The Welch Foundation, a Houston-based nonprofit, has doled out fresh funding to research organizations, with over a third being deployed to Houston-area institutions. Photo via Getty Images

Five schools in the Houston area have landed $10.8 million in research grants from the Houston-based Welch Foundation.

The 36 grants were awarded to Rice University, Texas A&M University, the University of Houston, the Baylor College of Medicine, and the University of Texas Medical Branch in Galveston.

In all, the foundation announced nearly $28 million in Texas research grants for 2023. All of the money — in the form of 91 grants for 15 Texas colleges and universities — goes toward chemical research. This year’s total for grant funding matches last year’s total.

“The Welch Foundation continues to emphasize the creative pursuit of basic chemical research,” Adam Kuspa, the foundation’s president and a former dean at the Baylor College of Medicine, says in a news release. “Our funding allows investigators throughout the state to follow their curiosity and explore the foundations chemical processes.”

Since its establishment in 1954, the Welch Foundation has contributed about $1.1 billion to the advancement of chemistry in Texas.

One of this year’s local grant recipients is Haotian Wang, assistant professor in Rice’s chemical and biomolecular department. The professor’s grant-funded research will focus on the conversion of carbon dioxide into useful chemicals, such as ethanol.

Last year, Rice reported that Wang’s lab in the George R. Brown School of Engineering had replaced rare, expensive iridium with ruthenium, a more abundant precious metal, as the positive-electrode catalyst in a reactor that splits water into hydrogen and oxygen.

The lab’s addition of nickel to ruthenium dioxide resulted in production of hydrogen from water electrolysis for thousands of hours.

“There’s huge industry interest in clean hydrogen,” Wang says. “It’s an important energy carrier and also important for chemical fabrication, but its current production contributes a significant portion of carbon emissions in the chemical manufacturing sector globally.”

“We want to produce it in a more sustainable way,” he adds, “and water-splitting using clean electricity is widely recognized as the most promising option.”

Here's what researchers raked in the cash to support their research. Photo via Getty Images

Fresh funds: 2 Houston organizations dole grants to advance research

research roundup

Funding fuels the research that supports the innovations of tomorrow. Two Houston-based scientific organizations announced funding recipients that are working on advancing research in space health and chemistry.

4 research teams receive funds to advance space health work

The Translational Research Institute for Space Health, known as TRISH, at Baylor College of Medicine has announced almost $4 million in grants to four research teams. As more and more plans to launch humans into space continue to develop, TRISH is working to support research addressing human health in space.

TRISH's Biomedical Research Advances for Space Health initiative looked for new ways to reduce potential damage from the environment through manipulation of human metabolism and the normal state-of-being at the cellular or whole organism level, according to a press release.

"These outstanding awardees brought cutting-edge proposals to the table. Each project provides a unique opportunity to advance human health research on the bleeding edge of science fiction," says TRISH Executive Director, Dorit Donoviel, in the release. "This creative research has the potential to protect all humans through advancing tissue transplantation or helping patients that have medical conditions such as heart or brain damage that could be aided by reducing cellular activity."

The awardees, who will begin their TRISH-funded research in April 2022, for BRASH 2101 included:

  • Clifton Callaway, M.D., Ph.D., University of Pittsburgh, Pennsylvania
    • Cold-Sleep for Long Duration Spaceflight
  • Tammy Chang, M.D., Ph.D., University of California, San Francisco
    • The Effect of Isochoric Supercooling on Human Liver Metabolic Function
  • Allyson Hindle, Ph.D., University of Nevada, Las Vegas
    • Can Humans Hibernate at Warm Temperatures?
  • Christopher Porada, Ph.D., Wake Forest University, Winston-Salem, North Carolina
    • Using Human Organoids and Fossilized Remains from Extinct Hominins to Unlock the Secrets of Torpor/Hibernation

Houston organization names 2021 award recipient

The Welch Foundation has named professor Chi-Huey Wong as the 2021 recipient of the Robert A. Welch Award in Chemistry. Wong is a leader in synthetic chemistry and chemical biology. Specifically, the award recognizes Wong for his development of new methods for the synthesis of complex carbohydrates and glycoproteins and the elucidation of carbohydrate-mediated biological recognition associated with disease progression, according to a press release.

"The mission of The Welch Foundation is to improve the lives of others through the advancement of chemical research, and Dr. Wong has been working towards that goal for decades," says Carin Barth, chair and director of The Welch Foundation Board of Directors. "Not only has he made revolutionary advances in chemistry and biology, but his methodologies will facilitate new drug and vaccine developments for years to come."

Wong is the Scripps Family Chair Professor in the Department of Chemistry at The Scripps Research Institute. He will receive $500,000 to advance his research. Houston-based Welch Foundation has contributed more than $1.1 billion to the advancement of chemistry since 1954.

Both Rice University and the University of Houston were selected by the Department of Energy to receive funds for ongoing research projects. Photo via Getty Images

Houston researchers snag government funds for net-zero emissions projects

seeing green

Rice University and the University of Houston were two of four national institutions to receive sizable grants from the Department of Energy last month to go toward the research and development of projects that will improve CO2 storage to help move the country toward the goal of net-zero emissions by 2050.

Each of the four projects works to advance long-term, commercial-scale geologic sequestration of CO2. According to a release from the DOE, the process of carbon capture and storage (known as CSS) separates and captures CO2 from the emissions of industrial processes before it is released into the atmosphere. Once captured, the CO2 is then injected into deep underground geologic formations, known as caprock.

However, during seismic events, like an earthquake or volcanic eruption, the CO2 can leak through the ground and contaminate the water supply.

"Large scale carbon capture efforts are vital to getting America emissions free by 2050, and how we store this CO2 must be safe, secure and permanent," said U.S. Secretary of Energy Jennifer M. Granholm. "The R&D investments in new tools and technology to monitor underground activity near CO2 storage sites will help us minimize risk from natural events like earthquakes, safeguard the environment and water supply, and get us that much closer to our clean energy goals."

Rice was awarded nearly $1.2 million from the DOE for its project that aims to develop a new strategy for monitoring seal integrity in the CCS process. The project "has the potential to provide a powerful platform for identifying CO2 leakage through reactivated faults or fracture zones," the statement said.

UH received a nearly $800,000 grant for its project that will work to determine cost-effective seismic data processing technologies that will automatically detect faults on 3D seismic migration images.

The project is being developed by Yingcai Zheng at the University of Houston in collaboration with Los Alamos National Lab and Vecta Oil and Gas and aims will help not only estimate seismic activity, but will also be able to estimate the fluid leakage pathways in certain regions, according to a separate release from UH.

"Most think of applied geophysics as linked to the oil and gas industry," Zheng said in the statement. "While that is true, when we think of the energy transition and how to achieve our goals, it is important to realize that this cannot happen without studying the geophysics of the subsurface – in a way, it literally holds the well-being of humanity's future."

The remaining two projects that received grants from the DOE come from the Battelle Memorial Institute in Ohio and The New Mexico Institute of Mining and Technology. In total the DOE issues $4 million to support the projects.

A number of Houston energy leaders are looking at smarter ways to store CO2. This spring, Joe Blommaert, the Houston-based president of ExxonMobil Low Carbon Solutions, said that he envisions creating a $100 billion carbon-capture hub along the Houston Ship Channel. And that same month Occidental's venture arm, Oxy Low Carbon Ventures, announced plans to construct and operate a pilot plant that would convert carbon dioxide into feedstocks.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH receives $2.6M gift to support opioid addiction research and treatment

drug research

The estate of Dr. William A. Gibson has granted the University of Houston a $2.6 million gift to support and expand its opioid addiction research, including the development of a fentanyl vaccine that could block the drug's ability to enter the brain.

The gift builds upon a previous donation from the Gibson estate that honored the scientist’s late son Michael, who died from drug addiction in 2019. The original donation established the Michael C. Gibson Addiction Research Program in UH's department of psychology. The latest donation will establish the Michael Conner Gibson Endowed Professorship in Psychology and the Michael Conner Gibson Research Endowment in the College of Liberal Arts and Social Sciences.

“This incredibly generous gift will accelerate UH’s addiction research program and advance new approaches to treatment,” Daniel O’Connor, dean of the College of Liberal Arts and Social Sciences, said in a news release.

The Michael C. Gibson Addiction Research Program is led by UH professor of psychology Therese Kosten and Colin Haile, a founding member of the UH Drug Discovery Institute. Currently, the program produces high-profile drug research, including the fentanyl vaccine.

According to UH, the vaccine can eliminate the drug’s “high” and could have major implications for the nation’s opioid epidemic, as research reveals Opioid Use Disorder (OUD) is treatable.

The endowed professorship is combined with a one-to-one match from the Aspire Fund Challenge, a $50 million grant program established in 2019 by an anonymous donor. UH says the program has helped the university increase its number of endowed chairs and professorships, including this new position in the department of psychology.

“Our future discoveries will forever honor the memory of Michael Conner Gibson and the Gibson family,” O’Connor added in the release. “And I expect that the work supported by these endowments will eventually save many thousands of lives.”

CenterPoint and partners launch AI initiative to stabilize the power grid

AI infrastructure

Houston-based utility company CenterPoint Energy is one of the founding partners of a new AI infrastructure initiative called Chain Reaction.

Software companies NVIDIA and Palantir have joined CenterPoint in forming Chain Reaction, which is aimed at speeding up AI buildouts for energy producers and distributors, data centers and infrastructure builders. Among the initiative’s goals are to stabilize and expand the power grid to meet growing demand from data centers, and to design and develop large data centers that can support AI activity.

“The energy infrastructure buildout is the industrial challenge of our generation,” Tristan Gruska, Palantir’s head of energy and infrastructure, says in a news release. “But the software that the sector relies on was not built for this moment. We have spent years quietly deploying systems that keep power plants running and grids reliable. Chain Reaction is the result of building from the ground up for the demands of AI.”

CenterPoint serves about 7 million customers in Texas, Indiana, Minnesota and Ohio. After Hurricane Beryl struck Houston in July 2024, CenterPoint committed to building a resilient power grid for the region and chose Palantir as its “software backbone.”

“Never before have technology and energy been so intertwined in determining the future course of American innovation, commercial growth, and economic security,” Jason Wells, chairman, president and CEO of CenterPoint, added in the release.

In November, the utility company got the go-ahead from the Public Utility Commission of Texas for a $2.9 billion upgrade of its Houston-area power grid. CenterPoint serves 2.9 million customers in a 12-county territory anchored by Houston.

A month earlier, CenterPoint launched a $65 billion, 10-year capital improvement plan to support rising demand for power across all of its service territories.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston researchers develop material to boost AI speed and cut energy use

ai research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.