Researchers have secured $3.3 million in funding to develop an AI-powered subsurface sensing system aimed at improving the safety and efficiency of underground power line installation. Photo by Matthew Henry on Unsplash

Researchers from the University of Houston — along with a Hawaiian company — have received $3.3 million in funding to explore artificial intelligence-backed subsurface sensing system for safe and efficient underground power line installation.

Houston's power lines are above ground, but studies show underground power is more reliable. Installing underground power lines is costly and disruptive, but the U.S. Department of Energy, in an effort to find a solution, has put $34 million into its new GOPHURRS program, which stands for Grid Overhaul with Proactive, High-speed Undergrounding for Reliability, Resilience, and Security. The funding has been distributed across 12 projects in 11 states.

“Modernizing our nation’s power grid is essential to building a clean energy future that lowers energy costs for working Americans and strengthens our national security,” U.S. Secretary of Energy Jennifer M. Granholm says in a DOE press release.

UH and Hawaii-based Oceanit are behind one of the funded projects, entitled “Artificial Intelligence and Unmanned Aerial Vehicle Real-Time Advanced Look-Ahead Subsurface Sensor.”

The researchers are looking a developing a subsurface sensing system for underground power line installation, potentially using machine learning, electromagnetic resistivity well logging, and drone technology to predict and sense obstacles to installation.

Jiefu Chen, associate professor of electrical and computer engineering at UH, is a key collaborator on the project, focused on electromagnetic antennas installed on UAV and HDD drilling string. He's working with Yueqin Huang, assistant professor of information science technology, who leads the geophysical signal processing and Xuqing Wu, associate professor of computer information systems, responsible for integrating machine learning.

“Advanced subsurface sensing and characterization technologies are essential for the undergrounding of power lines,” says Chen in the release. “This initiative can enhance the grid's resilience against natural hazards such as wildfires and hurricanes.”

“If proven successful, our proposed look-ahead subsurface sensing system could significantly reduce the costs of horizontal directional drilling for installing underground utilities,” Chen continues. “Promoting HDD offers environmental advantages over traditional trenching methods and enhances the power grid’s resilience.”

------

This article originally ran on EnergyCapital.

A UH-affiliated project won $3.6M to develop microreactor technology that turns carbon dioxide into methanol using renewable energy. Photo via uh.edu

UH-backed project secures $3.6M to transform CO2 into sustainable fuel with cutting-edge tech

funds granted

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

------

This article originally ran on EnergyCapital.

The HyVelocity Hub, representing the Gulf Coast region, will receive $1.2 billion to strengthen and further build out the region's hydrogen production. Photo via Getty Images

Houston-area selected among 7 regions for $7B federal hydrogen hub investment

hi, hydrogen

A Houston-area project got the green light as one of the seven regions to receive a part of the $7 billion in Bipartisan Infrastructure Law funding to advance domestic hydrogen production.

President Joe Biden and Energy Secretary Jennifer Granholm named the seven regions to receive funding in a White House statement today. The Gulf Coast's project, HyVelocity Hydrogen Hub, will receive up to $1.2 billion — the most any hub will receive, per the release.

“As I’ve stated repeatedly over the past years, we are uniquely positioned to lead a transformational clean hydrogen hub that will deliver economic growth and good jobs, including in historically underserved communities," Houston Mayor Sylvester Turner says in a news release. "HyVelocity will also help scale up national and world clean hydrogen economies, resulting in significant decarbonization gains. I’d also like to thank all the partners who came together to create HyVelocity Hub in a true spirit of public-private collaboration.”

Backed by industry partners AES Corporation, Air Liquide, Chevron, ExxonMobil, Mitsubishi Power Americas, Ørsted, and Sempra Infrastructure, the HyVelocity Hydrogen Hub will connect more than 1,000 miles of hydrogen pipelines, 48 hydrogen production facilities, and dozens of hydrogen end-use applications across Texas and Southwest Louisiana. The hub is planning for large-scale hydrogen production through both natural gas with carbon capture and renewables-powered electrolysis.

The project is spearheaded by GTI Energy and other organizing participants, including the University of Texas at Austin, The Center for Houston’s Future, Houston Advanced Research Center, and around 90 other supporting partners from academia, industry, government, and beyond.

“Prioritizing strong community engagement and demonstrating an innovation ecosystem, the HyVelocity Hub will improve local air quality and create equitable access to clean, reliable, affordable energy for communities across the Gulf Coast region,” says Paula A. Gant, president and CEO of GTI Energy, in a news release.

According to the White House's announcement, the hub will create 45,000 direct jobs — 35,000 in construction jobs and 10,000 permanent jobs. The other selected hubs — and the impact they are expected to have, include:

  • Tied with HyVelocity in terms of funding amount, the California Hydrogen Hub — Alliance for Renewable Clean Hydrogen Energy Systems (ARCHES) — will also receive up to $1.2 billion to create 220,000 direct jobs—130,000 in construction jobs and 90,000 permanent jobs. The project is expected to target decarbonizing public transportation, heavy duty trucking, and port operations.
  • The Midwest Alliance for Clean Hydrogen (MachH2), spanning Illinois, Indiana, and Michigan, will receive up to $1 billion. This region's efforts will be directed at optimizing hydrogen use in steel and glass production, power generation, refining, heavy-duty transportation, and sustainable aviation fuel. It's expected to create 13,600 direct jobs—12,100 in construction jobs and 1,500 permanent jobs.
  • Receiving up to $1 billion and targeting Washington, Oregon, and Montana, the Pacific Northwest Hydrogen Hub — named PNW H2— will produce clean hydrogen from renewable sources and will create over 10,000 direct jobs—8,050 in construction jobs and 350 permanent jobs.
  • The Appalachian Regional Clean Hydrogen Hub (ARCH2), which will be located in West Virginia, Ohio, and Pennsylvania, will tap into existing infrastructure to use low-cost natural gas to produce low-cost clean hydrogen and permanently and safely store the associated carbon emissions. The project, which will receive up to $925 million, will create 21,000 direct jobs—including more than 18,000 in construction and more than 3,000 permanent jobs.
  • Spanning Minnesota, North Dakota, and South Dakota, the Heartland Hydrogen Hub will receive up to $925 million and create around 3,880 direct jobs–3,067 in construction jobs and 703 permanent jobs — to decarbonize the agricultural sector’s production of fertilizer, decrease the regional cost of clean hydrogen, and advance hydrogen use in electric generation and for cold climate space heating.
  • Lastly, the Mid-Atlantic Clean Hydrogen Hub (MACH2), which will include Pennsylvania, Delaware, and New Jersey, hopes to repurposing historic oil infrastructure to develop renewable hydrogen production facilities from renewable and nuclear electricity. The hub, which will receive up to $750 million, anticipates creating 20,800 direct jobs—14,400 in construction jobs and 6,400 permanent jobs.

These seven clean hydrogen hubs are expected to catalyze more than $40 billion in private investment, per the White house, and bring the total public and private investment in hydrogen hubs to nearly $50 billion. Collectively, they aim to produce more than three million metric tons of clean hydrogen annually — which reaches nearly one third of the 2030 U.S. clean hydrogen production goal. Additionally, the hubs will eliminate 25 million metric tons of carbon dioxide emissions from end uses each year. That's roughly equivalent to annual emissions of over 5.5 million gasoline-powered cars.

“Unlocking the full potential of hydrogen—a versatile fuel that can be made from almost any energy resource in virtually every part of the country—is crucial to achieving President Biden’s goal of American industry powered by American clean energy, ensuring less volatility and more affordable clean energy options for American families and businesses,” U.S. Secretary of Energy Jennifer M. Granholm says in the release. “With this historic investment, the Biden-Harris Administration is laying the foundation for a new, American-led industry that will propel the global clean energy transition while creating high quality jobs and delivering healthier communities in every pocket of the nation.”

HyVelocity has been a vision amongst Houston energy leaders for over a year, announcing its bid for regional hydrogen hub funding last November. Another Houston-based clean energy project was recently named a semi-finalist for National Science Foundation funding.

“We are excited to get to work making HyVelocity come to life,” Brett Perlman, president and CEO of Center for Houston’s Future, says in the release. “We look forward to spurring economic growth and development, creating jobs, and reducing emissions in ways that will benefit local communities and the Gulf Coast region as a whole. HyVelocity will be a model for creating a clean hydrogen ecosystem in an inclusive and equitable manner.”

------

This article originally ran on EnergyCapital.

Both Rice University and the University of Houston were selected by the Department of Energy to receive funds for ongoing research projects. Photo via Getty Images

Houston researchers snag government funds for net-zero emissions projects

seeing green

Rice University and the University of Houston were two of four national institutions to receive sizable grants from the Department of Energy last month to go toward the research and development of projects that will improve CO2 storage to help move the country toward the goal of net-zero emissions by 2050.

Each of the four projects works to advance long-term, commercial-scale geologic sequestration of CO2. According to a release from the DOE, the process of carbon capture and storage (known as CSS) separates and captures CO2 from the emissions of industrial processes before it is released into the atmosphere. Once captured, the CO2 is then injected into deep underground geologic formations, known as caprock.

However, during seismic events, like an earthquake or volcanic eruption, the CO2 can leak through the ground and contaminate the water supply.

"Large scale carbon capture efforts are vital to getting America emissions free by 2050, and how we store this CO2 must be safe, secure and permanent," said U.S. Secretary of Energy Jennifer M. Granholm. "The R&D investments in new tools and technology to monitor underground activity near CO2 storage sites will help us minimize risk from natural events like earthquakes, safeguard the environment and water supply, and get us that much closer to our clean energy goals."

Rice was awarded nearly $1.2 million from the DOE for its project that aims to develop a new strategy for monitoring seal integrity in the CCS process. The project "has the potential to provide a powerful platform for identifying CO2 leakage through reactivated faults or fracture zones," the statement said.

UH received a nearly $800,000 grant for its project that will work to determine cost-effective seismic data processing technologies that will automatically detect faults on 3D seismic migration images.

The project is being developed by Yingcai Zheng at the University of Houston in collaboration with Los Alamos National Lab and Vecta Oil and Gas and aims will help not only estimate seismic activity, but will also be able to estimate the fluid leakage pathways in certain regions, according to a separate release from UH.

"Most think of applied geophysics as linked to the oil and gas industry," Zheng said in the statement. "While that is true, when we think of the energy transition and how to achieve our goals, it is important to realize that this cannot happen without studying the geophysics of the subsurface – in a way, it literally holds the well-being of humanity's future."

The remaining two projects that received grants from the DOE come from the Battelle Memorial Institute in Ohio and The New Mexico Institute of Mining and Technology. In total the DOE issues $4 million to support the projects.

A number of Houston energy leaders are looking at smarter ways to store CO2. This spring, Joe Blommaert, the Houston-based president of ExxonMobil Low Carbon Solutions, said that he envisions creating a $100 billion carbon-capture hub along the Houston Ship Channel. And that same month Occidental's venture arm, Oxy Low Carbon Ventures, announced plans to construct and operate a pilot plant that would convert carbon dioxide into feedstocks.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas cybersecurity co. expands unique train-to-hire model to Houston

job search

It’s increasingly more difficult to ensure the confidentiality, integrity, and availability of proprietary data and information in the ever-changing, ever-evolving digital world.

Cyberattacks, including malware, phishing, and ransomware, are becoming increasingly common and sophisticated, posing a consistent threat to a company’s sustainability and bottom line.

To combat that trend, Nukudo, a San Antonio-based cybersecurity workforce development company, is expanding its initiative to bridge the global cybersecurity talent gap through immersive training and job placement to Houston.

“We saw that there was a need in the market because there's a shortage of skilled manpower within the cybersecurity industry and other digital domains,” says Dean Gefen, CEO of NukuDo. “So, our initial goal was to take a large pool of people and then make them to be fully operational in cybersecurity in the shortest amount of time.”

The company refers to the plan as the “training-to-employment model,” which focuses on providing structured training to select individuals who then acquire the skills and knowledge necessary to secure and maintain fruitful careers.

The company identifies potential associates through its proprietary aptitude test, which recognizes individuals who possess the innate technical acumen and potential for success in various cybersecurity roles, regardless of their level of education.

“We take in people from all walks of life, meaning the program is purely based on the associate’s potential,” Gefen says. “We have people who were previously aircraft engineers, teachers, graphic designers, lawyers, insurance agents and so forth.”

Once selected, associates are trained by cybersecurity experts while gaining hands-on experience through scenario-based learning, enabling them to be deployed immediately as fully operational cybersecurity professionals.

The program training lasts just six months—all paid—followed by three years of guaranteed employment with NukuDo.

While in training, associates are paid $ 4,000 per month; then, they’re compensated by nearly double that amount over the next three years, ultimately pushing their salaries to well into the six figures after completing the entire commitment.

In addition to fostering a diverse talent pipeline in the cybersecurity field, NukuDo is creating a comprehensive solution to address the growing shortage of technical talent in the global workforce.

And arming people with new marketable skills has a litany of benefits, both professional and personal, Gefen says.

“Sometimes, we have associates who go on to make five times their previous salary,” says Gefen. “Add to that fact that we had someone that had a very difficult life beforehand and we were able to put him on a different path. That really hits home for us that we are making a difference.

Nulkudo currently has partnerships with companies such as Accenture Singapore and Singapore Airlines. Gefen says he and his team plans to have a new class of associates begin training every month by next year and take the model to the Texas Triangle (Houston, Austin and Dallas)—then possibly nationwide.

“The great thing about our program is that we train people above the level of possible threat of replacement by artificial intelligence,” Gefen says. “But what we are also doing, and this is due to requirements that we have received from clients that are already hiring our cyber professionals, is that we are now starting to deliver AI engineers and data scientists in other domains.”

“That means that we have added more programs to our cybersecurity program. So, we're also training people in data science and machine learning,” he continues.

All interested candidates for the program should be aware that a college degree is not required. NukuDo is genuinely interested in talented individuals, regardless of their background.

“The minimum that we are asking for is high school graduates,” Gefen says. “They don't need to have a college degree; they just need to have aptitude. And, of course, they need to be hungry to make this change.”

2 Houston universities declared among world’s best in 2026 rankings

Declaring the Best

Two Houston universities are in a class of their own, earning top spots on a new global ranking of the world's best universities.

Rice University and University of Houston are among the top 1,200 schools included in the QS World University Rankings 2026. Ten more schools across Texas make the list.

QS (Quacquarelli Symonds), a London-based provider of higher education data and analytics, compiles the prestigious list each year; the 2026 edition includes more than 1,500 universities from around the world. Factors used to rank the schools include academic reputation; employer reputation; faculty-student ratio; faculty research; and international research, students, and faculty.

In Texas, University of Texas at Austin lands at No. 1 in the state, No. 20 in the U.S., and No. 68 globally.

Houston's Rice University is close behind as Texas' No. 2 school. It ranks 29th in the U.S. and No. 119 in the world. Unlike UT, which fell two spots globally this year (from No. 66 to 68), Rice climbed up the charts, moving from 141st last year to No. 119.

University of Houston impresses as Texas' 4th highest-ranked school. It lands at No. 80 in the U.S. and No. 556 globally, also climbing about 100 spots up the chart.

Rice and UH are on a roll in regional, national, and international rankings this year.

Rice earned top-15 national rankings by both Niche.com and Forbes last fall. Rice claimed No. 1 and UH ranked No. 8 in Texas in U.S. News & World Report's 2025 rankings. Rice also topped WalletHub's 2025 list of the best colleges and universities in Texas for 2025.

More recently, in April, both UH and Rice made U.S. News' 2025 list of top grad schools.

In all, 192 U.S. universities made the 2026 QS World University Rankings — the most of any country. Topping the global list is the Massachusetts Institute of Technology (MIT).

“The results show that while U.S. higher education remains the global leader, its dominance is increasingly challenged by fast-rising emerging systems,” says the QS World University Rankings report. “A decade ago, 32 American universities [were] featured in the world’s top 100; today, that number has dropped to 26, and only 11 of these institutions have improved their position this year."

The 12 Texas universities that appear in the QS World University Rankings 2026 list are:

  • University of Texas at Austin, No. 20 in the U.S. and No. 68 in the world (down from No. 66 last year).
  • Rice University, No. 29 in the U.S. and No. 119 in the world (up from No. 141 last year).
  • Texas A&M University, No. 32 in the U.S. and No. 144 in the world (up from No. 154 last year).
  • University of Houston, No. 80 in the U.S. and No. 556 in the world (up from 651-660 last year).
  • University of Texas at Dallas, No. 85 in the U.S. and No. 597 in the world (down from 596 last year).
  • Texas Tech University, No. 104 in the U.S. and No. 731-740 in the world (unchanged from last year).
  • University of North Texas, No. 123 in the U.S. and No. 901-950 in the world (up from 1,001-1,200 last year)
  • Baylor University, tied for No. 136 in the U.S. and at No. 1,001-1,200 in the world (unchanged from last year).
  • Southern Methodist University, tied for No. 136 in the U.S. and at 1,001-1,200 in the world (unchanged from last year).
  • University of Texas Arlington, tied for No. 136 in the U.S. and at 1,001-1,200 in the world (unchanged from last year).
  • University of Texas at San Antonio, tied for No. 136 in the U.S. and at 1,001-1,200 in the world (unchanged from last year).
  • University of Texas at El Paso, No. 172 in the U.S. and at 1,201-1,400 in the world (down from 1,001-1,200 last year).
---

This article originally appeared on CultureMap.com.

Houston students develop new device to prepare astronauts for outer space

space race

Rice University students from the George R. Brown School of Engineering and Computing designed a space exercise harness that is comfortable, responsive, and adaptable and has the potential to assist with complex and demanding spacewalks.

A group of students—Emily Yao, Nikhil Ashri, Jose Noriega, Ben Bridges and graduate student Jack Kalicak—mentored by assistant professor of mechanical engineering Vanessa Sanchez, modernized harnesses that astronauts use to perform rigorous exercises. The harnesses are particularly important in preparing astronauts for a reduced-gravity space environment, where human muscles and bones atrophy faster than they do on Earth. However, traditional versions of the harnesses had many limitations that included chafing and bruising.

The new harnesses include sensors for astronauts to customize their workouts by using real-time data and feedback. An additional two sensors measure astronauts’ comfort and exercise performance based on temperature and humidity changes during exercise and load distribution at common pressure points.

“Our student-led team addressed this issue by adding pneumatic padding that offers a customized fit, distributes pressure over a large surface area to reduce discomfort or injuries and also seamlessly adapts to load shifts — all of which together improved astronauts’ performance,” Sanchez said in a news release. “It was very fulfilling to watch these young engineers work together to find innovative and tangible solutions to real-world problems … This innovative adjustable exercise harness transforms how astronauts exercise in space and will significantly improve their health and safety during spaceflights.”

The project was developed in response to a challenge posted by the HumanWorks Lab and Life Science Labs at NASA and NASA Johnson Space Center for the 2025 Technology Collaboration Center’s (TCC) Wearables Workshop and University Challenge, where teams worked to solve problems for industry leaders.

Rice’s adaptive harness won the Best Challenge Response Award. It was funded by the National Science Foundation and Rice’s Office of Undergraduate Research and Inquiry.

“This challenge gave us the freedom to innovate and explore possibilities beyond the current harness technology,” Yao added in the release. “I’m especially proud of how our team worked together to build a working prototype that not only has real-world impact but also provides a foundation that NASA and space companies can build and iterate upon.”