomes," said Shih. "The sensitivity for detecting exosomes is within 112-600 (exosomes/μL), which would be sufficient in many clinical applications."

Trending News