Guest column

Houston can stay the Space City within medical and health innovation

If Houston wants to maintain its title as Space City, it needs to channel the innovation of its history as space exploration moves forward. Pexels

Space has captured the imagination of mankind since we first looked up at the night sky. We've reached out to touch the stars, and now endeavor to inhabit them.

Earlier this month, a prominent collection of experts on space health attended the first Space Health Innovation Conference co-hosted by the University of California, San Francisco, and Houston-based Translational Research Institute for Space Health.

As NASA eyes a return to the moon with the Artemis Program, attendees of the Space Health Innovation Conference advanced a national discussion of human space exploration by seeking to manage the many health risks associated with humans during space flight. The event included NASA leadership, innovative companies, commercial space vendors, as well as leaders from the space health and life sciences communities.

The conference's goal is to inform, inspire and invite participation in the exciting challenge of optimizing health and medical management in space environments.

With its headquarters in Houston, TRISH partnered with the Human Research Program at Johnson Space Center to source and seed the best emerging health technologies to support NASA's space exploration. TRISH is based out of the Center for Space Medicine at Baylor College of Medicine and is a consortium that includes the rich space pedigree of the Massachusetts Institute of Technology and the California Institute of Technology. The Space Health Innovation Conference is the result of a grant by TRISH to UCSF. TRISH has also hosted Space Health focused events at the MIT Media lab and at Caltech.

TRISH's main charge is finding disruptive health technologies and new scientists to fuel the US Space Program. TRISH explores emerging areas of science that support health and human performance in the harsh environment of microgravity and high radiation. TRISH funds novel research in artificial intelligence, omics, human computer interfaces, behavioral health and beyond. Projects all share one goal: predicting and protecting future Mars explorers. And NASA leadership encourages TRISH to take the risks that could mean huge leaps forward.

Innovation and risk tolerance are hallmarks of Houston and its rich history. From the city's humble origins, to Jesse Jones's national financial leadership, to the building of the Houston Ship Channel, and to the explosion of the energy industry, Houston has always dared to leap forward. President John F. Kennedy's iconic speech entitled "Address at Rice University on the Nation's Space Effort" declared the US ambition to embrace the new frontier of space and conquer the moon. Humble Oil donated the 1,620 acres for JSC to Rice University, who then sold the land to NASA for $20. (Humble Oil would later become Exxon Mobil.)

JSC housed flight control, space flight training, and the NASA Astronaut Corps. JSC gave Houston the nickname "Space City", which led to the naming of the local NBA team to be the Rockets and the local MLB team to be the Astros. JSC's support for the astronaut corps began with the Lunar Receiving Laboratory, which evaluated the Apollo astronauts upon return to Earth. And the Christopher C Kraft Mission Control facility has directed all crewed space flights since the early Gemini program. An American flag flies atop Mission Control at JSC every day that an American is in space. That flag has flown continuously since November 2, 2000.

Nearly two decades since Bill Shepherd first boarded the International Space Station, the conversation around supporting human health and performance in space continues. And Houston will continue to lead the way for all our sakes, in space and on terra firma.

------

James Hury is the deputy director and chief innovation officer at Houston-based Translational Research Institute for Space Health.

Trending News

Building Houston

 
 

You can now hop online and invest in this promising cell therapy startup. Photo via Getty Images

A clinical-stage company headquartered in Houston has opened an online funding campaign.

FibroBiologics, which is developing fibroblast cell-based therapeutics for chronic diseases, launched a campaign with equity crowdfunding platform StartEngine. The platform lets anyone — regardless of their net worth or income level — to invest in securities issued by startups.

The funding, according to a press release, will be used to support ongoing operations of Fibrobiologics and advance its clinical programs in multiple sclerosis, degenerative disc disease, wound care, extension of life, and cancer.

"We're excited to partner with StartEngine on this campaign. StartEngine has over 600,000 investors as part of their community and has raised over half a billion dollars for its clients," says FibroBiologics' Founder and CEO Pete O'Heeron, in the release.

"This is an exciting time at FibroBiologics as we continue progressing our clinical pipeline and developing innovative therapies to treat chronic diseases," he continues. "This new funding will fuel our growth in the lab and bring us one step closer to commercialization."

The campaign, launched this week, already has over 100 investors, at the time of publication, and has raised nearly $2 million, according to the page. The minimum investment is set at around $500, and the company's indicated valuation is $252.57 million.

In 2021, FibroBiologics announced its intention of going public. Last year, O'Heeron told InnovationMap on the Houston Innovators Podcast of the company's growth plans as well as the specifics of the technology.

Only two types of cells — stem cells and fibroblasts — can be used in cell therapy for a regenerative treatment, which is when specialists take healthy cells from a patient and inject them into a part of the body that needs it the most. As O'Heeron explains in the podcast, fibroblasts can do it more effectively and cheaper than stem cells.

"(Fibroblasts) can essentially do everything a stem cell can do, only they can do it better," says O'Heeron. "We've done tests in the lab and we've seen them outperform stem cells by a low of 50 percent to a high of about 220 percent on different disease paths."


Trending News