Researchers have secured $3.3 million in funding to develop an AI-powered subsurface sensing system aimed at improving the safety and efficiency of underground power line installation. Photo by Matthew Henry on Unsplash

Researchers from the University of Houston — along with a Hawaiian company — have received $3.3 million in funding to explore artificial intelligence-backed subsurface sensing system for safe and efficient underground power line installation.

Houston's power lines are above ground, but studies show underground power is more reliable. Installing underground power lines is costly and disruptive, but the U.S. Department of Energy, in an effort to find a solution, has put $34 million into its new GOPHURRS program, which stands for Grid Overhaul with Proactive, High-speed Undergrounding for Reliability, Resilience, and Security. The funding has been distributed across 12 projects in 11 states.

“Modernizing our nation’s power grid is essential to building a clean energy future that lowers energy costs for working Americans and strengthens our national security,” U.S. Secretary of Energy Jennifer M. Granholm says in a DOE press release.

UH and Hawaii-based Oceanit are behind one of the funded projects, entitled “Artificial Intelligence and Unmanned Aerial Vehicle Real-Time Advanced Look-Ahead Subsurface Sensor.”

The researchers are looking a developing a subsurface sensing system for underground power line installation, potentially using machine learning, electromagnetic resistivity well logging, and drone technology to predict and sense obstacles to installation.

Jiefu Chen, associate professor of electrical and computer engineering at UH, is a key collaborator on the project, focused on electromagnetic antennas installed on UAV and HDD drilling string. He's working with Yueqin Huang, assistant professor of information science technology, who leads the geophysical signal processing and Xuqing Wu, associate professor of computer information systems, responsible for integrating machine learning.

“Advanced subsurface sensing and characterization technologies are essential for the undergrounding of power lines,” says Chen in the release. “This initiative can enhance the grid's resilience against natural hazards such as wildfires and hurricanes.”

“If proven successful, our proposed look-ahead subsurface sensing system could significantly reduce the costs of horizontal directional drilling for installing underground utilities,” Chen continues. “Promoting HDD offers environmental advantages over traditional trenching methods and enhances the power grid’s resilience.”

------

This article originally ran on EnergyCapital.

A UH-affiliated project won $3.6M to develop microreactor technology that turns carbon dioxide into methanol using renewable energy. Photo via uh.edu

UH-backed project secures $3.6M to transform CO2 into sustainable fuel with cutting-edge tech

funds granted

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

------

This article originally ran on EnergyCapital.

The HyVelocity Hub, representing the Gulf Coast region, will receive $1.2 billion to strengthen and further build out the region's hydrogen production. Photo via Getty Images

Houston-area selected among 7 regions for $7B federal hydrogen hub investment

hi, hydrogen

A Houston-area project got the green light as one of the seven regions to receive a part of the $7 billion in Bipartisan Infrastructure Law funding to advance domestic hydrogen production.

President Joe Biden and Energy Secretary Jennifer Granholm named the seven regions to receive funding in a White House statement today. The Gulf Coast's project, HyVelocity Hydrogen Hub, will receive up to $1.2 billion — the most any hub will receive, per the release.

“As I’ve stated repeatedly over the past years, we are uniquely positioned to lead a transformational clean hydrogen hub that will deliver economic growth and good jobs, including in historically underserved communities," Houston Mayor Sylvester Turner says in a news release. "HyVelocity will also help scale up national and world clean hydrogen economies, resulting in significant decarbonization gains. I’d also like to thank all the partners who came together to create HyVelocity Hub in a true spirit of public-private collaboration.”

Backed by industry partners AES Corporation, Air Liquide, Chevron, ExxonMobil, Mitsubishi Power Americas, Ørsted, and Sempra Infrastructure, the HyVelocity Hydrogen Hub will connect more than 1,000 miles of hydrogen pipelines, 48 hydrogen production facilities, and dozens of hydrogen end-use applications across Texas and Southwest Louisiana. The hub is planning for large-scale hydrogen production through both natural gas with carbon capture and renewables-powered electrolysis.

The project is spearheaded by GTI Energy and other organizing participants, including the University of Texas at Austin, The Center for Houston’s Future, Houston Advanced Research Center, and around 90 other supporting partners from academia, industry, government, and beyond.

“Prioritizing strong community engagement and demonstrating an innovation ecosystem, the HyVelocity Hub will improve local air quality and create equitable access to clean, reliable, affordable energy for communities across the Gulf Coast region,” says Paula A. Gant, president and CEO of GTI Energy, in a news release.

According to the White House's announcement, the hub will create 45,000 direct jobs — 35,000 in construction jobs and 10,000 permanent jobs. The other selected hubs — and the impact they are expected to have, include:

  • Tied with HyVelocity in terms of funding amount, the California Hydrogen Hub — Alliance for Renewable Clean Hydrogen Energy Systems (ARCHES) — will also receive up to $1.2 billion to create 220,000 direct jobs—130,000 in construction jobs and 90,000 permanent jobs. The project is expected to target decarbonizing public transportation, heavy duty trucking, and port operations.
  • The Midwest Alliance for Clean Hydrogen (MachH2), spanning Illinois, Indiana, and Michigan, will receive up to $1 billion. This region's efforts will be directed at optimizing hydrogen use in steel and glass production, power generation, refining, heavy-duty transportation, and sustainable aviation fuel. It's expected to create 13,600 direct jobs—12,100 in construction jobs and 1,500 permanent jobs.
  • Receiving up to $1 billion and targeting Washington, Oregon, and Montana, the Pacific Northwest Hydrogen Hub — named PNW H2— will produce clean hydrogen from renewable sources and will create over 10,000 direct jobs—8,050 in construction jobs and 350 permanent jobs.
  • The Appalachian Regional Clean Hydrogen Hub (ARCH2), which will be located in West Virginia, Ohio, and Pennsylvania, will tap into existing infrastructure to use low-cost natural gas to produce low-cost clean hydrogen and permanently and safely store the associated carbon emissions. The project, which will receive up to $925 million, will create 21,000 direct jobs—including more than 18,000 in construction and more than 3,000 permanent jobs.
  • Spanning Minnesota, North Dakota, and South Dakota, the Heartland Hydrogen Hub will receive up to $925 million and create around 3,880 direct jobs–3,067 in construction jobs and 703 permanent jobs — to decarbonize the agricultural sector’s production of fertilizer, decrease the regional cost of clean hydrogen, and advance hydrogen use in electric generation and for cold climate space heating.
  • Lastly, the Mid-Atlantic Clean Hydrogen Hub (MACH2), which will include Pennsylvania, Delaware, and New Jersey, hopes to repurposing historic oil infrastructure to develop renewable hydrogen production facilities from renewable and nuclear electricity. The hub, which will receive up to $750 million, anticipates creating 20,800 direct jobs—14,400 in construction jobs and 6,400 permanent jobs.

These seven clean hydrogen hubs are expected to catalyze more than $40 billion in private investment, per the White house, and bring the total public and private investment in hydrogen hubs to nearly $50 billion. Collectively, they aim to produce more than three million metric tons of clean hydrogen annually — which reaches nearly one third of the 2030 U.S. clean hydrogen production goal. Additionally, the hubs will eliminate 25 million metric tons of carbon dioxide emissions from end uses each year. That's roughly equivalent to annual emissions of over 5.5 million gasoline-powered cars.

“Unlocking the full potential of hydrogen—a versatile fuel that can be made from almost any energy resource in virtually every part of the country—is crucial to achieving President Biden’s goal of American industry powered by American clean energy, ensuring less volatility and more affordable clean energy options for American families and businesses,” U.S. Secretary of Energy Jennifer M. Granholm says in the release. “With this historic investment, the Biden-Harris Administration is laying the foundation for a new, American-led industry that will propel the global clean energy transition while creating high quality jobs and delivering healthier communities in every pocket of the nation.”

HyVelocity has been a vision amongst Houston energy leaders for over a year, announcing its bid for regional hydrogen hub funding last November. Another Houston-based clean energy project was recently named a semi-finalist for National Science Foundation funding.

“We are excited to get to work making HyVelocity come to life,” Brett Perlman, president and CEO of Center for Houston’s Future, says in the release. “We look forward to spurring economic growth and development, creating jobs, and reducing emissions in ways that will benefit local communities and the Gulf Coast region as a whole. HyVelocity will be a model for creating a clean hydrogen ecosystem in an inclusive and equitable manner.”

------

This article originally ran on EnergyCapital.

Both Rice University and the University of Houston were selected by the Department of Energy to receive funds for ongoing research projects. Photo via Getty Images

Houston researchers snag government funds for net-zero emissions projects

seeing green

Rice University and the University of Houston were two of four national institutions to receive sizable grants from the Department of Energy last month to go toward the research and development of projects that will improve CO2 storage to help move the country toward the goal of net-zero emissions by 2050.

Each of the four projects works to advance long-term, commercial-scale geologic sequestration of CO2. According to a release from the DOE, the process of carbon capture and storage (known as CSS) separates and captures CO2 from the emissions of industrial processes before it is released into the atmosphere. Once captured, the CO2 is then injected into deep underground geologic formations, known as caprock.

However, during seismic events, like an earthquake or volcanic eruption, the CO2 can leak through the ground and contaminate the water supply.

"Large scale carbon capture efforts are vital to getting America emissions free by 2050, and how we store this CO2 must be safe, secure and permanent," said U.S. Secretary of Energy Jennifer M. Granholm. "The R&D investments in new tools and technology to monitor underground activity near CO2 storage sites will help us minimize risk from natural events like earthquakes, safeguard the environment and water supply, and get us that much closer to our clean energy goals."

Rice was awarded nearly $1.2 million from the DOE for its project that aims to develop a new strategy for monitoring seal integrity in the CCS process. The project "has the potential to provide a powerful platform for identifying CO2 leakage through reactivated faults or fracture zones," the statement said.

UH received a nearly $800,000 grant for its project that will work to determine cost-effective seismic data processing technologies that will automatically detect faults on 3D seismic migration images.

The project is being developed by Yingcai Zheng at the University of Houston in collaboration with Los Alamos National Lab and Vecta Oil and Gas and aims will help not only estimate seismic activity, but will also be able to estimate the fluid leakage pathways in certain regions, according to a separate release from UH.

"Most think of applied geophysics as linked to the oil and gas industry," Zheng said in the statement. "While that is true, when we think of the energy transition and how to achieve our goals, it is important to realize that this cannot happen without studying the geophysics of the subsurface – in a way, it literally holds the well-being of humanity's future."

The remaining two projects that received grants from the DOE come from the Battelle Memorial Institute in Ohio and The New Mexico Institute of Mining and Technology. In total the DOE issues $4 million to support the projects.

A number of Houston energy leaders are looking at smarter ways to store CO2. This spring, Joe Blommaert, the Houston-based president of ExxonMobil Low Carbon Solutions, said that he envisions creating a $100 billion carbon-capture hub along the Houston Ship Channel. And that same month Occidental's venture arm, Oxy Low Carbon Ventures, announced plans to construct and operate a pilot plant that would convert carbon dioxide into feedstocks.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas university to lead new FAA tech center focused on drones

taking flight

The Texas A&M University System will run the Federal Aviation Administration’s new Center for Advanced Aviation Technologies, which will focus on innovations like commercial drones.

“Texas is the perfect place for our new Center for Advanced Aviation Technologies,” U.S. Transportation Secretary Sean Duffy said in a release. “From drones delivering your packages to powered lift technologies like air taxis, we are at the cusp of an aviation revolution. The [center] will ensure we make that dream a reality and unleash American innovation safely.”

U.S. Sen. Ted Cruz, a Texas Republican, included creation of the center in the FAA Reauthorization Act of 2024. The center will consist of an airspace laboratory, flight demonstration zones, and testing corridors.

Texas A&M University-Corpus Christi will lead the initiative, testing unstaffed aircraft systems and other advanced technologies. The Corpus Christi campus houses the Autonomy Research Institute, an FAA-designated test site. The new center will be at Texas A&M University-Fort Worth.

The College Station-based Texas A&M system says the center will “bring together” its 19 institutions, along with partners such as the University of North Texas in Denton and Southern Methodist University in University Park.

According to a Department of Transportation news release, the center will play “a pivotal role” in ensuring the safe operation of advanced aviation technologies in public airspace.

The Department of Transportation says it chose the Texas A&M system to manage the new center because of its:

  • Proximity to major international airports and the FAA’s regional headquarters in Fort Worth
  • Existing infrastructure for testing of advanced aviation technologies
  • Strong academic programs and industry partnerships

“I’m confident this new research and testing center will help the private sector create thousands of high-paying jobs and grow the Texas economy through billions in new investments,” Cruz said.

“This is a significant win for Texas that will impact communities across our state,” the senator added, “and I will continue to pursue policies that create new jobs, and ensure the Lone Star State continues to lead the way in innovation and the manufacturing of emerging aviation technologies.”

Texas Republicans are pushing to move NASA headquarters to Houston

space city

Two federal lawmakers from Texas are spearheading a campaign to relocate NASA’s headquarters from Washington, D.C., to the Johnson Space Center in Houston’s Clear Lake area. Houston faces competition on this front, though, as lawmakers from two other states are also vying for this NASA prize.

With NASA’s headquarters lease in D.C. set to end in 2028, U.S. Sen. Ted Cruz, a Texas Republican, and U.S. Rep. Brian Babin, a Republican whose congressional district includes the Johnson Space Center, recently wrote a letter to President Trump touting the Houston area as a prime location for NASA’s headquarters.

“A central location among NASA’s centers and the geographical center of the United States, Houston offers the ideal location for NASA to return to its core mission of space exploration and to do so at a substantially lower operating cost than in Washington, D.C.,” the letter states.

Cruz is chairman of the Senate Committee on Commerce, Science, and Transportation; and Babin is chairman of the House Committee on Science, Space, and Technology. Both committees deal with NASA matters. Twenty-five other federal lawmakers from Texas, all Republicans, signed the letter.

In the letter, legislators maintain that shifting NASA’s headquarters to the Houston area makes sense because “a seismic disconnect between NASA’s headquarters and its missions has opened the door to bureaucratic micromanagement and an erosion of [NASA] centers’ interdependence.”

Founded in 1961, the $1.5 billion, 1,620-acre Johnson Space Center hosts NASA’s mission control and astronaut training operations. More than 12,000 employees work at the 100-building complex.

According to the state comptroller, the center generates an annual economic impact of $4.7 billion for Texas, and directly and indirectly supports more than 52,000 public and private jobs.

In pitching the Johnson Space Center for NASA’s HQ, the letter points out that Texas is home to more than 2,000 aerospace, aviation, and defense-related companies. Among them are Elon Musk’s SpaceX, based in the newly established South Texas town of Starbase; Axiom Space and Intuitive Machines, both based in Houston; and Firefly Aerospace, based in the Austin suburb of Cedar Park.

The letter also notes the recent creation of the Texas Space Commission, which promotes innovation in the space and commercial aerospace sectors.

Furthermore, the letter cites Houston-area assets for NASA such as:

  • A strong business environment.
  • A low level of state government regulation.
  • A cost of living that’s half of what it is in the D.C. area.

“Moving the NASA headquarters to Texas will create more jobs, save taxpayer dollars, and reinvigorate America’s space agency,” the letter says.

Last November, NASA said it was hunting for about 375,000 to 525,000 square feet of office space in the D.C. area to house the agency’s headquarters workforce. About 2,500 people work at the agency’s main offices. NASA’s announcement set off a scramble among three states to lure the agency’s headquarters.

Aside from officials in Texas, politicians in Florida and Ohio are pressing NASA to move its headquarters to their states. Florida and Ohio both host major NASA facilities.

NASA might take a different approach, however. “NASA is weighing closing its headquarters and scattering responsibilities among the states, a move that has the potential to dilute its coordination and influence in Washington,” Politico reported in March.

Meanwhile, Congressional Delegate Eleanor Holmes Norton, a Democrat who represents D.C., introduced legislation in March that would prohibit relocating a federal agency’s headquarters (including NASA’s) away from the D.C. area without permission from Congress.

“Moving federal agencies is not about saving taxpayer money and will degrade the vital services provided to all Americans across the country,” Norton said in a news release. “In the 1990s, the Bureau of Land Management moved its wildfire staff out West, only to move them back when Congress demanded briefings on new wildfires.”

Houston research breakthrough could pave way for next-gen superconductors

Quantum Breakthrough

A study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.