Earlier this month, TRISH announced the initial selection for its Space Health Ingress Program (SHIP) solicitation. Photo via BCM.edu

What would we eat if we were forced to decamp to another planet? The most immediate challenges faced by the food industry and astronauts exploring outside Earth are being addressed by The Translational Research Institute for Space Health (TRISH) at Baylor College of Medicine’s Center for Space Medicine’s newest project.

Earlier this month, TRISH announced the initial selection for its Space Health Ingress Program (SHIP) solicitation. Working with California Institute of Technology and Massachusetts Institute of Technology, the Baylor-based program chose “Future Foods for Space: Mobilizing the Future Foods Community to Accelerate Advances in Space Health,” led by Dr. Denneal Jamison-McClung at the University of California, Davis.

“TRISH is bringing in new ideas and investigators to propel space health research,” says Catherine Domingo, TRISH operations lead and research administration associate at Baylor College of Medicine, in the release. “We have long believed that new researchers with fresh perspectives drive innovation and advance human space exploration and SHIP builds on TRISH’s existing efforts to recruit and support new investigators in the space health research field, potentially yielding and high-impact ideas to protect space explorers.”

The goal of the project is to develop sustainable food products and ingredients that could fuel future space travelers on long-term voyages, or even habitation beyond our home planet.

Jamison-McClung and her team’s goal is to enact food-related space health research and inspire the community thereof by mobilizing academic and food-industry researchers who have not previously engaged with the realm of space exploration. Besides growing and developing food products, the project will also address production, storage, and delivery of the nutrition created by the team.

To that end, Jamison-McClung and her recruits will receive $1 million over the course of two years. The goal of the SHIP solicitation is to work with first-time NASA investigators, bringing new minds to the forefront of the space health research world.

“As we look to enable safer space exploration and habitation for humans, it is clear that food and nutrition are foundational,” says Dr. Asha S. Collins, chair of the SHIP advisory board, in a press release. “We’re excited to see how accelerating innovation in food science for space health could also result in food-related innovations for people on Earth in remote areas and food deserts.”

TRISH is sending six research projects onboard Axiom Space's next mission, which is expected to launch in January. Photo via bcm.com

Space health nonprofit to send 6 more experiments to space on Houston company's next mission

medicine in orbit

A Houston organization announced that it plans to launch six more experiments into space next year that look to learn more about everything from motion sickness to genome alterations during space travel.

The Translational Research Institute for Space Health, or TRISH, which is part of BCM’s Center for Space Medicine, will team up once more with Houston-based Axiom Space on its third private astronaut mission to the International Space Station, Ax-3, which is expected to launch in January. TRISH also sent experiments on Axiom's Ax-2 mission that launched in May.

The experiments are part of TRISH's Enhancing eXploration Platforms and Analog Definition (EXPAND) program, which aims "to help humans thrive on future space missions," according to a release.

“Our commercial spaceflight partners such as Axiom Space are instrumental to cutting-edge research, including these projects designed to reveal how the human body and mind function in the extreme environment of space,” Dr. Emmanuel Urquieta, TRISH chief medical officer, EXPAND program lead and assistant professor in the Center for Space Medicine at Baylor. “This work represents an important step in our journey to understand the body's response to challenging conditions, which is critical for improving human health both here on Earth and on future long-duration missions, including to the Moon and Mars.”

The six project onboard Ax-3 include:

  • Cognitive and Physiologic Responses in Commercial Space Crew on Short-Duration Missions, Mathias Basner, M.D., Ph.D., M.S., University of Pennsylvania Perelman School of Medicine: Basner’s team will track spaceflight participants’ memory, abstraction, spatial orientation, emotion recognition, risk decision-making and sustained attention before and after space travel
  • Otolith and Posture Evaluation II, Mark Shelhamer, Sc.D., Johns Hopkins University: Shelhamer's team will study how inner ears and eyes sense and respond to motion before and immediately after spaceflight to predict who is likely to develop space motion sickness.
  • Space Omics + BioBank, Richard Gibbs, Ph.D., Baylor College of Medicine: Gibbs’ team will gather biological specimens from astronauts before and after their mission to assess the effects of spaceflight on the human body at the genomic level.
  • SANS Surveillance, TRISH: The institute will study Spaceflight Associated Neuro-Ocular Syndrome by collecting vision function data during the ground phases of the mission.
  • Standardized research questionnaires, TRISH: The institute will gather contextual and qualitative data points for its EXPAND research database related to sleep, personality, health history, team dynamics and immune-related symptoms.
  • Sensorimotor adaptation, TRISH: The institute will collect data on how spaceflight participants' ability to stand, balance and have full body control.

Ax-3 is Axiom's third commercial astronaut mission to the ISS, which the company announced in March. The crew, which includes Commander Michael López-Alegría, Pilot Walter Villadei, and Mission Specialists Alper Gezeravcı and Marcus Wandt, will spend 14 days on the ISS. The mission will launch from NASA’s Kennedy Space Center in Florida aboard a SpaceX Dragon spacecraft.

Axiom also has plans for its fourth private mission, Ax-4, which it announced in August.

In addition to the partnership with Axiom, TRISH also announced late last month that it has made a new agreement with the Australian Antarctic Division's Polar Medicine Unit. The collaboration will nominate pilot projects that focus on challenges associated with extreme isolation, which have applications in long-duration space travel to the Moon and Mars.

“Our international collaboration with the AAD will extract insights to benefit all future astronauts, as well as other explorers of extreme environments,” said Dr. Dorit Donoviel, associate professor in the Center for Space Medicine at Baylor and TRISH executive director. “This agreement marks the beginning of yet another exciting venture into space health research for TRISH, and we look forward to collaborating with the AAD to advance our shared goal of promoting safe human exploration.”

In March, TRISH also announced an international agreement with the Korea National Institute of Health. The two organizations plan to collaborate on research related to mental health issues due to space travel, the challenges of food supply in deep space, the negative effects of space radiation and en-suite medical care for long-duration space travel.

TRISH is also slated to launch nine experiments on board SpaceX's Polaris Dawn mission, which is now expected to launch no earlier than 2024. The research aboard Polaris Dawn is intended to complement research supported by TRISH on the Inspiration4 all-civilian mission to orbit.
TRISH, or the Translational Institute of Space Health, has named three fellows to its new program. Photo via bcm.edu

Houston space health research organization names 3 fellows for bioastronautics program

hello fellows

Three Texas scientists have been selected for a Houston organization's prestigious program focused on space health.

TRISH, or the Translational Research Institute for Space Health, which is based out of Houston-based Baylor College of Medicine, has announced its selections for the TRISH 2023 fellowship. The program, announced last fall, is in partnership with California Institute of Technology and Massachusetts Institute of Technology.

“Supporting the next generation of space health researchers ensures that we will have the best possible data to make evidence-based decisions about managing human systems risk for exploration class missions,” says Dr. Jennifer Fogarty, TRISH’s chief scientific officer, in a news release. “By investing in TRISH postdoctoral fellows, we’re investing in future experts who will strive to solve the complex problems and risks associated with human space exploration. We are thrilled to welcome these accomplished early-career scientists to the TRISH community.”

The three selected postdoctoral fellows are focused on researching within space health — specifically reducing the health risks associated with spaceflight. They will receive a two-year salary stipend and participate in TRISH’s Academy of Bioastronautics, a mentorship community for space health professionals.

“Pursuing my postdoctoral training at TRISH has accelerated my career and expanded my research portfolio, enabling me to make new connections and become a more well-rounded scientist,” says Dr. Evan Buettmann, a TRISH third-year postdoctoral fellow at Virginia Commonwealth University, in the release. “Having completed my Ph.D. in bone regeneration, I didn’t initially anticipate that my studies would lead me to an academic career in space health. TRISH stood out to me as an excellent place to complete my postdoctoral training, as it’s at the cutting edge of both space science and medicine and offers extensive mentorship and leadership opportunities.”

This 2023 cohort of fellows include:

  • Stephanie Dudzinski, M.D., Ph.D. Her research focuses on extending healthy life in space by characterizing radiation-induced pro-inflammatory response and enhancing wound repair and recovery with radiation- mitigating thrombin peptide. Her mentor is Steven Frank, M.D., of the University of Texas MD Anderson Cancer Center.
  • Adrien Robin, Ph.D., who is looking at the effect of deconditioning on-gravitational dose-response curves for cardiovascular and ocular variables in men and women and is being mentored by Ana Diaz Artiles, Ph.D., Texas A&M Engineering Experiment Station.
  • Katherine Wozniak, Ph.D., who is defining gut microbial changes to space-like radiation to develop a radiation-resistant microbiome. Her mentor is Robert Britton, Ph.D., of Baylor College of Medicine.
In addition to supporting scientists through its fellowship program, TRISH is actively conducting research aboard commercial space flights — most recently with Axiom Space's Ax-2 mission..
This week's roundup of Houston innovators includes Emmanuel Urquieta of TRISH, Ariel Jones of Qualtrics XM, and Lawson Gow of Pokatok. Photos courtesy

3 Houston innovators to know this week

WHO'S WHO

Editor's note: In this week's roundup of Houston innovators to know, I'm introducing you to three local innovators across industries — from space health research to sports tech — recently making headlines in Houston innovation.


Dr. Emmanuel Urquieta, chief medical officer of TRISH

Emmanuel Urquieta, chief medical officer of TRISH, joins the Houston Innovators Podcast. Photo via LinkedIn

Since 2021, the Translational Research Institute for Space Health has conducted its research on four missions — which has meant an unparalleled access to space health data for TRISH.

“We really saw the value of implementing research in civilians because they are different from your traditional government astronaut,” Dr. Emmanuel Urquieta, chief medical officer for TRISH, says on the Houston Innovators Podcast. “In civilians, you see a more diverse population.”

Urquieta says TRISH's experiments on these missions all fall within a few pillars of space health, including space's effects on sensory motor skills, like balance and motion sickness, as well as mental health, environmental data from the vehicles, vital monitoring, and more. Read more.

Ariel Jones, head of health care provider solution strategy for Qualtrics XM

As the health care industry continues to evolve, experience management technology will play an increasingly important role in addressing health equity gaps and improving the health and well-being of patients across the globe. Photo courtesy

In a guest column for InnovationMap, Ariel Jones, head of health care provider solution strategy for Qualtrics XM, addresses inequalities in health care — and how technology, specifical experience management tech, can help bridge the gap.

"As the health care industry continues to evolve, experience management technology will play an increasingly important role in addressing health equity gaps and improving the health and well-being of patients across the globe," she writes. Read more.

Lawson Gow, co-founder of Pokatok

A new sports festival is headed to Houston next year. Photo courtesy of Pokatok

Pokatok, the recently announced, four-day sports festival is slated to take place April 4-7, 2024.

“Pokatok will not only be the largest gathering of the entire sports tech ecosystem, it will also be a true fan festival for sports enthusiasts,” says Gow in the news release. “Everyone speaks the language of sport, it’s an incredibly powerful unifier of our society, and this festival will bring together people from around the world to experience hundreds of events revolving around the new and the next in sport.”

The festival, which has secured support from Houston First, the Greater Houston Partnership, and the Harris County Houston Sports Authority to put on the event, will feature two tracks — one focused on sports innovation and the other surrounding a fan experience. Pokatok X will include an expo and showcase focused on sports innovation, bringing together startups, investors, accelerators, athletes, and industry experts to dive into sports tech. Read more.

Emmanuel Urquieta, chief medical officer of TRISH, joins the Houston Innovators Podcast. Photo via LinkedIn

Houston innovator on the importance of commercial missions for the future of space health research

HOUSTON INNOVATORS PODCAST EPISODE 189

With the rise of commercial space flight, researchers have increased access to space health data that's key to the future of the industry as a whole. The organization that's conducting this valuable research is based right in Houston's Texas Medical Center.

TRISH, or the Translational Research Institute for Space Health, is an organization based out of Baylor College of Medicine and partnered with NASA's Human Spaceflight group. As commercial space companies have emerged, TRISH has strategically aligned with these businesses to bring back health data from the civilian trips.

“Most of the research that’s done at NASA and other government agencies usually takes decades to get something that could be implemented in space or terrestrially," Dr. Emmanuel Urquieta, chief medical officer for TRISH, says on the Houston Innovators Podcast. "What we do at TRISH is something different.

"On the one hand, we look at really new technologies that are just an idea, but could be really game changing," he continues. "Then on the other hand, we look at technologies already in the market that could be tweaked to work in spaceflight.”

Since 2021, TRISH has conducted its research on four missions — Inspiration4, the first all-civilian mission to space; Axiom Mission 1, the first all civilian mission to the International Space Station; MS20, which flew two Japanese civilians to ISS; and, most recently, Axiom Mission 2, which included the first all-private crew commanded by a woman and two members of the Kingdom of Saudi Arabia's national astronaut program.

“We really saw the value of implementing research in civilians because they are different from your traditional government astronaut,” Urquieta says. “In civilians, you see a more diverse population.”

Urquieta says TRISH's experiments on these missions all fall within a few pillars of space health, including space's effects on sensory motor skills, like balance and motion sickness, as well as mental health, environmental data from the vehicles, vital monitoring, and more.

“We’ve developed a capability to collect high-priority, high-value data from these space flight participants without having to train them for long periods of time — which is a challenge, because they don’t train for years like traditional astronauts,” he explains.

The plan, Urquieta says, is to be able to share TRISH's space health data in order to more safely send humans into space. He shares more about TRISH's program and the challenges the organization faces on the show. Listen to the interview below — or wherever you stream your podcasts — and subscribe for weekly episodes.

A new partnership on Earth will help navigate the future of space health. Photo via NASA

Houston space research nonprofit announces new international agreement

partnership launch

Houston's Translational Research Institute for Space Health, or TRISH, has entered into an agreement with the Korea National Institute of Health to collaborate on research and discovery relating to space health.

According to a release, the organizations aim to uncover health findings that can assist in NASA's upcoming Artemis missions, as well as have Earth-bound impacts. The agreement is a Memorandum of Understanding which states that both organizations will "develop fruitful areas of cooperation for space health."

TRISH — which is affiliated with Baylor College of Medicine — and KNIH plan to collaborate on research related to mental health issues due to space travel, the challenges of food supply in deep space, the negative effects of space radiation and en-suite medical care for long-duration space travel.

“As in space, there should be no borders or boundaries to scientific discovery that benefits humankind,” Dorit Donoviel, associate professor in the Center for Space Medicine at Baylor and executive director TRISH said in a statement. “With this agreement, we will work together with the KNIH to collaborate and foster meaningful discussion with the ambition of keeping humans healthy in space and on Earth.”

TRISH announced last month that it will launch six experiments into space aboard Axiom Space's Ax-2 mission in consortium with CalTeach and MIT, which was originally targeted to launch this month.

TRISH is also slated to launch nine experiments on board SpaceX's Polaris Dawn mission, which is now expected to launch in September.

Some of the information found from these missions will become part of TRISH’s Enhancing eXploration Platforms and ANalog Definition, or EXPAND, program, which aims to boost human health on commercial space flights through its database. The program launched in 2021.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston wearable biosensing company closes $13M pre-IPO round

fresh funding

Wellysis, a Seoul, South Korea-headquartered wearable biosensing company with its U.S. subsidiary based in Houston, has closed a $13.5 million pre-IPO funding round and plans to expand its Texas operations.

The round was led by Korea Investment Partners, Kyobo Life Insurance, Kyobo Securities, Kolon Investment and a co-general partner fund backed by SBI Investment and Samsung Securities, according to a news release.

Wellysis reports that the latest round brings its total capital raised to about $30 million. The company is working toward a Korea Securities Dealers Automated Quotations listing in Q4 2026 or Q1 2027.

Wellysis is known for its continuous ECG/EKG monitor with AI reporting. Its lightweight and waterproof S-Patch cardiac monitor is designed for extended testing periods of up to 14 days on a single battery charge.

The company says that the funding will go toward commercializing the next generation of the S-Patch, known as the S-Patch MX, which will be able to capture more than 30 biometric signals, including ECG, temperature and body composition.

Wellysis also reports that it will use the funding to expand its Houston-based operations, specifically in its commercial, clinical and customer success teams.

Additionally, the company plans to accelerate the product development of two other biometric products:

  • CardioAI, an AI-powered diagnostic software platform designed to support clinical interpretation, workflow efficiency and scalable cardiac analysis
  • BioArmour, a non-medical biometric monitoring solution for the sports, public safety and defense sectors

“This pre-IPO round validates both our technology and our readiness to scale globally,” Young Juhn, CEO of Wellysis, said in the release. “With FDA-cleared solutions, expanding U.S. operations, and a strong AI roadmap, Wellysis is positioned to redefine how cardiac data is captured, interpreted, and acted upon across healthcare systems worldwide.”

Wellysis was founded in 2019 as a spinoff of Samsung. Its S-Patch runs off of a Samsung Smart Health Processor. The company's U.S. subsidiary, Wellysis USA Inc., was established in Houston in 2023 and was a resident of JLABS@TMC.

Elon Musk vows to launch solar-powered data centers in space

To Outer Space

Elon Musk vowed this week to upend another industry just as he did with cars and rockets — and once again he's taking on long odds.

The world's richest man said he wants to put as many as a million satellites into orbit to form vast, solar-powered data centers in space — a move to allow expanded use of artificial intelligence and chatbots without triggering blackouts and sending utility bills soaring.

To finance that effort, Musk combined SpaceX with his AI business on Monday, February 2, and plans a big initial public offering of the combined company.

“Space-based AI is obviously the only way to scale,” Musk wrote on SpaceX’s website, adding about his solar ambitions, “It’s always sunny in space!”

But scientists and industry experts say even Musk — who outsmarted Detroit to turn Tesla into the world’s most valuable automaker — faces formidable technical, financial and environmental obstacles.

Feeling the heat

Capturing the sun’s energy from space to run chatbots and other AI tools would ease pressure on power grids and cut demand for sprawling computing warehouses that are consuming farms and forests and vast amounts of water to cool.

But space presents its own set of problems.

Data centers generate enormous heat. Space seems to offer a solution because it is cold. But it is also a vacuum, trapping heat inside objects in the same way that a Thermos keeps coffee hot using double walls with no air between them.

“An uncooled computer chip in space would overheat and melt much faster than one on Earth,” said Josep Jornet, a computer and electrical engineering professor at Northeastern University.

One fix is to build giant radiator panels that glow in infrared light to push the heat “out into the dark void,” says Jornet, noting that the technology has worked on a small scale, including on the International Space Station. But for Musk's data centers, he says, it would require an array of “massive, fragile structures that have never been built before.”

Floating debris

Then there is space junk.

A single malfunctioning satellite breaking down or losing orbit could trigger a cascade of collisions, potentially disrupting emergency communications, weather forecasting and other services.

Musk noted in a recent regulatory filing that he has had only one “low-velocity debris generating event" in seven years running Starlink, his satellite communications network. Starlink has operated about 10,000 satellites — but that's a fraction of the million or so he now plans to put in space.

“We could reach a tipping point where the chance of collision is going to be too great," said University at Buffalo's John Crassidis, a former NASA engineer. “And these objects are going fast -- 17,500 miles per hour. There could be very violent collisions."

No repair crews

Even without collisions, satellites fail, chips degrade, parts break.

Special GPU graphics chips used by AI companies, for instance, can become damaged and need to be replaced.

“On Earth, what you would do is send someone down to the data center," said Baiju Bhatt, CEO of Aetherflux, a space-based solar energy company. "You replace the server, you replace the GPU, you’d do some surgery on that thing and you’d slide it back in.”

But no such repair crew exists in orbit, and those GPUs in space could get damaged due to their exposure to high-energy particles from the sun.

Bhatt says one workaround is to overprovision the satellite with extra chips to replace the ones that fail. But that’s an expensive proposition given they are likely to cost tens of thousands of dollars each, and current Starlink satellites only have a lifespan of about five years.

Competition — and leverage

Musk is not alone trying to solve these problems.

A company in Redmond, Washington, called Starcloud, launched a satellite in November carrying a single Nvidia-made AI computer chip to test out how it would fare in space. Google is exploring orbital data centers in a venture it calls Project Suncatcher. And Jeff Bezos’ Blue Origin announced plans in January for a constellation of more than 5,000 satellites to start launching late next year, though its focus has been more on communications than AI.

Still, Musk has an edge: He's got rockets.

Starcloud had to use one of his Falcon rockets to put its chip in space last year. Aetherflux plans to send a set of chips it calls a Galactic Brain to space on a SpaceX rocket later this year. And Google may also need to turn to Musk to get its first two planned prototype satellites off the ground by early next year.

Pierre Lionnet, a research director at the trade association Eurospace, says Musk routinely charges rivals far more than he charges himself —- as much as $20,000 per kilo of payload versus $2,000 internally.

He said Musk’s announcements this week signal that he plans to use that advantage to win this new space race.

“When he says we are going to put these data centers in space, it’s a way of telling the others we will keep these low launch costs for myself,” said Lionnet. “It’s a kind of powerplay.”

Johnson Space Center and UT partner to expand research, workforce development

onward and upward

NASA’s Johnson Space Center in Houston has forged a partnership with the University of Texas System to expand collaboration on research, workforce development and education that supports space exploration and national security.

“It’s an exciting time for the UT System and NASA to come together in new ways because Texas is at the epicenter of America’s space future. It’s an area where America is dominant, and we are committed as a university system to maintaining and growing that dominance,” Dr. John Zerwas, chancellor of the UT System, said in a news release.

Vanessa Wyche, director of Johnson Space Center, added that the partnership with the UT System “will enable us to meet our nation’s exploration goals and advance the future of space exploration.”

The news release noted that UT Health Houston and the UT Medical Branch in Galveston already collaborate with NASA. The UT Medical Branch’s aerospace medicine residency program and UT Health Houston’s space medicine program train NASA astronauts.

“We’re living through a unique moment where aerospace innovation, national security, economic transformation, and scientific discovery are converging like never before in Texas," Zerwas said. “UT institutions are uniquely positioned to partner with NASA in building a stronger and safer Texas.”

Zerwas became chancellor of the UT System in 2025. He joined the system in 2019 as executive vice chancellor for health affairs. Zerwas represented northwestern Ford Bend County in the Texas House from 2007 to 2019.

In 1996, he co-founded a Houston-area medical practice that became part of US Anesthesia Partners in 2012. He remained active in the practice until joining the UT System. Zerwas was chief medical officer of the Memorial Hermann Hospital System from 2003 to 2008 and was its chief physician integration officer until 2009.

Zerwas, a 1973 graduate of the Houston area’s Bellaire High School, is an alumnus of the University of Houston and Baylor College of Medicine.