seeing green

University of Houston team places in prestigious DOE collegiate challenge

Students from the University of Houston are celebrating a win at a national competition focused on carbon innovation. Photo via UH.edu

A team of students from the University of Houston have placed in the top three teams for a national competition for the Department of Energy.

The inaugural American-Made Carbon Management Collegiate Competition, hosted by the U.S. Department of Energy's Office of Fossil Energy and Carbon Management, or FECM, tasked the student teams with "proposing regional carbon networks capable of transporting at least one million metric tons of carbon dioxide per year from industrial sources," according to a news release from DOE.

“With this competition, DOE hopes to inspire the next generation of carbon management professionals to develop carbon dioxide transport infrastructure that will help drive technological innovation and emissions reductions, new regional economic development, and high-wage employment for communities across the United States,” Brad Crabtree, assistant secretary of fossil energy and carbon management at DOE, says in the release.

GreenHouston, the University of Houston team mentored by Assistant Professor Jian Shi from the UH Cullen College of Engineering, took third place in the competition, securing a $5,000 cash prize. Sequestration Squad of University of Michigan secured first place and $12,000 and Biggest Little Lithium of the University of Nevada won second and a $8,000 prize.

The UH team's proposal was for an optimized carbon dioxide transportation pipeline for the Houston area. The presentation included cost analysis, revenue potential, safety considerations, weather hazards, and social impact on neighboring communities, according to a release from UH.

“We chose the greater Houston metropolitan area as our target transition area because it is a global hub of the hydrocarbon energy industry,” says Fatemeh Kalantari, team leader, in the release.

“Our team was committed to delivering an optimized and cost-effective carbon dioxide transfer plan in the Houston area, with a focus on safety, environmental justice, and social engagement,” she continues. “Our goal is to ensure the health and safety of the diverse population residing in Houston by mitigating the harmful effects of carbon dioxide emissions from refineries and industries in the area, thus avoiding environmental toxicity.”

With the third place win, GreenHouston will get to present their proposal at DOE’s annual Carbon Management Research Project Review Meeting slated for August.

"We are thrilled to see the exceptional work and dedication displayed by the GreenHouston team in this competition," said Ramanan Krishnamoorti, vice president of energy and innovation at UH. "The team’s innovative proposal exemplifies UH’s commitment to addressing the pressing global issue of carbon management and advancing sustainable practices. We wish the students continued success."

The team included four Cullen College of Engineering doctoral students from the Department of Electrical and Computer Engineering – Kalantari, Massiagbe Diabate, Steven Chen, and Simon Peter Nsah Abongmbo – and one student, Bethel O. Mbakaogu, pursuing his master’s degree in supply chain and logistics technology.

The prize money will go toward funding additional research, refining existing technologies, addressing remaining challenges and raising awareness of CCUS and its project, according to the release, as the team feels a responsibility to continue to work on the GreenHouston project.

“The energy landscape by 2050 will be characterized by reduced greenhouse gas emissions, cleaner air quality, and a more sustainable environment,” Kalantari says. “The transition to green energy will not only mitigate the harmful effects of carbon dioxide on climate change but also create new jobs, promote economic growth, and enhance energy security. This is important, and we want to be part of it.”

The team of students plans to continue to work on the GreenHouston project.

Trending News

 
 

Promoted

A research team housed out of the newly launched Rice Biotech Launch Pad received funding to scale tech that could slash cancer deaths in half. Photo via Rice University

A research funding agency has deployed capital into a team at Rice University that's working to develop a technology that could cut cancer-related deaths in half.

Rice researchers received $45 million from the National Institutes of Health's Advanced Research Projects Agency for Health, or ARPA-H, to scale up development of a sense-and-respond implant technology. Rice bioengineer Omid Veiseh leads the team developing the technology as principal investigator.

“Instead of tethering patients to hospital beds, IV bags and external monitors, we’ll use a minimally invasive procedure to implant a small device that continuously monitors their cancer and adjusts their immunotherapy dose in real time,” he says in a news release. “This kind of ‘closed-loop therapy’ has been used for managing diabetes, where you have a glucose monitor that continuously talks to an insulin pump. But for cancer immunotherapy, it’s revolutionary.”

Joining Veiseh on the 19-person research project named THOR, which stands for “targeted hybrid oncotherapeutic regulation,” is Amir Jazaeri, co-PI and professor of gynecologic oncology at the University of Texas MD Anderson Cancer Center. The device they are developing is called HAMMR, or hybrid advanced molecular manufacturing regulator.

“Cancer cells are continually evolving and adapting to therapy. However, currently available diagnostic tools, including radiologic tests, blood assays and biopsies, provide very infrequent and limited snapshots of this dynamic process," Jazaeri adds. "As a result, today’s therapies treat cancer as if it were a static disease. We believe THOR could transform the status quo by providing real-time data from the tumor environment that can in turn guide more effective and tumor-informed novel therapies.”

With a national team of engineers, physicians, and experts across synthetic biology, materials science, immunology, oncology, and more, the team will receive its funding through the Rice Biotech Launch Pad, a newly launched initiative led by Veiseh that exists to help life-saving medical innovation scale quickly.

"Rice is proud to be the recipient of the second major funding award from the ARPA-H, a new funding agency established last year to support research that catalyzes health breakthroughs," Rice President Reginald DesRoches says. "The research Rice bioengineer Omid Veiseh is doing in leading this team is truly groundbreaking and could potentially save hundreds of thousands of lives each year. This is the type of research that makes a significant impact on the world.”

The initial focus of the technology will be on ovarian cancer, and this funding agreement includes a first-phase clinical trial of HAMMR for the treatment of recurrent ovarian cancer that's expected to take place in the fourth year of THOR’s multi-year project.

“The technology is broadly applicable for peritoneal cancers that affect the pancreas, liver, lungs and other organs,” Veiseh says. “The first clinical trial will focus on refractory recurrent ovarian cancer, and the benefit of that is that we have an ongoing trial for ovarian cancer with our encapsulated cytokine ‘drug factory’ technology. We'll be able to build on that experience. We have already demonstrated a unique model to go from concept to clinical trial within five years, and HAMMR is the next iteration of that approach.”

Trending News

 
 

Promoted