Intuitive Machine unveiled its RACER lunar terrain vehicle at Space Center Houston. Photo courtesy of Intuitive Machines

Houston-based space exploration company Intuitive Machines just unveiled its version of a lunar terrain vehicle that’s designed to be used by astronauts in NASA’s Artemis moon discovery program.

Intuitive Machine recently rolled out its RACER lunar terrain vehicle (LTV) at Space Center Houston. RACER stands for Reusable Autonomous Crewed Exploration Rover.

The rover can accommodate two astronauts and nearly 900 pounds of cargo. In addition, it can pull a trailer loaded with almost 1,800 pounds of cargo.

Intuitive Machines will retain ownership and operational capabilities that will enable remote operation of the LTV between Artemis missions for about 10 years.

NASA chose Intuitive Machines and two other companies to develop advanced LTV capabilities.

“The objective is to enable Artemis astronauts, like the Apollo-era moonwalkers before them, to drive the rover, which features a rechargeable electric battery and a robotic arm, across the lunar surface, to conduct scientific research and prepare for human missions to Mars,” Intuitive Machines says in a post on its website.

The company tapped the expertise of Apollo-era moonwalkers Charlie Duke and Harrison Schmitt to design the pickup-truck-sized RACER. Intuitive Machines engineered the LTV in partnership with Atlas Devices, AVL, Barrios, Boeing, CSIRO, FUGRO, Michelin, Northrop Grumman, and Roush.

“This [project] strategically aligns with the Company’s flight-proven capability to deliver payloads to the surface of the Moon under [NASA’s] Commercial Lunar Payload Services initiative, further solidifying our position as a proven commercial contractor in lunar exploration,” says Steve Altemus, CEO of Intuitive Machines.

Astronauts at NASA’s Johnson Space Center are testing the static prototype of the company’s LTV. Meanwhile, the fully electric mobile demonstration LTV will undergo field testing later this month near Meteor Crater National Park in Arizona.

NASA expects to choose an LTV provider or providers in 2025.

- YouTubewww.youtube.com

Kristen Magas, Anderson Wilder, Obaid Alsuwaidi, and Tiffany Snyder (from left to right) will live in a Mars simulation for 45 days. Photos courtesy of NASA

NASA taps 4 participants for Mars habitat simulation mission in Houston

suiting up

Four individuals have been selected to go to Mars. Well, sort of.

Obaid Alsuwaidi, Kristen Magas, Tiffany Snyder, and Anderson Wilder were picked by NASA to live for 45 days in a 650-square-foot Mars simulation located at Johnson Space Center in Houston. The participants will enter the Human Exploration Research Analog, or HERA, on Friday, November 1, and will live and work like astronauts until Monday, December 16.

Jordan Hundley and Robert Wilson also were named as alternate crew members.

"Scientists use HERA studies to examine how crew members adapt to isolation, confinement, and remote conditions before NASA sends astronauts on deep space missions to the Moon, Mars, and beyond," reads NASA's announcement. "The studies provide data about human health and performance in an enclosed environment over time with crews facing different challenges and tasks."

In the experiment, the participants will complete research and operational duties, including raising shrimp, farming, and completing virtual reality-simulated walks on Mars. In addition to these tasks, the crew will experience communication delays similar to ones astronauts will face on future missions to Mars and beyond, which could be as long as 20 minutes each way.

Through NASA’s Human Research Program, the crew members will participate in 18 human health studies focused on physiological, behavioral, and psychological health during the mission.

Here's a little more about each of the crew members:

  • As captain engineer for the United Arab Emirates’ Ministry of Defense, Obaid Alsuwaidi, provides guidance in civil and marine engineering and addresses challenges facing the organization.
  • Kristen Magas, an educator and engineer currently teaching at Tri-County Regional Vocational Technical High School in Franklin, Massachusetts, mentors students involved in a NASA design and prototyping program.
  • With more than 20 years of information technology and cybersecurity experience, Tiffany Snyder is a supervisor for the Cybersecurity Mission Integration Office at NASA, helping to ensure agency missions are shielded against cybersecurity threats.
  • Currently researching team resiliency and human-machine interactions, Anderson Wilder is a Florida Institute of Technology graduate student working on his doctorate in Psychology and previously served as an executive officer and engineer for an analog mission at the Mars Desert Research Station in Utah.
  • Jordan Hundley (alternate) is a senior consultant at a professional services firm, offering federal agencies technical and programmatic support.
  • Robert Wilson (alternate) is a senior researcher and project manager at the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland.
The funding will go toward promoting diversity in aerospace workforce development. Photo via UH.edu

NASA awards Houston university $1.2M for diversity in aerospace initiative

future of space

NASA will award the University of Houston $1.2 million toward a collaborative project with some of the biggest players in aerospace to foster diversity in the field.

The funds will go toward UH's Partnership for Inclusivity in Engineering Education and Research for Space, or PIE2RS, which is a collaboration between UH, UH-Clear Lake, NASA’s Johnson Space Center, the Boeing Company, and the Greater Houston Partnership.

PIE2RS will provide experiential learning opportunities for marginalized students through capstone projects, internships and research opportunities. It will also offer a 10-week paid research experience for 18 students each year, along with professional development workshops and mentoring opportunities.

It will be led by Jerrod A. Henderson, assistant professor of chemical and biomolecular engineering at UH. Karolos Grigoriadis, the Hugh Roy and Lillie Cranz Cullen Endowed Professor and chair of the Mechanical and Aerospace Engineering Department, will serve as co-principal investigator.

“Our research, as well as the research of leading scholars, has highlighted the challenges underrepresented students face, including isolation, marginalization, racial bias and hostile educational environments,” Henderson said in a statement. “Our goal with PIE2RS is to improve the recruitment and retention of students in aerospace-related STEM disciplines, increase their sense of belonging and broaden their participation through hands-on research and experiential learning opportunities.”

UH professors Olga Bannova, Mariam Manuel and Tian Chen will also work on the project along with collaborator Rick Greer.

The funds come from NASA’s Minority University Research and Education Project in partnership with the National Science Foundation’s Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science network, which aim to support diversity in the engineering fields.

UH is one of six universities to receive funding for DEI projects from NASA, totaling $7.2 million. The other institutions include:

  • Alabama A&M University
  • Morgan State University
  • North Carolina A&T University
  • University of Central Florida
  • University of Colorado – Denver

“With these awards, we are continuing to create pathways that increase access and opportunities in STEM for underrepresented and underserved groups,” Keya Briscoe, NASA's MUREP manager, said in a statement. “NASA continues to invest in initiatives that are critical in driving innovation, fostering inclusion, and providing access to the STEM ecosystem for everyone.”

NASA has inked several deals and agreements with Houston ties in recent months.

Space tech company Intuitive Machines (Nasdaq: LUNR, LUNRW) secured its fourth contract with NASA’s Commercial Lunar Payload Services, or CLPS, program last month for $116.9 million. The agreement includes six lunar deliveries.

In August, oil giant bp America and NASA agreed to share digital technology and technical expertise to boost U.S. space exploration efforts.

Ken Nguyen, principal technical program manager at bp, explained the unique opportunities behind the deal in a recent episode of the Houston Innovators Podcast.
After almost three months, the decision finally came down from NASA’s highest ranks on Saturday. Photo via Vanessa Wyche/LinkedIn

NASA decides to keep 2 astronauts in space until February, nixes return on troubled Boeing capsule

game plan set

NASA decided Saturday it’s too risky to bring two astronauts back to Earth in Boeing’s troubled new capsule, and they'll have to wait until next year for a ride home with SpaceX. What should have been a weeklong test flight for the pair will now last more than eight months.

The seasoned pilots have been stuck at the International Space Station since the beginning of June. A cascade of vexing thruster failures and helium leaks in the new capsule marred their trip to the space station, and they ended up in a holding pattern as engineers conducted tests and debated what to do about the flight back.

After almost three months, the decision finally came down from NASA’s highest ranks on Saturday. Butch Wilmore and Suni Williams will come back in a SpaceX capsule in February. Their empty Starliner capsule will undock in early September and attempt to return on autopilot with a touchdown in the New Mexico desert.

"We are grateful to Butch and Suni for taking on new roles as International Space Station crew members and their families for supporting them in this change to mission plan. Butch and Suni will do good science, technology and STEM engagements on ISS and the entire NASA family will continue to support them during their increment," NASA's Johnson Space Center Director Vanessa Wyche wrote on LinkedIn. "I am personally proud of all of the people who support our human spaceflight endeavors all across the globe. Together, we ensure the safe exploration of space."

As Starliner’s test pilots, the pair should have overseen this critical last leg of the journey.

“A test flight by nature is neither safe nor routine,” said NASA Administrator Bill Nelson. The decision "is a result of a commitment to safety.”

Nelson said lessons learned from NASA's two space shuttle accidents played a role. This time, he noted, open dialogue was encouraged rather than crushed.

“This has not been an easy decision, but it is absolutely the right one,” added Jim Free, NASA's associate administrator.

It was a blow to Boeing, adding to the safety concerns plaguing the company on its airplane side. Boeing had counted on Starliner’s first crew trip to revive the troubled spacecraft program after years of delays and ballooning costs. The company had insisted Starliner was safe based on all the recent thruster tests both in space and on the ground.

Boeing did not participate in Saturday's news conference by NASA, but released a statement.

“Boeing continues to focus, first and foremost, on the safety of the crew and spacecraft," reads the statement. The company said it is preparing the spacecraft “for a safe and successful return.”

Rand Corp.'s Jan Osburg, a senior engineer who specializes in aerospace and defense, said NASA made the right choice. “But the U.S. is still left with egg on its face due to the Starliner design issues that should have been caught earlier."

Wilmore, 61, and Williams, 58, are both retired Navy captains with previous long-duration spaceflight experience. Before their June 5 launch from Cape Canaveral, Wilmore and Williams said their families bought into the uncertainty and stress of their professional careers decades ago.

During their lone orbital news conference last month, the astronauts said they had trust in the thruster testing being conducted. They had no complaints, they added, and enjoyed pitching in with space station work.

Wilmore's wife, Deanna, said she and their daughters, along with family and friends, “were praying for a safe return on whatever spacecraft that may be." While they are disappointed that he will be away longer, “we know that it's the Lord's plan,” she said via text.

Flight operations director Norm Knight said he talked to the astronauts Saturday and they fully support the decision to postpone their return.

There were few options.

The SpaceX capsule currently parked at the space station is reserved for the four residents who have been there since March. They will return in late September, their routine six-month stay extended a month by the Starliner dilemma. NASA said it would be unsafe to squeeze two more into the capsule, except in an emergency.

The docked Russian Soyuz capsule is even tighter, capable of flying only three — two of them Russians wrapping up a yearlong stint.

So Wilmore and Williams will wait for SpaceX's next taxi flight. It’s due to launch in late September with two astronauts instead of the usual four. NASA is yanking two to make room for Wilmore and Williams on the return flight in late February.

NASA said no serious consideration was given to asking SpaceX for a quick stand-alone rescue. Last year, the Russian Space Agency had to rush up a replacement Soyuz capsule for three men whose original craft was damaged by space junk. The switch pushed their six-month mission to just over a year.

Former Canadian astronaut Chris Hadfield, applauded the decision via X: “Good to err on the side of caution for astronaut lives.” Long missions are “what astronauts work their entire career for. I’d take it in a heartbeat!”

Starliner’s woes began long before its latest flight.

Bad software fouled the first test flight without a crew in 2019, prompting a do-over in 2022. Then parachute and other issues cropped up, including a helium leak in the capsule’s propellant system that nixed a launch attempt in May. The leak eventually was deemed to be isolated and small enough to pose no concern. But more leaks sprouted following liftoff, and five thrusters also failed.

All but one of those small thrusters restarted in flight. But engineers were perplexed by ground testing that showed a thruster seal swelling and obstructing a propellant line. They theorized the seals in orbit may have expanded and then reverted to their normal size. Officials said the results marked the turning point, as their concerns grew.

With all the uncertainty about how the thrusters might perform, “There was too much risk for the crew," Steve Stich, NASA's commercial crew program manager, told reporters.

These 28 thrusters are vital. Besides needed for space station rendezvous, they keep the capsule pointed in the right direction at flight’s end as bigger engines steer the craft out of orbit. Coming in crooked could result in catastrophe.

With the Columbia disaster still fresh in many minds — the shuttle broke apart during reentry in 2003, killing all seven aboard — NASA made an extra effort to embrace open debate over Starliner's return capability.

Despite Saturday's decision, NASA isn’t giving up on Boeing. Nelson said he is “100%” certain that Starliner will fly again.

NASA went into its commercial crew program a decade ago wanting two competing U.S. companies ferrying astronauts in the post-shuttle era. Boeing won the bigger contract: more than $4 billion, compared with SpaceX’s $2.6 billion.

With station supply runs already under its belt, SpaceX aced its first of now nine astronaut flights in 2020, while Boeing got bogged down in design flaws that set the company back more than $1 billion. NASA officials still hold out hope that Starliner’s problems can be corrected in time for another crew flight in another year or so.

Stratolaunch successfully completed its hypersonic test flight earlier this year. Image courtesy of Draper

Space nonprofit with Houston office builds on NASA legacy to develop new hypersonic tech

high speed

With a recent air-launched test vehicle flight that came close to hypersonic speed, research company Draper has accelerated the potential for its flight technology.

Draper, a Cambridge, Massachusetts-based nonprofit, provided the crucial guidance, navigation, and control flight software for the flight. That guidance system was built on the same Draper technology that NASA has used in its Apollo mission, the international space station and space shuttle programs.

“In a broad sense, Draper has been working hypersonic since Apollo,” Rick Loffi, space systems program manager and lead executive for Draper’s Houston campus, tells InnovationMap.

The navigation software controlled the first powered test flight of an air-launched vehicle that approached the hypersonic threshold of Mach 5, or 3,800 miles per hour, or five times the speed of sound.

Stratolaunch successfully completed the flight of its TA-1 Talon test vehicle in the Mojave Desert in March. The California-based company designs and launches aerospace vehicles and technologies, providing access to a reusable hypersonic testing platform, according to its website. The historic test flight landed in the Pacific Ocean, and achieved successful ignition, acceleration and sustained altitude climb.

“The Draper software is really what’s stabilizing the vehicle during flight…and controlling it as it gets up into altitude and speed,” Brandon Jalbert, space systems program manager for Draper and team lead for Stratolaunch, says “so it’s not doing loop-de-loops, or getting unstable…blowing up in the atmosphere.”

Draper uses model-based design and algorithms in its software, and for the boost phase of the Talon test, Draper developed a novel algorithm, which built upon its previous work for NASA, Jalbert says.

Aerospace manufacturing companies like Boom and Hermeus stand poised to pick up where the Concorde left off, and are racing to implement and execute on accessible hypersonic and supersonic commercial technology.

The Concorde aircraft made supersonic, four-hour transoceanic flights a reality, but only for the very wealthy, and shut down in 2003.

Draper is not involved in any of those ventures to bring accessible supersonic flight back to the skies. Its primary focus with hypersonic will remain with deterrence and testing platforms, Jalbert says.

But the company’s technology “has applications everywhere from military to commercial activity,“ he says.

“Our focus is to solve complex challenges of national importance,” he says, “whether that’s…helping our commercial partners, or working on civil or military applications. That’s where we see ourselves being of value to the industry.”

With the harsh conditions involved in hypersonic flight, advancing the technology has its challenges.

“You’ve got to have proper hardware and electronics and sensors that can operate within those conditions,” Jalbert says.

Draper originated in 1932 when engineer Charles Stark Draper founded what eventually became the Instrumentation Lab at MIT.

His work on inertial navigation theory paved the way for the use of the autopilot in today’s commercial jets. The lab was divested by MIT in the 1970s, and became a nonprofit. Draper has long been a government contractor and has worked on many military projects, dating to WWII.

Draper in 2023 secured the $2.2 billion renewal of a long-standing contract with the U.S. Navy to provide the guidance system for the submarine-launched Trident II D-5 missile.

The U.S. government has shown a growing interest in the development of hypersonic weapons systems, as Russia and China have developed advanced capabilities.

The Pentagon’s budget request for hypersonic research for fiscal year 2025 was $6.9 billion, up from $4.7 billion for 2023, according to a recent U.S. Naval Institute report.

“There’s a big shift, in deterrence, as well as offensive, on hypersonic,” Jalbert says.

However, the Defense Department has not yet acquired hypersonic weapons, according to the report, but is developing prototypes and testing.

Draper has a long, celebrated history with NASA, and its Houston office is housed at Johnson Space Center. Draper's presence in Houston dates back to the 1960s, Loffi says.

From the Apollo missions to the space station and now the Artemis program, which aims to land the first person of color and the first woman on the moon by 2026 on its Orion spacecraft, Draper has partnered with NASA every step of the way, providing its navigation system for space flight.

“Right now, our biggest customer within NASA is the Orion program,” Loffi says, with approximately 15 of the 20-person Houston office working on the project, in collaboration with the company’s Cambridge colleagues.

Draper's Houston office is working on NASA's Orion program. Photo via NASA

The company is also working with NASA on lunar landing technology and sub-orbital experiments, as well as the propulsion element and Gateway space station for Artemis.

Amazon founder Jeff Bezos’s aerospace manufacturing company Blue Origin is also partnering with Draper to develop the Artemis human landing system.

Neither Loffi nor Jalbert aspired to go into outer space themselves, but rather to provide solutions to make that possible. Human spaceflight has been a lifelong passion for Loffi.

While he had lots of job opportunities after graduating from Purdue University with a degree in electrical engineering, Loffi chose NASA.

“I wasn’t that person who grew up dreaming of becoming an astronaut,” Loffi says. “I was old enough to see the Apollo 11 moon landing, and it did inspire me.”

His work at NASA began after the space shuttle Challenger explosion, in 1986. He was part of the agency’s effort to return to space flight, and worked on space station development, before joining Draper in 2011.

Jalbert, a graduate of Northeastern University, says his early work at Draper “lit the fires for my interest in space.”

Axiom Mission 4 will be Peggy Whitson’s second commercial human spaceflight mission with Axiom Space. Photo courtesy of Axiom

Houston space tech unicorn names next mission leader, team

ready for takeoff

NASA veteran Peggy Whitson, a former student and professor at Houston’s Rice University, will command the global crew heading to the International Space Station aboard a private mission directed by Houston-based Axiom Space.

Whitson and her three fellow crew members arrived in Houston on August 6 to train with Axiom Space, NASA, and SpaceX for Axiom Mission 4. The mission is tentatively scheduled for October 2024.

The three astronauts joining Whitson will be:

  • Shubhanshu Shukla, the mission pilot, representing the Indian Space Research Organization
  • Sławosz Uznański, a mission specialist representing the European Space Agency and Poland
  • Tibor Kapu of Hungary, a mission specialist

Axiom Mission 4 will be Whitson’s second commercial human spaceflight mission with Axiom.

“With a culturally diverse crew, we are not only advancing scientific knowledge but also fostering international collaboration. Our previous missions set the stage,” Whitson says in a news release.

Axiom Mission 1 was the first private mission to the space station, Axiom Mission 2 launched the first Saudi woman into space, and

Axiom Mission 3 featured the first Turkish astronaut and first European Space Agency astronaut to fly on a commercial space mission.

With Axiom Mission 4, “we ascend even higher, bringing even more nations to low-Earth orbit and expanding humanity’s reach among the stars,” says Whitton.

From 1981 to 1985, Whitson conducted graduate work in biochemistry at Rice, where she earned a doctoral degree. She was a predoctoral and postdoctoral fellow.

Whitson’s vast experience includes:

  • Adjunct professor in biochemistry and genetics at the University of Texas Medical Branch in Galveston
  • Adjunct assistant professor in biochemistry and genetics at Rice
  • Research biochemist at NASA’s Johnson Space Center
  • Deputy division chief of medical sciences at Johnson Space Center.
  • Chief of station operations at NASA’s Astronaut Office
  • Chief of NASA’s Astronaut Corps
  • Crew member of three NASA space missions

Whitton and the three other astronauts still must gain approval for the Axiom mission from the five organizations that oversee the space station: NASA, the European Space Agency, Roscosmos (the Russian space agency), the Japan Aerospace Exploration Agency, and the Canadian Space Agency.

Axiom 4 “represents Axiom Space’s continued efforts to build opportunity for countries to research, innovate, test, and engage with people around the world while in low-Earth orbit,” says Michael Suffredini, CEO of Axiom Space. “This mission broadens horizons for nations with ambitious goals of advancing scientific, technological, and economic pursuits.”

This mission will emphasize scientific research, tech demonstrations, and space commercialization.

From Florida, the Axiom 4 crew will go to the International Space Station aboard a Falcon 9 rocket and Dragon spacecraft, both made by SpaceX. The crew is expected to spend up to 14 days at the space station.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University launches hub in India to drive education, tech innovation abroad

global mission

Rice University is launching Rice Global India, which is a strategic initiative to expand India’s rapidly growing education and technology sectors.

“India is a country of tremendous opportunity, one where we see the potential to make a meaningful impact through collaboration in research, innovation and education,” Rice President Reginald DesRoches says in a news release. “Our presence in India is a critical step in expanding our global reach, and we are excited to engage more with India’s academic leaders and industries to address some of the most pressing challenges of our time.”

The new hub will be in the country’s third-largest city and the center of the country’s high-tech industry, Bengaluru, India, and will include collaborations with top-tier research and academic institutions.

Rice continues its collaborations with institutions like the Indian Institute of Technology (IIT) Kanpur and the Indian Institute of Science (IISc) Bengaluru. The partnerships are expected to advance research initiatives, student and faculty exchanges and collaborations in artificial intelligence, biotechnology and sustainable energy.

India was a prime spot for the location due to the energy, climate change, artificial intelligence and biotechnology studies that align with Rice’s research that is outlined in its strategic plan Momentous: Personalized Scale for Global Impact.

“India’s position as one of the world’s fastest-growing education and technology markets makes it a crucial partner for Rice’s global vision,” vice president for global at Rice Caroline Levander adds. “The U.S.-India relationship, underscored by initiatives like the U.S.-India Initiative on Critical and Emerging Technology, provides fertile ground for educational, technological and research exchanges.”

On November 18, the university hosted a ribbon-cutting ceremony in Bengaluru, India to help launch the project.

“This expansion reflects our commitment to fostering a more interconnected world where education and research transcend borders,” DesRoches says.

UH-backed project secures $3.6M to transform CO2 into sustainable fuel with cutting-edge tech

funds granted

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

------

This article originally ran on EnergyCapital.

Houston innovator drives collaboration, access to investment with female-focused group

HOUSTON INNOVATORS PODCAST EPISODE 262

After working in technology in her home country of Pakistan, Samina Farid, who was raised in the United States, found her way to Houston in the '70s where business was booming.

She was recruited to work at Houston Natural Gas — a company that would later merge and create Enron — where she rose through the ranks and oversaw systems development for the company before taking on a role running the pipelines.

"When you're in technology, you're always looking for inefficiencies, and you always see areas where you can improve," Farid says on the Houston Innovators Podcast, explaining that she moved on from Enron in the mid-'80s, which was an exciting time for the industry.

"We had these silos of data across the industry, and I felt like we needed to be communicating better, having a good source of data, and making sure we weren't continuing to have the problems we were having," she says. "That was really the seed that got me started in the idea of building a company."

She co-founded Merrick Systems, a software solutions business for managing oil and gas production, with her nephew, and thus began her own entrepreneurial journey. She came to another crossroads in her career after selling that business in 2014 and surviving her own battle with breast cancer.

"I got involved in investing because the guys used to talk about it — there was always men around me," Farid says. "I was curious."

In 2019, she joined an organization called Golden Seeds. Founded in 2005 in New York, the network of angel investors funding female-founded enterprises has grown to around 280 members across eight chapters. Suzan Deison, CEO of the Houston Women's Chamber, was integral in bringing the organization to Houston, and now Farid leads it as head of the Houston Chapter of Golden Seeds.

For Farid, the opportunity for Houston is the national network of investors — both to connect local female founders to potential capital from coast to coast and to give Houston investors deal flow from across the country.

"It was so hard for me to get funding for my own company," Farid says. "Having access to capital was only on the coasts. Software and startups was too risky."

Now, with Golden Seeds, the opportunity is there — and Farid says its an extremely collaborative investor network, working with local organizations like the Houston Angel Network and TiE Houston.

"With angel investing, when we put our money in, we want these companies to succeed," she says."We want more people to see these companies and to invest in them. We're not competing. We want to work with others to help these companies succeed."