Researchers have secured $3.3 million in funding to develop an AI-powered subsurface sensing system aimed at improving the safety and efficiency of underground power line installation. Photo by Matthew Henry on Unsplash

Researchers from the University of Houston — along with a Hawaiian company — have received $3.3 million in funding to explore artificial intelligence-backed subsurface sensing system for safe and efficient underground power line installation.

Houston's power lines are above ground, but studies show underground power is more reliable. Installing underground power lines is costly and disruptive, but the U.S. Department of Energy, in an effort to find a solution, has put $34 million into its new GOPHURRS program, which stands for Grid Overhaul with Proactive, High-speed Undergrounding for Reliability, Resilience, and Security. The funding has been distributed across 12 projects in 11 states.

“Modernizing our nation’s power grid is essential to building a clean energy future that lowers energy costs for working Americans and strengthens our national security,” U.S. Secretary of Energy Jennifer M. Granholm says in a DOE press release.

UH and Hawaii-based Oceanit are behind one of the funded projects, entitled “Artificial Intelligence and Unmanned Aerial Vehicle Real-Time Advanced Look-Ahead Subsurface Sensor.”

The researchers are looking a developing a subsurface sensing system for underground power line installation, potentially using machine learning, electromagnetic resistivity well logging, and drone technology to predict and sense obstacles to installation.

Jiefu Chen, associate professor of electrical and computer engineering at UH, is a key collaborator on the project, focused on electromagnetic antennas installed on UAV and HDD drilling string. He's working with Yueqin Huang, assistant professor of information science technology, who leads the geophysical signal processing and Xuqing Wu, associate professor of computer information systems, responsible for integrating machine learning.

“Advanced subsurface sensing and characterization technologies are essential for the undergrounding of power lines,” says Chen in the release. “This initiative can enhance the grid's resilience against natural hazards such as wildfires and hurricanes.”

“If proven successful, our proposed look-ahead subsurface sensing system could significantly reduce the costs of horizontal directional drilling for installing underground utilities,” Chen continues. “Promoting HDD offers environmental advantages over traditional trenching methods and enhances the power grid’s resilience.”

------

This article originally ran on EnergyCapital.

A UH-affiliated project won $3.6M to develop microreactor technology that turns carbon dioxide into methanol using renewable energy. Photo via uh.edu

UH-backed project secures $3.6M to transform CO2 into sustainable fuel with cutting-edge tech

funds granted

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

------

This article originally ran on EnergyCapital.

The series A funding will support the deployment of its biochar machines across Texas, Oklahoma, Arkansas, and Louisiana. Photo courtesy of Applied Carbon

Houston climatetech startup raises $21.5M series A to grow robotics solution

seeing green

A Houston energy tech startup has raised a $21.5 million series a round of funding to support the advancement of its automated technology that converts field wastes into stable carbon.

Applied Carbon, previously known as Climate Robotics, announced that its fresh round of funding was led by TO VC, with participation from Congruent Ventures, Grantham Foundation, Microsoft Climate Innovation Fund, S2G Ventures, Overture.vc, Wireframe Ventures, Autodesk Foundation, Anglo American, Susquehanna Foundation, US Endowment for Forestry and Communities, TELUS Pollinator Fund for Good, and Elemental Excelerator.

The series A funding will support the deployment of its biochar machines across Texas, Oklahoma, Arkansas, and Louisiana.

"Multiple independent studies indicate that converting crop waste into biochar has the potential to remove gigatons of CO2 from the atmosphere each year, while creating trillions of dollars in value for the world's farmers," Jason Aramburu, co-founder and CEO of Applied Carbon, says in a news release. "However, there is no commercially available technology to convert these wastes at low cost.

"Applied Carbon's patented in-field biochar production system is the first solution that can convert crop waste into biochar at a scale and a cost that makes sense for broad acre farming," he continues.

Applied Carbon rebranded in June shortly after being named a top 20 finalist in XPRIZE's four-year, $100 million global Carbon Removal Competition. The company also was named a semi-finalist and awarded $50,000 from the Department of Energy's Carbon Dioxide Removal Purchase Pilot Prize program in May.

"Up to one-third of excess CO2 that has accumulated in the atmosphere since the start of human civilization has come from humans disturbing soil through agriculture," Joshua Phitoussi, co-founder and managing partner at TO VC, adds. "To reach our net-zero objectives, we need to put that carbon back where it belongs.

"Biochar is unique in its potential to do so at a permanence and price point that are conducive to mass-scale adoption of carbon dioxide removal solutions, while also leaving farmers and consumers better off thanks to better soil health and nutrition," he continues. "Thanks to its technology and business model, Applied Carbon is the only company that turns that potential into reality."

The company's robotic technology works in field, picking up agricultural crop residue following harvesting and converts it into biochar in a single pass. The benefits included increasing soil health, improving agronomic productivity, and reducing lime and fertilizer requirements, while also providing a carbon removal and storage solution.

"We've been looking at the biochar sector for over a decade and Applied Carbon's in-field proposition is incredibly compelling," adds Joshua Posamentier, co-founder and managing partner of Congruent Ventures. "The two most exciting things about this approach are that it profitably swings the agricultural sector from carbon positive to carbon negative and that it can get to world-scale impact, on a meaningful timeline, while saving farmers money."

------

This article originally ran on EnergyCapital.

Hertha Metals, based in Conroe, won first place at the 2024 Summer Energy Program for Innovation Clusters (EPIC) Startup Pitch Competition. Photo via Getty Images

Houston-area energy tech startup takes first place in DOE competition

winner, winner

Four startups from across the country won over $160,000 in cash prizes from the U.S. Department of Energy’s Office of Technology Transitions earlier this month, and a Houston-area company claimed the top prize.

Hertha Metals, based in Conroe, won first place at the 2024 Summer Energy Program for Innovation Clusters (EPIC) Startup Pitch Competition. The program honors and supports clean energy innovators nominated by clean technology business incubators.

“The EPIC Pitch Competition is a unique opportunity for start ups to highlight their technology, get on the main stage, and receive direct funding,” DOE Chief Commercialization Officer and Director of OTT Vanessa Chan says in a news release. “The startup pitch winners have honed their entrepreneurial skills and demonstrated a critical understanding of their technological impacts, targeted markets, and scalable strategies.”

Focused on environmentally responsible steel, Hertha Metals won the $100,000 prize. The company's steelmaking process reduces emissions by 95 percent, per the news release, while remaining financially accessible. Hertha Metals was nominated by Greentown Labs, which won $25,000 for its nomination.

The program's other 2024 winners included:

Hertha Metals was founded by Laureen Meroueh, a mechanical engineer and materials scientist, in 2022. A Greentown Houston member, the company is also currently in the inaugural cohort of the Breakthrough Energy Innovator Fellows.

------

This article originally ran on CultureMap.

A Houston-based initiative has been selected by the DOE to receive funding to develop clean energy innovation programming for startups and entrepreneurs. Photo via Getty Images

Houston initiative selected for DOE program developing hubs for clean energy innovation

seeing green

Houston has been selected as one of the hubs backed by a new program from the United States Department of Energy that's developing communities for clean energy innovation.

The DOE's Office of Technology Transitions announced the the first phase of winners of the Energy Program for Innovation Clusters, or EPIC, Round 3. The local initiative is one of 23 incubators and accelerators that was awarded $150,000 to support programming for energy startups and entrepreneurs.

The Houston-based participant is called "Texas Innovates: Carbon and Hydrogen Innovation and Learning Incubator," or CHILI, and it's a program meant to feed startups into the DOE recognized HyVelocity program and other regional decarbonization efforts.

EPIC was launched to drive innovation at a local level and to inspire commercial success of energy startups. It's the third year of the competition that wraps up with a winning participant negotiating a three-year cooperative agreement with OTT worth up to $1 million.

“Incubators and Accelerators are uniquely positioned to provide startups things they can't get anywhere else -- mentorship, technology validation, and other critical business development support," DOE Chief Commercialization Officer and Director of OTT Vanessa Z. Chan says in a news release. “The EPIC program allows us to provide consistent funding to organizations who are developing robust programming, resources, and support for innovative energy startups and entrepreneurs.”

CHILI, the only participant in Texas, now moves on to the second phase of the competition, where they will design a project continuation plan and programming for the next seven months to be submitted in September.

Phase 2 also includes two national pitch competitions with a total of $165,000 in cash prizes up for grabs for startups. The first EPIC pitch event for 2024 will be in June at the 2024 Small Business Forum & Expo in Minneapolis, Minnesota.

Last fall, the DOE selected the Gulf Coast's project, HyVelocity Hydrogen Hub, as one of the seven regions to receive a part of the $7 billion in Bipartisan Infrastructure Law. The hub was announced to receive up to $1.2 billion — the most any hub will get.

The DOE's OTT selections are nationwide. Photo via energy.gov

------

This article originally ran on EnergyCapital.

The work is "poised to revolutionize our understanding of fundamental physics," according to Rice University. Photo courtesy of Rice University

Houston physicist scores $15.5M grant for high-energy nuclear physics research

FUTURE OF PHYSICS

A team of Rice University physicists has been awarded a prestigious grant from the Department of Energy's Office of Nuclear Physics for their work in high-energy nuclear physics and research into a new state of matter.

The five-year $15.5 million grant will go towards Rice physics and astronomy professor Wei Li's discoveries focused on the Compact Muon Solenoid (CMS), a large, general-purpose particle physics detector built on the Large Hadron Collider (LHC) at CERN, a European organization for nuclear research in France and Switzerland. The work is "poised to revolutionize our understanding of fundamental physics," according to a statement from Rice.

Li's team will work to develop an ultra-fast silicon timing detector, known as the endcap timing layer (ETL), that will provide upgrades to the CMS detector. The ETl is expected to have a time resolution of 30 picoseconds per particle, which will allow for more precise time-of-flight particle identification.

The Rice team is collaborating with others from MIT, Oak Ridge National Lab, the University of Illinois Chicago and University of Kansas. Photo via Rice.edu

This will also help boost the performance of the High-Luminosity Large Hadron Collider (HL-LHC), which is scheduled to launch at CERN in 2029, allowing it to operate at about 10 times the luminosity than originally planned. The ETL also has applications for other colliders apart from the LHC, including the DOE’s electron-ion collider at the Brookhaven National Laboratory in Long Island, New York.

“The ETL will enable breakthrough science in the area of heavy ion collisions, allowing us to delve into the properties of a remarkable new state of matter called the quark-gluon plasma,” Li explained in a statement. “This, in turn, offers invaluable insights into the strong nuclear force that binds particles at the core of matter.”

The ETL is also expected to aid in other areas of physics, including the search for the Higgs particle and understanding the makeup of dark matter.

Li is joined on this work by co-principal investigator Frank Geurts and researchers Nicole Lewis and Mike Matveev from Rice. The team is collaborating with others from MIT, Oak Ridge National Lab, the University of Illinois Chicago and University of Kansas.

Last year, fellow Rice physicist Qimiao Si, a theoretical quantum physicist, earned the prestigious Vannevar Bush Faculty Fellowship grant. The five-year fellowship, with up to $3 million in funding, will go towards his work to establish an unconventional approach to create and control topological states of matter, which plays an important role in materials research and quantum computing.

Meanwhile, the DOE recently tapped three Houston universities to compete in its annual startup competition focused on "high-potential energy technologies,” including one team from Rice.

------

This article originally ran on EnergyCapital.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas plugs in among states at highest risk for summer power outages in 2025

hot, hot, hot

Warning: Houston could be in for an especially uncomfortable summer.

A new study from solar energy company Wolf River Electric puts Texas at No. 2 among the states most at risk for power outages this summer. Michigan tops the list.

Wolf River Electric analyzed the number of large-scale outages that left more than 5,000 utility customers, including homes, stores and schools, without summertime electricity from 2019 to 2023. During that period, Texas experienced 7,164 summertime power outages.

Despite Michigan being hit with more summertime outages, Texas led the list of states with the most hours of summertime power outages — an annual average of 35,440. That works out to 1,477 days. “This means power cuts in Texas tend to last longer, making summer especially tough for residents and businesses,” the study says.

The Electric Reliability Council of Texas (ERCOT), which operates the electric grid serving 90 percent of the state, predicts its system will set a monthly record for peak demand this August — 85,759 megawatts. That would exceed the current record of 85,508 megawatts, dating back to August 2023.

In 2025, natural gas will account for 37.7 percent of ERCOT’s summertime power-generating capacity, followed by wind (22.9 percent) and solar (19 percent), according to an ERCOT fact sheet.

This year, ERCOT expects four months to surpass peak demand of 80,000 megawatts:

  • June 2025 — 82,243 megawatts
  • July 2025 — 84,103 megawatts
  • August 2025 — 85,759 megawatts
  • September 2025 — 80,773 megawatts

One megawatt is enough power to serve about 250 residential customers amid peak demand, according to ERCOT. Using that figure, the projected peak of 85,759 megawatts in August would supply enough power to serve more than 21.4 million residential customers in Texas.

Data centers, artificial intelligence and population growth are driving up power demand in Texas, straining the ERCOT grid. In January, ERCOT laid out a nearly $33 billion plan to boost power transmission capabilities in its service area.

Houston ranks among top 5 cities for corporate HQ relocations in new report

h-town HQ

The Houston area already holds the title as the country’s third biggest metro hub for Fortune 500 headquarters, behind the New York City and Chicago areas. Now, Houston can tout another HQ accolade: It’s in a fourth-place tie with the Phoenix area for the most corporate headquarters relocations from 2018 to 2024.

During that period, the Houston and Phoenix areas each attracted 31 corporate headquarters, according to new research from commercial real estate services company CBRE. CBRE’s list encompasses public announcements from companies across various sizes and industries about relocating their corporate headquarters within the U.S.

Of the markets included in CBRE’s study, Dallas ranked first for corporate relocations (100) from 2018 to 2024. It’s followed by Austin (81), Nashville (35), Houston and Phoenix (31 each), and Denver (23).

According to CBRE, reasons cited by companies for moving their headquarters include:

  • Access to lower taxes
  • Availability of tax incentives
  • Proximity to key markets
  • Ability to support hybrid work

“Corporations now view headquarters locations as strategic assets, allowing for adaptability and faster reaction to market changes,” said CBRE.

Among the high-profile companies that moved their headquarters to the Houston area from 2018 to 2024 are:

  • Chevron
  • ExxonMobil
  • Hewlett-Packard Enterprise
  • Murphy Oil

Many companies that have shifted their headquarters to the Houston area, such as Chevron, are in the energy sector.

“Chevron’s decision to relocate its headquarters underscores the compelling advantages that position Houston as the prime destination for leading energy companies today and for the future,” Steve Kean, president and CEO of the Greater Houston Partnership, said in 2024. “With deep roots in our region, Chevron is a key player in establishing Houston as a global energy leader. This move will further enhance those efforts.”

According to CBRE, California (particularly the San Francisco Bay and Los Angeles areas) lost the most corporate HQs in 2024, with 17 companies announcing relocations—12 of them to Texas. Also last year, Texas gained nearly half of all state-to-state relocations.

In March, Site Selection magazine awarded Texas its 2024 Governor’s Cup, resulting in 13 consecutive wins for the state with the most corporate relocations and expansions.

In a news release promoting the latest Governor’s Cup victory, Gov. Greg Abbott hailed Texas as “the headquarters of headquarters.”

“Texas partners with the businesses that come to our great state to grow,” Abbott said. “When businesses succeed, Texas succeeds.”

CBRE explained that the trend of corporate HQ relocations reflects the desire of companies to seek new environments to support their goals and workforce needs.

“Ultimately, companies are seeking to establish themselves in locations with potential for long-term success and profitability,” CBRE said.

SpaceX test rocket explodes in Texas, but no injuries reported

SpaceX Update

A SpaceX rocket being tested in Texas exploded Wednesday night, sending a dramatic fireball high into the sky.

The company said the Starship “experienced a major anomaly” at about 11 pm while on the test stand preparing for the 10th flight test at Starbase, SpaceX’s launch site at the southern tip of Texas.

“A safety clear area around the site was maintained throughout the operation and all personnel are safe and accounted for,” SpaceX said in a statement on the social platform X.

CEO Elon Musk ’s SpaceX said there were no hazards to nearby communities. It asked people not to try to approach the site.

The company said it is working with local officials to respond to the explosion.

The explosion comes on the heels of an out-of-control Starship test flight in late May, which tumbled out of control. The FAA demanded an investigation into the accident.