NASA has awarded KBR a five-year, $2.5 billion Human Health and Performance Contract. Photo courtesy NASA.

Houston-based technology and energy solution company KBR has been awarded a $2.5 billion NASA contract to support astronaut health and reduce risks during spaceflight missions.

Under the terms of the Human Health and Performance Contract 2, KBR will provide support services for several programs, including the Human Research Program, International Space Station Program, Commercial Crew Program, Artemis campaign and others. This will include ensuring crew health, safety, and performance; occupational health services and risk mitigation research for future flights.

“This contract reinforces KBR’s leadership in human spaceflight operations and highlights our expertise in supporting NASA’s vision for space exploration,” Mark Kavanaugh, KBR president of defense, intel and space, said in a news release.

The five-year contract will begin Nov. 1 with possible extension option periods that could last through 2035. The total estimated value of the base period plus the optional periods is $3.6 billion, and the majority of the work will be done at NASA’s Johnson Space Center.

“We’re proud to support NASA’s critical work on long-duration space travel, including the Artemis missions, while contributing to solutions that will help humans live and thrive beyond Earth,” Kavanaugh adde in the news release.

Recently, KBR and Axiom Space completed three successful crewed underwater tests of the Axiom Extravehicular Mobility Unit (AxEMU) at NASA's Neutral Buoyancy Laboratory (NBL) at Johnson Space Center. The tests were part of an effort to help both companies work to support NASA's return to the Moon, according to a release.

KBR also landed at No. 3 in a list of Texas businesses on Time and Statista’s new ranking of the country’s best midsize companies.

Barrios Technology has secured a two-year contract with NASA. Photo via Getty Images.

Houston tech company secures $450M NASA contract

space deal

NASA’s Johnson Space Center awarded Houston-based aerospace technology and engineering services company Barrios Technology the Mission Technical Integration Contract (MTIC).

The two-year contract is worth $450 million and will begin Oct. 1, 2025.

Barrios will provide technical and management support to some of NASA’s human spaceflight programs, which include the Orion and Gateway programs, the International Space Station (ISS) and possibly more human spaceflight initiatives.

The contract represents a continuation of Barrios’ Human Space Flight Technical Integration Contract (HSFTIC), which has been in effect since 2020.

“We are incredibly proud to have been selected by NASA to continue working side by side with them in shaping the future of human space exploration,” Kelly Page, president of Barrios Technology, said in a news release.

The contract also includes support for program, business, configuration and data management, information technology, systems engineering and integration, mission integration, safety and mission assurance, and operations according to Barrios.

Barrios will be supported by subcontractors ARES Technical Services Corp., Booz Allen Hamilton, Intuitive Machines, Summit Technologies & Solutions, and TechTrans International (TTI).

“This award is a testament to the passion, hard work, and extraordinary value that our Barrios family brings every single day,” Page added in the release. “This is not just another contract award—it is the continuation of a generational commitment to our NASA customers and their critical missions.”

Arrow Science and Technology will team up with Quantum Space on a NASA-backed orbital transfer vehicle study. Photo via arrowscitech.com.

NASA taps Houston-area company to explore low-cost spacecraft delivery

Webster-based Arrow Science and Technology is one of six companies picked by NASA to study low-cost ways to launch and deliver spacecraft for difficult-to-reach orbits.

In all, nine studies will be performed under a roughly $1.4 million award from NASA. Another Texas company, Cedar Park-based Firefly Aerospace, is also among the six companies working on the studies.

“With the increasing maturity of commercial space delivery capabilities, we’re asking companies to demonstrate how they can meet NASA’s need for multispacecraft and multiorbit delivery to difficult-to-reach orbits beyond current launch service offerings,” Joe Dant, a leader of the Launch Services Program at NASA’s Kennedy Space Center in Florida, said in a news release. “This will increase unique science capability and lower the agency’s overall mission costs.”

Arrow is teaming up with Rockville, Maryland-based Quantum Space for its study. Quantum’s Ranger orbital transfer vehicle provides payload delivery services for spacecraft heading to low-Earth and lunar orbits.

Arrow, a Native American-owned small business, offers technical support and hardware manufacturing services for the space and defense industries.

James Baker, founder and president of Arrow, said in a news release that the combination of his company’s deployment systems with Quantum’s Ranger vehicle “allows our customers the ability to focus on the development of their payload[s] while we take care of getting them where they need to be.”

“This is an exciting opportunity to demonstrate the unique capabilities of our highly maneuverable Ranger spacecraft, which will expand NASA’s options for reaching dynamic and challenging … orbits,” Kerry Wisnosky, CEO of Quantum Space, added in the release.

The nine studies are scheduled to be completed by mid-September.

NASA said it will use the studies’ findings “to inform mission design, planning, and commercial launch acquisition strategies for risk-tolerant payloads, with a possibility of expanding delivery services to larger-sized payloads and to less risk-tolerant missions in the future.”

Houston startups were recently named among the nearly 300 recipients that received a portion of $44.85 million from NASA to develop space technology. Photo via NASA/Ben Smegelsky

Houston startups win NASA funding for space tech projects

fresh funding

Three Houston startups were granted awards from NASA this month to develop new technologies for the space agency.

The companies are among nearly 300 recipients that received a total agency investment of $44.85 million through the Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Phase I grant programs, according to NASA.

Each selected company will receive $150,000 and, based on their progress, will be eligible to submit proposals for up to $850,000 in Phase II funding to develop prototypes.

The SBIR program lasts for six months and contracts small businesses. The Houston NASA 2025 SBIR awardees include:

Solidec Inc.

  • Principal investigator: Yang Xia
  • Proposal: Highly reliable and energy-efficient electrosynthesis of high-purity hydrogen peroxide from air and water in a nanobubble facilitated porous solid electrolyte reactor

Rarefied Studios LLC

  • Principal investigator: Kyle Higdon
  • Proposal: Plume impingement module for autonomous proximity operations

The STTR program contracts small businesses in partnership with a research institution and lasts for 13 months. The Houston NASA 2025 STTR awardees include:

Affekta LLC

  • Principal investigator: Hedinn Steingrimsson
  • Proposal: Verifiable success in handling unknown unknowns in space habitat simulations and a cyber-physical system

Solidec and Affekta have ties to Rice University.

Solidec extracts molecules from water and air, then transforms them into pure chemicals and fuels that are free of carbon emissions. It was co-founded by Rice professor Haotian Wang and and was an Innovation Fellow at Rice’s Liu Idea Lab for Innovation and Entrepreneurship. It was previouslt selected for Chevron Technology Ventures’ catalyst program, a Rice One Small Step grant, a U.S. Department of Energy grant, and the first cohort of the Activate Houston program.

Affekta, an AI course, AI assistance and e-learning platform, was a part of Rice's OwlSpark in 2023.

Houston-based METECS and two local subcontractors will develop simulation and software services for NASA space vehicle models, robotics and more. Photo via metecs.com.

Houston space companies land $150M NASA contract for vehicles and robots

space simulations

Houston-based MacLean Engineering and Applied Technology Services LLC, known as METECS, has received a five-year contract from NASA to develop simulations and software services for space-based vehicles and robots, with a maximum value of $150 million.

Two other Houston-area companies, Tietronix Software Inc. and Vedo Systems LLC, were assigned as subcontractors for the award.

"This award is a strong testament to NASA’s continued trust in the quality of our work and their confidence in our ongoing support of the human spaceflight program," John MacLean, president of METECS said in a release.

According to NASA, the awardees are tasked with providing:

  • Simulation and software services for space-based vehicle models and robotic manipulator systems
  • Human biomechanical representations for analysis and development of countermeasure devices
  • Guidance, navigation, and control of space-based vehicles for all flight phases
  • Space-based vehicle on-board computer systems simulations of flight software systems
  • Astronomical object surface interaction simulation of space-based vehicles
  • Graphics support for simulation visualization and engineering analysis
  • Ground-based and onboarding systems to support human-in-the-loop training

The contract is called Simulations and Advanced Software Services II (SASS II), and begins in October. This is the second time METECS has received the SASS award. The first also ran for five years and launched in 2020, according to USASpending.gov.

METECS specializes in simulation, software, robotics and systems analysis. It has previously supported NASA programs, including Orion, EHP, HLS, Lunar Gateway and Artemis. It also serves the energy, agriculture, education and construction sectors.

Tietronix Software has won numerous awards from NASA. Most recently, it won the NASA JSC Exceptional Software Award (2017). Some of its other customers include Houston Independent School District, Baylor College of Medicine, DARPA and Houston Methodist.

Video Systems offers software for implementing human-rated, AI and autonomous systems, as well as engineering services to address the needs of spaceflight and defense. The company has previously worked with NASA and METECS, as well as Axiom Space and defense contractor Lockheed Martin.

The three companies are headquartered near NASA’s Johnson Space Center in Houston.

A team of Rice University students won the Best Challenge Response Award at the 2025 TCC Wearables Workshop and University Challenge. Photo courtesy Rice.

Houston students develop new device to prepare astronauts for outer space

space race

Rice University students from the George R. Brown School of Engineering and Computing designed a space exercise harness that is comfortable, responsive, and adaptable and has the potential to assist with complex and demanding spacewalks.

A group of students—Emily Yao, Nikhil Ashri, Jose Noriega, Ben Bridges and graduate student Jack Kalicak—mentored by assistant professor of mechanical engineering Vanessa Sanchez, modernized harnesses that astronauts use to perform rigorous exercises. The harnesses are particularly important in preparing astronauts for a reduced-gravity space environment, where human muscles and bones atrophy faster than they do on Earth. However, traditional versions of the harnesses had many limitations that included chafing and bruising.

The new harnesses include sensors for astronauts to customize their workouts by using real-time data and feedback. An additional two sensors measure astronauts’ comfort and exercise performance based on temperature and humidity changes during exercise and load distribution at common pressure points.

“Our student-led team addressed this issue by adding pneumatic padding that offers a customized fit, distributes pressure over a large surface area to reduce discomfort or injuries and also seamlessly adapts to load shifts — all of which together improved astronauts’ performance,” Sanchez said in a news release. “It was very fulfilling to watch these young engineers work together to find innovative and tangible solutions to real-world problems … This innovative adjustable exercise harness transforms how astronauts exercise in space and will significantly improve their health and safety during spaceflights.”

The project was developed in response to a challenge posted by the HumanWorks Lab and Life Science Labs at NASA and NASA Johnson Space Center for the 2025 Technology Collaboration Center’s (TCC) Wearables Workshop and University Challenge, where teams worked to solve problems for industry leaders.

Rice’s adaptive harness won the Best Challenge Response Award. It was funded by the National Science Foundation and Rice’s Office of Undergraduate Research and Inquiry.

“This challenge gave us the freedom to innovate and explore possibilities beyond the current harness technology,” Yao added in the release. “I’m especially proud of how our team worked together to build a working prototype that not only has real-world impact but also provides a foundation that NASA and space companies can build and iterate upon.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston team develops low-cost device to treat infants with life-threatening birth defect

infant innovation

A team of engineers and pediatric surgeons led by Rice University’s Rice360 Institute for Global Health Technologies has developed a cost-effective treatment for infants born with gastroschisis, a congenital condition in which intestines and other organs are developed outside of the body.

The condition can be life-threatening in economically disadvantaged regions without access to equipment.

The Rice-developed device, known as SimpleSilo, is “simple, low-cost and locally manufacturable,” according to the university. It consists of a saline bag, oxygen tubing and a commercially available heat sealer, while mimicking the function of commercial silo bags, which are used in high-income countries to protect exposed organs and gently return them into the abdominal cavity gradually.

Generally, a single-use bag can cost between $200 and $300. The alternatives that exist lack structure and require surgical sewing. This is where the SimpleSilo comes in.

“We focused on keeping the design as simple and functional as possible, while still being affordable,” Vanshika Jhonsa said in a news release. “Our hope is that health care providers around the world can adapt the SimpleSilo to their local supplies and specific needs.”

The study was published in the Journal of Pediatric Surgery, and Jhonsa, its first author, also won the 2023 American Pediatric Surgical Association Innovation Award for the project. She is a recent Rice alumna and is currently a medical student at UTHealth Houston.

Bindi Naik-Mathuria, a pediatric surgeon at UTMB Health, served as the corresponding author of the study. Rice undergraduates Shreya Jindal and Shriya Shah, along with Mary Seifu Tirfie, a current Rice360 Global Health Fellow, also worked on the project.

In laboratory tests, the device demonstrated a fluid leakage rate of just 0.02 milliliters per hour, which is comparable to commercial silo bags, and it withstood repeated disinfection while maintaining its structure. In a simulated in vitro test using cow intestines and a mock abdominal wall, SimpleSilo achieved a 50 percent reduction of the intestines into the simulated cavity over three days, also matching the performance of commercial silo bags. The team plans to conduct a formal clinical trial in East Africa.

“Gastroschisis has one of the biggest survival gaps from high-resource settings to low-resource settings, but it doesn’t have to be this way,” Meaghan Bond, lecturer and senior design engineer at Rice360, added in the news release. “We believe the SimpleSilo can help close the survival gap by making treatment accessible and affordable, even in resource-limited settings.”

Oxy's $1.3B Texas carbon capture facility on track to​ launch this year

gearing up

Houston-based Occidental Petroleum is gearing up to start removing CO2 from the atmosphere at its $1.3 billion direct air capture (DAC) project in the Midland-Odessa area.

Vicki Hollub, president and CEO of Occidental, said during the company’s recent second-quarter earnings call that the Stratos project — being developed by carbon capture and sequestration subsidiary 1PointFive — is on track to begin capturing CO2 later this year.

“We are immensely proud of the achievements to date and the exceptional record of safety performance as we advance towards commercial startup,” Hollub said of Stratos.

Carbon dioxide captured by Stratos will be stored underground or be used for enhanced oil recovery.

Oxy says Stratos is the world’s largest DAC facility. It’s designed to pull 500,000 metric tons of carbon dioxide from the air and either store it underground or use it for enhanced oil recovery. Enhanced oil recovery extracts oil from unproductive reservoirs.

Most of the carbon credits that’ll be generated by Stratos through 2030 have already been sold to organizations such as Airbus, AT&T, All Nippon Airways, Amazon, the Houston Astros, the Houston Texans, JPMorgan, Microsoft, Palo Alto Networks and TD Bank.

The infrastructure business of investment manager BlackRock has pumped $550 million into Stratos through a joint venture with 1PointFive.

As it gears up to kick off operations at Stratos, Occidental is also in talks with XRG, the energy investment arm of the United Arab Emirates-owned Abu Dhabi National Oil Co., to form a joint venture for the development of a DAC facility in South Texas. Occidental has been awarded up to $650 million from the U.S. Department of Energy to build the South Texas DAC hub.

The South Texas project, to be located on the storied King Ranch, will be close to industrial facilities and energy infrastructure along the Gulf Coast. Initially, the roughly 165-square-mile site is expected to capture 500,000 metric tons of carbon dioxide per year, with the potential to store up to 3 billion metric tons of CO2 per year.

“We believe that carbon capture and DAC, in particular, will be instrumental in shaping the future energy landscape,” Hollub said.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.