Texas A&M University will build a new facility near NASA's Johnson Space Center. Photo courtesy of JSC

Texas A&M University's board of regents voted to approve the construction of a new institute in Houston that hopes to contribute to maintaining the state's leadership within the aerospace sector.

This week, the Texas A&M Space Institute got the greenlight for its $200 million plan. The announcement follows a $350 million investment from the Texas Legislature. The institute is planned to be constructed next to NASA’s Johnson Space Center in Houston.

“The Texas A&M Space Institute will make sure the state expands its role as a leader in the new space economy,” John Sharp, chancellor of the Texas A&M System, says in a news release. “No university is better equipped for aeronautics and space projects than Texas A&M.”

The new institute would build on A&M's expertise and resources to, according to the release, "make new discoveries, technological developments, health advances and workforce growth." Within its system, the university's space presence includes:

  • Four astronaut faculty members.
  • Scientists and engineers have participated in all NASA rover missions to Mars with two scientists active on NASA's Perseverance Rover Team.
  • More than 280 faculty and investigators are involved in space-related research.
  • Students, faculty and researchers are working on more than 300 space-related projects.
  • For the past five years, over 25 million per year in funding awards from NASA, other government agencies, and the commercial space industry.
  • Interdisciplinary space-related research across more than 12 colleges/schools within the Texas A&M University System universities.

Last summer, NASA and Texas A&M signed a Space Act Agreement, a general agreement to promote collaboration with the agency.

The new facility will be key to innovating across the Artemis missions. Photo courtesy of NASA and UTEP

NASA debuts digital design lab in Houston

future of engineering

NASA has opened a new center in Houston that's dedicated to digital space innovation for the future of spaceflight.

The Digital Engineering Design Center has recently opened in NASA’s Johnson Space Center in Houston. The facility is equipping the aerospace engineering community with skills and processes for digital designing that can build, test, and refine innovations before the manufacturing and assembling process in order to to test them.

“The DEDC will help prepare a modern American aerospace workforce by equipping it with valuable skills in digital engineering and encourage even more students to become engineers,” says Julie Kramer White, director of engineering at NASA Johnson, in a news release. “Collaborations like this one show we are committed to having the most talented, diverse, and motivated engineers that can continue to meet the exploration goals of the agency.”

Julie Kramer White, engineering director at NASA Johnson, delivered a speech at the DEDC ribbon cutting ceremony at NASA Johnson. Photo courtesy of James Blair/NASA

Digital engineering has many benefits to NASA, including reduced risk and cost, streamlined development schedule, and the ability to work with experts remotely.

NASA’s DEDC program is operated by the University of Texas at El Paso Aerospace Center. The partnership, which was celebrated at JSC and UTEP simultaneously, is also a part of a collaboration with Johnson’s Engineering Directorate and the Space Technology Mission Directorate.

The enrolled engineers and students will work on NASA projects related to in-situ resource utilization, or ISRU, which is a type of engineering that utilizes materials native to space.

ISRU is a key focus of the Artemis missions to the Moon and Mars. The engineers from NASA will be the ISRU experts, while UTEP professors will contribute their digital engineering software expertise.

Emily Nelson is the new chief flight director for NASA. Photo via NASA.org

NASA names new chief flight director to work out of Houston's Johnson Space Center

ground control

The Mission Control Center at NASA’s Johnson Space Center in Houston has a new chief flight director.

In her new role, Emily Nelson leads the group that directs human spaceflight missions. She succeeds Amarillo native Holly Ridings, who held the job from 2018 to 2022. Ridings now is a leader of NASA’s Gateway Program, which is working to establish the first space station that orbits the moon.

“Emily’s tenure leading our flight control teams has proven that she is remarkably knowledgeable on the realities of human spaceflight and eminently composed when facing daunting challenges,” Norm Knight, NASA’s director of flight operations, says in a news release. “She is unequivocally the right person to lead our flight director office as we endeavor to push the boundaries of human spaceflight exploration.”

Nelson manages 31 flight directors and directors-in-training who oversee a human spaceflight missions involving the International Space Station and Artemis missions to the moon.

Nelson, born in Okinawa, Japan, and raised in Austin, earned a bachelor’s degree in mechanical engineering from the University of Texas at Austin in 1998. She joined NASA in 1998 as a flight controller in the space station’s thermal operations group.

She became a flight director in 2007. Since then, she has served as lead flight director for several missions, including the station’s fourth utilization and logistics flight with the space shuttle Atlantis in 2010 and a series of spacewalks to repair the Alpha Magnetic Spectrometer. She had been NASA’s deputy chief flight director before being named acting chief flight director following Ridings’ departure.

In 2018, Nelson completed a record-breaking 735th shift as a flight director at Mission Control.

Seven student-founded startups pitched their business plans at an annual NASA event. Photo via NASA.gov

Student startups pitch out-of-this-world tech at Houston competition

space tank

Several groups of students from all over the United States tapped into technology developed by NASA to create business plans. The teams competed in Houston last week for thousands of dollars, and one team went home with the win.

NASA’s Minority University Research and Education Project, or MUREP, hosted its annual "Space Tank" pitch event, MUREP Innovation and Technology Tech Transfer Idea Competition, or MITTIC, last week at Space Center Houston. Seven teams from across the country — including three Texas teams — pitched business plans based on NASA-originated technology.

“Students and faculty members of MITTIC are notably engaging with our agency, but they are helping to fulfill our mission to make the earth a better, safer place creating products and services that will shape the future," says Donna Shafer, associate director at Johnson Space Center.

All seven teams — each led by a minority student — went home with at least $5,000 as a prize for making it to the finals, but one team from the University of Massachusetts at Boston took home first place and a $10,000 prize. The winning team is also invited to join Team Piezo Pace from the University of St. Thomas, Houston, in a visit to NASA’s Ames Research Center in Silicon Valley, California, for additional look in the innovation and entrepreneurial space.

The judges for the event included: HopeShimabuku, director of the U.S. Patent and Trademark Office for the Texas Region; MeganOrtiz, project manager at NASA; LawrenceCosby, vice president of IP strategy at JPMorgan Chase & Co; TerikTidwell, director of inclusive innovation at VentureWell; JorgeValdes, program advisor on STEM education and intellectual property at the United States Patent and Trademark Office; WaltUgalde, economic development executive at NASA; and LauraBarron, autonomous systems technology deputy project manager at NASA.

The seven finalist teams — and the technology they are working on — are as follows:

  • Lone Star College - CyFair’s team Aquarius Solutions, which pitched its water purification product, ClearFlow, based off an ammonia removal system developed at NASA
  • Fayetteville State University in North Carolina’s ASAPA team pitched their Autonomous Solar Array Assembly drone technology that’s based on NASA’s Print-assisted Photovoltaic Assembly system for automated printing of solar panels.
  • University of Houston-Clear Lake’s team AstroNOTS has identified a technology to address the safety of wildfire rescue teams. The PyroCap is a emergence fire shelter based on NASA’s Lightweight Flexible Thermal Protection System.
  • Santa Monica College in California’s team, BREATHE, pitched a noninvasive technology to replace traditional mammograms. The device can analyze breath through a NASA-designed sensor.
  • University of Massachusetts-Boston’s winning team, LazerSense Solutions, is working on a technology for smoke and gas detection. The PartaSense device can detect everything from carbon monoxide to black mold. It’s based on NASA’s MPASS IP.
  • Hartnell College in California’s team PanterBotics is working on an zero-emission electric vehicle, the OmniZero, to address climate change. The technology, a modular robotic vehicle, originated at NASA.
  • University of Texas at Austin’s Longhorn Innovators, who pitched a thinking cap technology to increase and enhance focus. The wearable device is based on NASA technology ZONE, or Zeroing Out Negative Effects, an analysis from EEG sensors.

The history-making team was announced at Ellington Field near Johnson Space Center in Houston. Photo via LinkedIn

NASA names four astronauts heading to the moon at Houston event

ready for liftoff

NASA and the Canadian Space Agency announced the four astronauts who will be onboard the Artemis II mission around the moon yesterday at an event at Ellington Field near NASA’s Johnson Space Center in Houston.

The 10-day mission is slated to put the first woman and the first person of color on the moon.

“For the first time in more than 50 years, these individuals – the Artemis II crew – will be the first humans to fly to the vicinity of the Moon. Among the crew are the first woman, first person of color, and first Canadian on a lunar mission, and all four astronauts will represent the best of humanity as they explore for the benefit of all,” says JSC Director Vanessa Wyche. “This mission paves the way for the expansion of human deep space exploration and presents new opportunities for scientific discoveries, commercial, industry and academic partnerships and the Artemis Generation.”

The crew assignments include:

  • Commander Reid Wiseman, who has logged more than 165 days in space in two trips. He previously served as a flight engineer aboard the International Station and most recently served as chief of the Astronaut Office from December 2020 until November 2022.
  • Pilot Victor Glover, who served as pilot on NASA’s SpaceX Crew-1 mission in 2021. This will be his second trip to space.
  • Mission Specialist 1 Christina Hammock Koch, who set the record for longest single spaceflight by a woman with a total of 328 days in space and participated in the first all-female spacewalks. This will be her second flight into space.
  • Mission Specialist 2 Jeremy Hansen, representing Canada. Hansen is a colonel in the Canadian Armed Forces and former fighter pilot and has served as Capcom in NASA's Mission Control Center at Johnson Space Center. He was the first Canadian to lead a NASA astronaut class. This will be his first flight into space.

Meet the four astronauts who will return humans to the moon. Photo courtesy of NASA

“NASA astronauts Reid Wiseman, Victor Glover, and Christina Hammock Koch, and CSA astronaut Jeremy Hansen, each has their own story, but, together, they represent our creed: E pluribus unum – out of many, one," NASA Administrator Bill Nelson said. "Together, we are ushering in a new era of exploration for a new generation of star sailors and dreamers–the Artemis Generation.”

Artemis II is slated to build upon the uncrewed Artemis I mission that was completed in December. The crew will be NASA's first to aboard the agency's deep space rocket, the Space Launch System, and Orion spacecraft. They will test the spacecrafts' systems to ensure they operate as planned for humans in deep space before setting course for the moon.

NASA's Artemis program collaborates with commercial and international partners with the goal of establishing a long-term presence on the moon. Lessons learned from the missions are planned to be used to send the first astronauts to Mars.

Axiom Space has announced plans for its third commercial space launch and revealed details of its high-tech spacesuit. Photo courtesy of NASA

Houston space tech company secures third NASA mission, reveals new spacesuits

ready for liftoff

A Houston-based space tech company has revealed details on two of its commercial partnerships with NASA.

NASA and Axiom Space have again signed a mission order for a private astronaut mission to the International Space Station. The mission will commence sometime in November or on and will be from the agency’s NASA’s Kennedy Space Center in Florida. Axiom Mission 3 is the third mission of its kind and, according to a statement from NASA, is expected to be a 14-day trip.

The ISS's Multilateral Crew Operations Panel will approve four proposed crew members and two back up crew submitted by Axiom for the Ax-3 mission. The crew will be expected to train for their flight with NASA, international partners, and SpaceX beginning this spring, according to NASA.

“Axiom Space’s selection to lead the next private astronaut mission to the International Space Station enables us to continue expanding access to nations, academia, commercial entities, and emerging industries to research, test, and demonstrate new technologies in microgravity,” says Michael Suffredini, CEO and president of Axiom Space, in the release. “As NASA’s focus shifts back to the Moon and on to Mars, we are committed to transforming low-Earth orbit into a global space marketplace, where access to space moves beyond the partners of the space station to nations, institutions and individuals with new ideas fueling a thriving human economy beyond Earth.”

Axiom's historic first commercial launch was in spring of 2022, and Ax-2, which will launch the first Saudi astronauts to visit the ISS, is expected to launch this spring. In addition to these two missions, Axiom has been tasked by NASA to develop spacesuits and space station technology.

After several months of working on the suits, Axiom has revealed the details of the technology that will be worn by NASA astronauts returning to the moon on the Artemis III mission that's scheduled to land near the lunar south pole in 2025.

The newly revealed spacesuit will be worn by the first woman and first person of color to visit the moon. Photo courtesy of Axiom Space

“We’re carrying on NASA’s legacy by designing an advanced spacesuit that will allow astronauts to operate safely and effectively on the Moon,” says Suffredini in a statement from the company. “Axiom Space’s Artemis III spacesuit will be ready to meet the complex challenges of the lunar south pole and help grow our understanding of the Moon in order to enable a long-term presence there.”

Called the Axiom Extravehicular Mobility Unit, or AxEMU, the prototype was revealed at Space Center Houston’s Moon 2 Mars Festival today, March 15. According to Axiom, a full fleet of training spacesuits will be delivered to NASA by late this summer.

At the same time as the Ax-3 mission announcement, NASA also announced that it has selected Firefly Aerospace of Cedar Park, Texas, to carry multiple payloads to the far side of the Moon. According to NASA, the commercial lander will deliver two agency payloads, as well as communication and data relay satellite for lunar orbit, which is an European Space Agency collaboration with NASA.

The contract — awarded for around $112 million — is targeted to launch in 2026 through NASA’s Commercial Lunar Payload Services, or CLPS, initiative, and part of the agency’s Artemis program. It's the second award to Firefly under the CLPS initiative.

“The diversity of currently available commercial orbital human spaceflight opportunities is truly astounding. NASA’s commercial crew flights to the space station for our government astronauts paved the way for fully private missions to space like Inspiration4 and Polaris as well as private astronaut missions to the orbiting laboratory like the one we are announcing today,” says Phil McAlister, director of commercial space at NASA Headquarters in Washington, in the release. “We are starting to see the incorporation of space into our economic sphere, and it is going to revolutionize the way people see, use, and experience space.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice researchers score $45M from NIH for cancer-fighting tech

freshly funded

A research funding agency has deployed capital into a team at Rice University that's working to develop a technology that could cut cancer-related deaths in half.

Rice researchers received $45 million from the National Institutes of Health's Advanced Research Projects Agency for Health, or ARPA-H, to scale up development of a sense-and-respond implant technology. Rice bioengineer Omid Veiseh leads the team developing the technology as principal investigator.

“Instead of tethering patients to hospital beds, IV bags and external monitors, we’ll use a minimally invasive procedure to implant a small device that continuously monitors their cancer and adjusts their immunotherapy dose in real time,” he says in a news release. “This kind of ‘closed-loop therapy’ has been used for managing diabetes, where you have a glucose monitor that continuously talks to an insulin pump. But for cancer immunotherapy, it’s revolutionary.”

Joining Veiseh on the 19-person research project named THOR, which stands for “targeted hybrid oncotherapeutic regulation,” is Amir Jazaeri, co-PI and professor of gynecologic oncology at the University of Texas MD Anderson Cancer Center. The device they are developing is called HAMMR, or hybrid advanced molecular manufacturing regulator.

“Cancer cells are continually evolving and adapting to therapy. However, currently available diagnostic tools, including radiologic tests, blood assays and biopsies, provide very infrequent and limited snapshots of this dynamic process," Jazaeri adds. "As a result, today’s therapies treat cancer as if it were a static disease. We believe THOR could transform the status quo by providing real-time data from the tumor environment that can in turn guide more effective and tumor-informed novel therapies.”

With a national team of engineers, physicians, and experts across synthetic biology, materials science, immunology, oncology, and more, the team will receive its funding through the Rice Biotech Launch Pad, a newly launched initiative led by Veiseh that exists to help life-saving medical innovation scale quickly.

"Rice is proud to be the recipient of the second major funding award from the ARPA-H, a new funding agency established last year to support research that catalyzes health breakthroughs," Rice President Reginald DesRoches says. "The research Rice bioengineer Omid Veiseh is doing in leading this team is truly groundbreaking and could potentially save hundreds of thousands of lives each year. This is the type of research that makes a significant impact on the world.”

The initial focus of the technology will be on ovarian cancer, and this funding agreement includes a first-phase clinical trial of HAMMR for the treatment of recurrent ovarian cancer that's expected to take place in the fourth year of THOR’s multi-year project.

“The technology is broadly applicable for peritoneal cancers that affect the pancreas, liver, lungs and other organs,” Veiseh says. “The first clinical trial will focus on refractory recurrent ovarian cancer, and the benefit of that is that we have an ongoing trial for ovarian cancer with our encapsulated cytokine ‘drug factory’ technology. We'll be able to build on that experience. We have already demonstrated a unique model to go from concept to clinical trial within five years, and HAMMR is the next iteration of that approach.”

TMC again expands global impact with new Netherlands partnership

breaking news

The Texas Medical Center may be based in Houston, but the organization has again grown its global impact.

Since 2016, TMC’s BioBridges have worked with 88 startup companies. Those include strategic alliances with four other countries. Australia, the United Kingdom, Denmark and Ireland are all among TMC’s BioBridges partners. As of today, add the Netherlands to that list.

On September 27, TMC president and CEO, William F. McKeon, and Carmen van Vilsteren, chair of Health~Holland, Top Sector Life Sciences & Health (LSH), signed an agreement in Rotterdam. The TMC Netherlands BioBridge Memorandum of Understanding codifies the innovative goals of the partnership. Essentially, the BioBridge program provides a means for entrepreneurs, researchers, clinicians and industry partners from other countries to access the US market, as well as TMC experts.

“The TMC Netherlands BioBridge represents an unparalleled opportunity for collaboration and growth,” Ashley McPhail, chief external affairs & administration officer at Texas Medical Center said in a press release. “The Netherlands has solidified its position as a global leader in the field of life sciences and health, with a thriving ecosystem of research institutions, innovative companies, and highly skilled professionals. This strategic partnership will bring positive benefits to patients, clinicians and industry partners on a global scale.”

This lifeline for international healthcare companies makes expansion into the United States far smoother. The Global Innovators Launch Pad allows for startup founders to take part in a 10-week residency at the TMC Innovation Factory that will teach them about foundational infrastructure, clinical evidence and funding in the US.

“Since Texas is an important hub for innovation in the MedTech and digital health sectors, the collaboration with Texas Medical Center creates opportunities for Dutch companies looking to expand their international reach. Vice versa, it gives companies in Texas access to the vibrant Dutch Life Sciences & Health sector,” said van Vilsteren.

That exchange includes members of the TMC gaining the opportunity to participate in the Health~Holland Visitors Programme (HVP), “Shaping the Healthcare of the Future.”

The annual event invites high-level representatives from the private sector, NGOs, knowledge institutions, healthcare providers and different tiers of government to share their expertise.

It's the fifth partnership of its kind for TMC, with the last one being with Ireland, announced last year. TMC's other global initiatives include accelerators with Denmark and the United Kingdom, both announced earlier this year.

Houston startup founders prepare to scale globally following Shark Tank success

HOUSTON INNOVATORS PODCAST EPISODE 205

While Milkify's founders — husband and wife team Pedro Silva and Berkley Luck — secured partners on a popular business pitch and investment show, the entire experience almost didn't happen.

Silva and Luck, who got her PhD in molecular and biomedical s at Baylor College of Medicine, founded the company to provide breast milk freeze drying as a service to Houston-area families. Now, Milkify has customers across the country, but the duo didn't know if going through the process would be worth the investment and publicity, or if it would just be a distraction.

"The competitor in me wanted to be the first breast milk company to go on the show and to tell our story to the world — to show the world what my wife came up with that we thought was so great," Silva says on the Houston Innovators Podcast. "It was probably the scariest 45 minutes of my life."

But the sharks bit. Milkify's episode aired in April, and two investors — Gwyneth Paltrow and Lori Greiner — agreed to a $400,000 convertible note for 20 percent equity in the company. Paltrow even said on the show that she would have used the service when she was breastfeeding.

"It was empowering," Luck says of getting to wear her white coat on TV and share the story of how she came up with the idea of Milkify. "It was important to me when we went on the show to express that this had a scientific basis, that we didn't start this lightly, and that we've made huge strides in doing this in the absolute safest way possible."

Silva says they can't talk about some of the details of the show or the deal, but since then, Milkify has reached new customers, received additional investment interest, grown its team, and built out its plan to scale, the founders shared on the podcast. The team also shares its big-picture scale plans, which include tapping international partners to potentially take Milkify's tech global.

"Our vision is for every family to have access to breast milk formula, but instead of re-creating breast milk in a lab, we're doing it with mom's own milk," Silva says, mentioning a partnership with a breast milk bank that will convert its operation from freezing to freeze drying donated milk. "We're also working with groups in the UK and Australia to launch similar services using our patented technology."

"By the end of the year, we hope to see some announcements with those partnerships across the globe."

From the beginning, the importance of Milkify's team has been on supporting working parents to give them the best way to care for their families, Silva says. And for Luck — who says she's proud of the integrity Milkify has at its core despite competitors offering lower-quality and, in some cases, dangerous alternatives — she sees a lot of research benefits for the company.

"It's amazing to be at this leading edge, not just of innovation but of research, and to be able to still put out meaningful advances as an industry partner, not just as an academic," Luck says, adding that she hopes to be able to continue to contribute to the ongoing research into breast milk.

Luck and Silva share more about their Shark Tank experience, their co-founder strengths, and the future of Milkify on the podcast. Listen to the interview here — or wherever you stream your podcasts — and subscribe for weekly episodes.