Earlier this month, TRISH announced the initial selection for its Space Health Ingress Program (SHIP) solicitation. Photo via BCM.edu

What would we eat if we were forced to decamp to another planet? The most immediate challenges faced by the food industry and astronauts exploring outside Earth are being addressed by The Translational Research Institute for Space Health (TRISH) at Baylor College of Medicine’s Center for Space Medicine’s newest project.

Earlier this month, TRISH announced the initial selection for its Space Health Ingress Program (SHIP) solicitation. Working with California Institute of Technology and Massachusetts Institute of Technology, the Baylor-based program chose “Future Foods for Space: Mobilizing the Future Foods Community to Accelerate Advances in Space Health,” led by Dr. Denneal Jamison-McClung at the University of California, Davis.

“TRISH is bringing in new ideas and investigators to propel space health research,” says Catherine Domingo, TRISH operations lead and research administration associate at Baylor College of Medicine, in the release. “We have long believed that new researchers with fresh perspectives drive innovation and advance human space exploration and SHIP builds on TRISH’s existing efforts to recruit and support new investigators in the space health research field, potentially yielding and high-impact ideas to protect space explorers.”

The goal of the project is to develop sustainable food products and ingredients that could fuel future space travelers on long-term voyages, or even habitation beyond our home planet.

Jamison-McClung and her team’s goal is to enact food-related space health research and inspire the community thereof by mobilizing academic and food-industry researchers who have not previously engaged with the realm of space exploration. Besides growing and developing food products, the project will also address production, storage, and delivery of the nutrition created by the team.

To that end, Jamison-McClung and her recruits will receive $1 million over the course of two years. The goal of the SHIP solicitation is to work with first-time NASA investigators, bringing new minds to the forefront of the space health research world.

“As we look to enable safer space exploration and habitation for humans, it is clear that food and nutrition are foundational,” says Dr. Asha S. Collins, chair of the SHIP advisory board, in a press release. “We’re excited to see how accelerating innovation in food science for space health could also result in food-related innovations for people on Earth in remote areas and food deserts.”

TRISH is sending six research projects onboard Axiom Space's next mission, which is expected to launch in January. Photo via bcm.com

Space health nonprofit to send 6 more experiments to space on Houston company's next mission

medicine in orbit

A Houston organization announced that it plans to launch six more experiments into space next year that look to learn more about everything from motion sickness to genome alterations during space travel.

The Translational Research Institute for Space Health, or TRISH, which is part of BCM’s Center for Space Medicine, will team up once more with Houston-based Axiom Space on its third private astronaut mission to the International Space Station, Ax-3, which is expected to launch in January. TRISH also sent experiments on Axiom's Ax-2 mission that launched in May.

The experiments are part of TRISH's Enhancing eXploration Platforms and Analog Definition (EXPAND) program, which aims "to help humans thrive on future space missions," according to a release.

“Our commercial spaceflight partners such as Axiom Space are instrumental to cutting-edge research, including these projects designed to reveal how the human body and mind function in the extreme environment of space,” Dr. Emmanuel Urquieta, TRISH chief medical officer, EXPAND program lead and assistant professor in the Center for Space Medicine at Baylor. “This work represents an important step in our journey to understand the body's response to challenging conditions, which is critical for improving human health both here on Earth and on future long-duration missions, including to the Moon and Mars.”

The six project onboard Ax-3 include:

  • Cognitive and Physiologic Responses in Commercial Space Crew on Short-Duration Missions, Mathias Basner, M.D., Ph.D., M.S., University of Pennsylvania Perelman School of Medicine: Basner’s team will track spaceflight participants’ memory, abstraction, spatial orientation, emotion recognition, risk decision-making and sustained attention before and after space travel
  • Otolith and Posture Evaluation II, Mark Shelhamer, Sc.D., Johns Hopkins University: Shelhamer's team will study how inner ears and eyes sense and respond to motion before and immediately after spaceflight to predict who is likely to develop space motion sickness.
  • Space Omics + BioBank, Richard Gibbs, Ph.D., Baylor College of Medicine: Gibbs’ team will gather biological specimens from astronauts before and after their mission to assess the effects of spaceflight on the human body at the genomic level.
  • SANS Surveillance, TRISH: The institute will study Spaceflight Associated Neuro-Ocular Syndrome by collecting vision function data during the ground phases of the mission.
  • Standardized research questionnaires, TRISH: The institute will gather contextual and qualitative data points for its EXPAND research database related to sleep, personality, health history, team dynamics and immune-related symptoms.
  • Sensorimotor adaptation, TRISH: The institute will collect data on how spaceflight participants' ability to stand, balance and have full body control.

Ax-3 is Axiom's third commercial astronaut mission to the ISS, which the company announced in March. The crew, which includes Commander Michael López-Alegría, Pilot Walter Villadei, and Mission Specialists Alper Gezeravcı and Marcus Wandt, will spend 14 days on the ISS. The mission will launch from NASA’s Kennedy Space Center in Florida aboard a SpaceX Dragon spacecraft.

Axiom also has plans for its fourth private mission, Ax-4, which it announced in August.

In addition to the partnership with Axiom, TRISH also announced late last month that it has made a new agreement with the Australian Antarctic Division's Polar Medicine Unit. The collaboration will nominate pilot projects that focus on challenges associated with extreme isolation, which have applications in long-duration space travel to the Moon and Mars.

“Our international collaboration with the AAD will extract insights to benefit all future astronauts, as well as other explorers of extreme environments,” said Dr. Dorit Donoviel, associate professor in the Center for Space Medicine at Baylor and TRISH executive director. “This agreement marks the beginning of yet another exciting venture into space health research for TRISH, and we look forward to collaborating with the AAD to advance our shared goal of promoting safe human exploration.”

In March, TRISH also announced an international agreement with the Korea National Institute of Health. The two organizations plan to collaborate on research related to mental health issues due to space travel, the challenges of food supply in deep space, the negative effects of space radiation and en-suite medical care for long-duration space travel.

TRISH is also slated to launch nine experiments on board SpaceX's Polaris Dawn mission, which is now expected to launch no earlier than 2024. The research aboard Polaris Dawn is intended to complement research supported by TRISH on the Inspiration4 all-civilian mission to orbit.
TRISH, or the Translational Institute of Space Health, has named three fellows to its new program. Photo via bcm.edu

Houston space health research organization names 3 fellows for bioastronautics program

hello fellows

Three Texas scientists have been selected for a Houston organization's prestigious program focused on space health.

TRISH, or the Translational Research Institute for Space Health, which is based out of Houston-based Baylor College of Medicine, has announced its selections for the TRISH 2023 fellowship. The program, announced last fall, is in partnership with California Institute of Technology and Massachusetts Institute of Technology.

“Supporting the next generation of space health researchers ensures that we will have the best possible data to make evidence-based decisions about managing human systems risk for exploration class missions,” says Dr. Jennifer Fogarty, TRISH’s chief scientific officer, in a news release. “By investing in TRISH postdoctoral fellows, we’re investing in future experts who will strive to solve the complex problems and risks associated with human space exploration. We are thrilled to welcome these accomplished early-career scientists to the TRISH community.”

The three selected postdoctoral fellows are focused on researching within space health — specifically reducing the health risks associated with spaceflight. They will receive a two-year salary stipend and participate in TRISH’s Academy of Bioastronautics, a mentorship community for space health professionals.

“Pursuing my postdoctoral training at TRISH has accelerated my career and expanded my research portfolio, enabling me to make new connections and become a more well-rounded scientist,” says Dr. Evan Buettmann, a TRISH third-year postdoctoral fellow at Virginia Commonwealth University, in the release. “Having completed my Ph.D. in bone regeneration, I didn’t initially anticipate that my studies would lead me to an academic career in space health. TRISH stood out to me as an excellent place to complete my postdoctoral training, as it’s at the cutting edge of both space science and medicine and offers extensive mentorship and leadership opportunities.”

This 2023 cohort of fellows include:

  • Stephanie Dudzinski, M.D., Ph.D. Her research focuses on extending healthy life in space by characterizing radiation-induced pro-inflammatory response and enhancing wound repair and recovery with radiation- mitigating thrombin peptide. Her mentor is Steven Frank, M.D., of the University of Texas MD Anderson Cancer Center.
  • Adrien Robin, Ph.D., who is looking at the effect of deconditioning on-gravitational dose-response curves for cardiovascular and ocular variables in men and women and is being mentored by Ana Diaz Artiles, Ph.D., Texas A&M Engineering Experiment Station.
  • Katherine Wozniak, Ph.D., who is defining gut microbial changes to space-like radiation to develop a radiation-resistant microbiome. Her mentor is Robert Britton, Ph.D., of Baylor College of Medicine.
In addition to supporting scientists through its fellowship program, TRISH is actively conducting research aboard commercial space flights — most recently with Axiom Space's Ax-2 mission..
This week's roundup of Houston innovators includes Emmanuel Urquieta of TRISH, Ariel Jones of Qualtrics XM, and Lawson Gow of Pokatok. Photos courtesy

3 Houston innovators to know this week

WHO'S WHO

Editor's note: In this week's roundup of Houston innovators to know, I'm introducing you to three local innovators across industries — from space health research to sports tech — recently making headlines in Houston innovation.


Dr. Emmanuel Urquieta, chief medical officer of TRISH

Emmanuel Urquieta, chief medical officer of TRISH, joins the Houston Innovators Podcast. Photo via LinkedIn

Since 2021, the Translational Research Institute for Space Health has conducted its research on four missions — which has meant an unparalleled access to space health data for TRISH.

“We really saw the value of implementing research in civilians because they are different from your traditional government astronaut,” Dr. Emmanuel Urquieta, chief medical officer for TRISH, says on the Houston Innovators Podcast. “In civilians, you see a more diverse population.”

Urquieta says TRISH's experiments on these missions all fall within a few pillars of space health, including space's effects on sensory motor skills, like balance and motion sickness, as well as mental health, environmental data from the vehicles, vital monitoring, and more. Read more.

Ariel Jones, head of health care provider solution strategy for Qualtrics XM

As the health care industry continues to evolve, experience management technology will play an increasingly important role in addressing health equity gaps and improving the health and well-being of patients across the globe. Photo courtesy

In a guest column for InnovationMap, Ariel Jones, head of health care provider solution strategy for Qualtrics XM, addresses inequalities in health care — and how technology, specifical experience management tech, can help bridge the gap.

"As the health care industry continues to evolve, experience management technology will play an increasingly important role in addressing health equity gaps and improving the health and well-being of patients across the globe," she writes. Read more.

Lawson Gow, co-founder of Pokatok

A new sports festival is headed to Houston next year. Photo courtesy of Pokatok

Pokatok, the recently announced, four-day sports festival is slated to take place April 4-7, 2024.

“Pokatok will not only be the largest gathering of the entire sports tech ecosystem, it will also be a true fan festival for sports enthusiasts,” says Gow in the news release. “Everyone speaks the language of sport, it’s an incredibly powerful unifier of our society, and this festival will bring together people from around the world to experience hundreds of events revolving around the new and the next in sport.”

The festival, which has secured support from Houston First, the Greater Houston Partnership, and the Harris County Houston Sports Authority to put on the event, will feature two tracks — one focused on sports innovation and the other surrounding a fan experience. Pokatok X will include an expo and showcase focused on sports innovation, bringing together startups, investors, accelerators, athletes, and industry experts to dive into sports tech. Read more.

Emmanuel Urquieta, chief medical officer of TRISH, joins the Houston Innovators Podcast. Photo via LinkedIn

Houston innovator on the importance of commercial missions for the future of space health research

HOUSTON INNOVATORS PODCAST EPISODE 189

With the rise of commercial space flight, researchers have increased access to space health data that's key to the future of the industry as a whole. The organization that's conducting this valuable research is based right in Houston's Texas Medical Center.

TRISH, or the Translational Research Institute for Space Health, is an organization based out of Baylor College of Medicine and partnered with NASA's Human Spaceflight group. As commercial space companies have emerged, TRISH has strategically aligned with these businesses to bring back health data from the civilian trips.

“Most of the research that’s done at NASA and other government agencies usually takes decades to get something that could be implemented in space or terrestrially," Dr. Emmanuel Urquieta, chief medical officer for TRISH, says on the Houston Innovators Podcast. "What we do at TRISH is something different.

"On the one hand, we look at really new technologies that are just an idea, but could be really game changing," he continues. "Then on the other hand, we look at technologies already in the market that could be tweaked to work in spaceflight.”

Since 2021, TRISH has conducted its research on four missions — Inspiration4, the first all-civilian mission to space; Axiom Mission 1, the first all civilian mission to the International Space Station; MS20, which flew two Japanese civilians to ISS; and, most recently, Axiom Mission 2, which included the first all-private crew commanded by a woman and two members of the Kingdom of Saudi Arabia's national astronaut program.

“We really saw the value of implementing research in civilians because they are different from your traditional government astronaut,” Urquieta says. “In civilians, you see a more diverse population.”

Urquieta says TRISH's experiments on these missions all fall within a few pillars of space health, including space's effects on sensory motor skills, like balance and motion sickness, as well as mental health, environmental data from the vehicles, vital monitoring, and more.

“We’ve developed a capability to collect high-priority, high-value data from these space flight participants without having to train them for long periods of time — which is a challenge, because they don’t train for years like traditional astronauts,” he explains.

The plan, Urquieta says, is to be able to share TRISH's space health data in order to more safely send humans into space. He shares more about TRISH's program and the challenges the organization faces on the show. Listen to the interview below — or wherever you stream your podcasts — and subscribe for weekly episodes.

A new partnership on Earth will help navigate the future of space health. Photo via NASA

Houston space research nonprofit announces new international agreement

partnership launch

Houston's Translational Research Institute for Space Health, or TRISH, has entered into an agreement with the Korea National Institute of Health to collaborate on research and discovery relating to space health.

According to a release, the organizations aim to uncover health findings that can assist in NASA's upcoming Artemis missions, as well as have Earth-bound impacts. The agreement is a Memorandum of Understanding which states that both organizations will "develop fruitful areas of cooperation for space health."

TRISH — which is affiliated with Baylor College of Medicine — and KNIH plan to collaborate on research related to mental health issues due to space travel, the challenges of food supply in deep space, the negative effects of space radiation and en-suite medical care for long-duration space travel.

“As in space, there should be no borders or boundaries to scientific discovery that benefits humankind,” Dorit Donoviel, associate professor in the Center for Space Medicine at Baylor and executive director TRISH said in a statement. “With this agreement, we will work together with the KNIH to collaborate and foster meaningful discussion with the ambition of keeping humans healthy in space and on Earth.”

TRISH announced last month that it will launch six experiments into space aboard Axiom Space's Ax-2 mission in consortium with CalTeach and MIT, which was originally targeted to launch this month.

TRISH is also slated to launch nine experiments on board SpaceX's Polaris Dawn mission, which is now expected to launch in September.

Some of the information found from these missions will become part of TRISH’s Enhancing eXploration Platforms and ANalog Definition, or EXPAND, program, which aims to boost human health on commercial space flights through its database. The program launched in 2021.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

New Houston biotech co. developing capsules for hard-to-treat tumors

biotech breakthroughs

Houston company Sentinel BioTherapeutics has made promising headway in cancer immunotherapy for patients who don’t respond positively to more traditional treatments. New biotech venture creation studio RBL LLC (pronounced “rebel”) recently debuted the company at the 2025 American Society of Clinical Oncology (ASCO) Annual Meeting in Chicago.

Rima Chakrabarti is a neurologist by training. Though she says she’s “passionate about treating the brain,” her greatest fervor currently lies in leading Sentinel as its CEO. Sentinel is RBL’s first clinical venture, and Chakrabarti also serves as cofounder and managing partner of the venture studio.

The team sees an opportunity to use cytokine interleukin-2 (IL-2) capsules to fight many solid tumors for which immunotherapy hasn't been effective in the past. “We plan to develop a pipeline of drugs that way,” Chakrabarti says.

This may all sound brand-new, but Sentinel’s research goes back years to the work of Omid Veiseh, director of the Rice Biotechnology Launch Pad (RBLP). Through another, now-defunct company called Avenge Bio, Veiseh and Paul Wotton — also with RBLP and now RBL’s CEO and chairman of Sentinel — invested close to $45 million in capital toward their promising discovery.

From preclinical data on studies in mice, Avenge was able to manufacture its platform focused on ovarian cancer treatments and test it on 14 human patients. “That's essentially opened the door to understanding the clinical efficacy of this drug as well as it's brought this to the attention of the FDA, such that now we're able to continue that conversation,” says Chakrabarti. She emphasizes the point that Avenge’s demise was not due to the science, but to the company's unsuccessful outsourcing to a Massachusetts management team.

“They hadn't analyzed a lot of the data that we got access to upon the acquisition,” explains Chakrabarti. “When we analyzed the data, we saw this dose-dependent immune activation, very specific upregulation of checkpoints on T cells. We came to understand how effective this agent could be as an immune priming agent in a way that Avenge Bio hadn't been developing this drug.”

Chakrabarti says that Sentinel’s phase II trials are coming soon. They’ll continue their previous work with ovarian cancer, but Chakrabarti says that she also believes that the IL-2 capsules will be effective in the treatment of endometrial cancer. There’s also potential for people with other cancers located in the peritoneal cavity, such as colorectal cancer, gastrointestinal cancer and even primary peritoneal carcinomatosis.

“We're delivering these capsules into the peritoneal cavity and seeing both the safety as well as the immune activation,” Chakrabarti says. “We're seeing that up-regulation of the checkpoint that I mentioned. We're seeing a strong safety signal. This drug was very well-tolerated by patients where IL-2 has always had a challenge in being a well-tolerated drug.”

When phase II will take place is up to the success of Sentinel’s fundraising push. What we do know is that it will be led by Amir Jazaeri at MD Anderson Cancer Center. Part of the goal this summer is also to create an automated cell manufacturing process and prove that Sentinel can store its product long-term.

“This isn’t just another cell therapy,” Chakrabarti says.

"Sentinel's cytokine factory platform is the breakthrough technology that we believe has the potential to define the next era of cancer treatment," adds Wotton.

How Houston's innovation sector fared in 2025 Texas legislative session

That's a Wrap

The Greater Houston Partnership is touting a number of victories during the recently concluded Texas legislative session that will or could benefit the Houston area. They range from billions of dollars for dementia research to millions of dollars for energy projects.

“These wins were only possible through deep collaboration, among our coalition partners, elected officials, business and community leaders, and the engaged members of the Partnership,” according to a partnership blog post. “Together, we’ve demonstrated how a united voice for Houston helps drive results that benefit all Texans.”

In terms of business innovation, legislators carved out $715 million for nuclear, semiconductor, and other economic development projects, and a potential $1 billion pool of tax incentives through 2029 to support research-and-development projects. The partnership said these investments “position Houston and Texas for long-term growth.”

Dementia institute

One of the biggest legislative wins cited by the Greater Houston Partnership was passage of legislation sponsored by Sen. Joan Huffman, a Houston Republican, to provide $3 billion in funding over 10 years for the Dementia Prevention and Research Institute of Texas. Voters will be asked in November to vote on a ballot initiative that would set aside $3 billion for the new institute.

The dementia institute would be structured much like the Cancer Prevention and Research Institute of Texas (CPRIT), a state agency that provides funding for cancer research in the Lone Star State. Since its founding in 2008, CPRIT has awarded nearly $3.9 billion in research grants.

“By establishing the Dementia Prevention and Research Institute of Texas, we are positioning our state to lead the charge against one of the most devastating health challenges of our time,” Huffman said. “With $3 billion in funding over the next decade, we will drive critical research, develop new strategies for prevention and treatment, and support our healthcare community. Now, it’s up to voters to ensure this initiative moves forward.”

More than 500,000 Texans suffer from some form of dementia, including Alzheimer’s disease, according to Lt. Gov. Dan Patrick.

“With a steadfast commitment, Texas has the potential to become a world leader in combating [dementia] through the search for effective treatments and, ultimately, a cure,” Patrick said.

Funding for education

In the K-12 sector, lawmakers earmarked an extra $195 million for Houston ISD, $126.7 million for Cypress-Fairbanks ISD, $103.1 million for Katy ISD, $80.6 million for Fort Bend ISD, and $61 million for Aldine ISD, the partnership said.

In higher education, legislators allocated:

     
  • $1.17 billion for the University of Houston College of Medicine, University of Texas Health Science Center at Houston, UT MD Anderson Cancer Center, and Baylor College of Medicine
  • $922 million for the University of Houston System
  • $167 million for Texas Southern University
  • $10 million for the Center for Biotechnology at San Jacinto College.

Infrastructure

In the infrastructure arena, state lawmakers:

     
  • Approved $265 million for Houston-area water and flood mitigation projects, including $100 million for the Lynchburg Pump Station
  • Created the Lake Houston Dredging and Maintenance District
  • Established a fund for the Gulf Coast Protection District to supply $550 million for projects to make the coastline and ship channel more resilient

"Nuclear power renaissance"

House Bill 14 (HB 14) aims to lead a “nuclear power renaissance in the United States,” according to Texas Gov. Greg Abbott’s office. HB 14 establishes the Texas Advanced Nuclear Energy Office, and allocates $350 million for nuclear development and deployment. Two nuclear power plants currently operate in Texas, generating 10 percent of the energy that feeds the Electric Reliability Council Texas (ERCOT) power grid.

“This initiative will also strengthen Texas’ nuclear manufacturing capacity, rebuild a domestic fuel cycle supply chain, and train the future nuclear workforce,” Abbott said in a news release earlier this year.

One of the beneficiaries of Texas’ nuclear push could be Washington, D.C.-based Last Energy, which plans to build 30 micro-nuclear reactors near Abilene to serve power-gobbling data centers across the state. Houston-based Pelican Energy Partners also might be able to take advantage of the legislation after raising a $450 million fund to invest in companies that supply nuclear energy services and equipment.

Reed Clay, president of the Texas Nuclear Alliance, called this legislation “the most important nuclear development program of any state.”

“It is a giant leap forward for Texas and the United States, whose nuclear program was all but dead for decades,” said Clay. “With the passage of HB 14 and associated legislation, Texas is now positioned to lead a nuclear renaissance that is rightly seen as imperative for the energy security and national security of the United States.”

---

A version of this article first appeared on EnergyCapitalHTX.com.

Microsoft partners with Rice University's OpenStax on AI teaching tool

group project

Rice University’s OpenStax and Microsoft are partnering to integrate the nonprofit’s content with the tech giant’s AI innovation, known as Learning Zone.

“At OpenStax, our mission is to make an amazing education accessible to all,” Richard G. Baraniuk, founder and director of OpenStax, said in a news release. “That’s why we’re excited to integrate our trustworthy, peer-reviewed content with Microsoft’s AI technology through the Microsoft Learning Zone. Together, we aim to help more instructors and their students access engaging, effective learning experiences in new and dynamic ways. We also share a strong commitment to the thoughtful and responsible application of AI to better ensure all learners can succeed.”

OpenStax is a provider of affordable instructional technologies and is also one of the world’s largest publishers of open educational resources (OER).

Microsoft Learning Zone promises to provide educators and students with “responsible AI technology and peer-reviewed educational content to support learning” on Microsoft Copilot+ PCs. Microsoft Learning Zone works by utilizing on-device AI to generate interactive lessons for students, and its integration with OpenStax content means educators can rely on OpenStax’s digital library of 80 openly licensed titles.

The goal is for educators to create effective and engaging learning experiences safely, thereby bypassing the need to source and vet content independently. Included is a library of ready-to-use lessons, opportunity for immediate feedback and differentiated learning. Educators will maintain control of instructional content and pedagogical strategies and will be able to update or edit lessons or activities prior to sharing them with students.

Other tools included in the Microsoft Learning Zone are additional languages, reading coaching, public speaking help, math and reading progress, and a partnership with the online quiz platform Kahoot!

OpenStax resources have been reported as used across 153 countries, and this current collaboration combines the power and potential of responsible AI usage in education with content that has been utilized by 13,569 K-12 schools and 71 percent of U.S. colleges and universities, according to Rice.

“Through our partnership with OpenStax, we’re combining the power of on-device AI in Copilot+ PCs with OpenStax’s trusted and diverse peer-reviewed content to help educators quickly create high-quality, personalized, engaging lessons,” Deirdre Quarnstrom, vice president of Microsoft Education, added in the news release. “We’re excited about how this collaboration will empower classrooms globally.”