If Houston wants to maintain its title as Space City, it needs to channel the innovation of its history as space exploration moves forward. Pexels

Space has captured the imagination of mankind since we first looked up at the night sky. We've reached out to touch the stars, and now endeavor to inhabit them.

Earlier this month, a prominent collection of experts on space health attended the first Space Health Innovation Conference co-hosted by the University of California, San Francisco, and Houston-based Translational Research Institute for Space Health.

As NASA eyes a return to the moon with the Artemis Program, attendees of the Space Health Innovation Conference advanced a national discussion of human space exploration by seeking to manage the many health risks associated with humans during space flight. The event included NASA leadership, innovative companies, commercial space vendors, as well as leaders from the space health and life sciences communities.

The conference's goal is to inform, inspire and invite participation in the exciting challenge of optimizing health and medical management in space environments.

With its headquarters in Houston, TRISH partnered with the Human Research Program at Johnson Space Center to source and seed the best emerging health technologies to support NASA's space exploration. TRISH is based out of the Center for Space Medicine at Baylor College of Medicine and is a consortium that includes the rich space pedigree of the Massachusetts Institute of Technology and the California Institute of Technology. The Space Health Innovation Conference is the result of a grant by TRISH to UCSF. TRISH has also hosted Space Health focused events at the MIT Media lab and at Caltech.

TRISH's main charge is finding disruptive health technologies and new scientists to fuel the US Space Program. TRISH explores emerging areas of science that support health and human performance in the harsh environment of microgravity and high radiation. TRISH funds novel research in artificial intelligence, omics, human computer interfaces, behavioral health and beyond. Projects all share one goal: predicting and protecting future Mars explorers. And NASA leadership encourages TRISH to take the risks that could mean huge leaps forward.

Innovation and risk tolerance are hallmarks of Houston and its rich history. From the city's humble origins, to Jesse Jones's national financial leadership, to the building of the Houston Ship Channel, and to the explosion of the energy industry, Houston has always dared to leap forward. President John F. Kennedy's iconic speech entitled "Address at Rice University on the Nation's Space Effort" declared the US ambition to embrace the new frontier of space and conquer the moon. Humble Oil donated the 1,620 acres for JSC to Rice University, who then sold the land to NASA for $20. (Humble Oil would later become Exxon Mobil.)

JSC housed flight control, space flight training, and the NASA Astronaut Corps. JSC gave Houston the nickname "Space City", which led to the naming of the local NBA team to be the Rockets and the local MLB team to be the Astros. JSC's support for the astronaut corps began with the Lunar Receiving Laboratory, which evaluated the Apollo astronauts upon return to Earth. And the Christopher C Kraft Mission Control facility has directed all crewed space flights since the early Gemini program. An American flag flies atop Mission Control at JSC every day that an American is in space. That flag has flown continuously since November 2, 2000.

Nearly two decades since Bill Shepherd first boarded the International Space Station, the conversation around supporting human health and performance in space continues. And Houston will continue to lead the way for all our sakes, in space and on terra firma.

------

James Hury is the deputy director and chief innovation officer at Houston-based Translational Research Institute for Space Health.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Axiom Space-tested cancer drug advances to clinical trials

mission critical

A cancer-fighting drug tested aboard several Axiom Space missions is moving forward to clinical trials.

Rebecsinib, which targets a cancer cloning and immune evasion gene, ADAR1, has received FDA approval to enter clinical trials under active Investigational New Drug (IND) status, according to a news release. The drug was tested aboard Axiom Mission 2 (Ax-2) and Axiom Mission 3 (Ax-3). It was developed by Aspera Biomedicine, led by Dr. Catriona Jamieson, director of the UC San Diego Sanford Stem Cell Institute (SSCI).

The San Diego-based Aspera team and Houston-based Axiom partnered to allow Rebecsinib to be tested in microgravity. Tumors have been shown to grow more rapidly in microgravity and even mimic how aggressive cancers can develop in patients.

“In terms of tumor growth, we see a doubling in growth of these little mini-tumors in just 10 days,” Jamieson explained in the release.

Rebecsinib took part in the patient-derived tumor organoid testing aboard the International Space Station. Similar testing is planned to continue on Axiom Station, the company's commercial space station that's currently under development.

Additionally, the drug will be tested aboard Ax-4 under its active IND status, which was targeted to launch June 25.

“We anticipate that this monumental mission will inform the expanded development of the first ADAR1 inhibitory cancer stem cell targeting drug for a broad array of cancers," Jamieson added.

According to Axiom, the milestone represents the potential for commercial space collaborations.

“We’re proud to work with Aspera Biomedicines and the UC San Diego Sanford Stem Cell Institute, as together we have achieved a historic milestone, and we’re even more excited for what’s to come,” Tejpaul Bhatia, the new CEO of Axiom Space, said in the release. “This is how we crack the code of the space economy – uniting public and private partners to turn microgravity into a launchpad for breakthroughs.”

Chevron enters the lithium market with major Texas land acquisition

to market

Chevron U.S.A., a subsidiary of Houston-based energy company Chevron, has taken its first big step toward establishing a commercial-scale lithium business.

Chevron acquired leaseholds totaling about 125,000 acres in Northeast Texas and southwest Arkansas from TerraVolta Resources and East Texas Natural Resources. The acreage contains a high amount of lithium, which Chevron plans to extract from brines produced from the subsurface.

Lithium-ion batteries are used in an array of technologies, such as smartwatches, e-bikes, pacemakers, and batteries for electric vehicles, according to Chevron. The International Energy Agency estimates lithium demand could grow more than 400 percent by 2040.

“This acquisition represents a strategic investment to support energy manufacturing and expand U.S.-based critical mineral supplies,” Jeff Gustavson, president of Chevron New Energies, said in a news release. “Establishing domestic and resilient lithium supply chains is essential not only to maintaining U.S. energy leadership but also to meeting the growing demand from customers.”

Rania Yacoub, corporate business development manager at Chevron New Energies, said that amid heightening demand, lithium is “one of the world’s most sought-after natural resources.”

“Chevron is looking to help meet that demand and drive U.S. energy competitiveness by sourcing lithium domestically,” Yacoub said.

---

This article originally appeared on EnergyCapital.