Students from the University of Houston are celebrating a win at a national competition focused on carbon innovation. Photo via UH.edu

A team of students from the University of Houston have placed in the top three teams for a national competition for the Department of Energy.

The inaugural American-Made Carbon Management Collegiate Competition, hosted by the U.S. Department of Energy's Office of Fossil Energy and Carbon Management, or FECM, tasked the student teams with "proposing regional carbon networks capable of transporting at least one million metric tons of carbon dioxide per year from industrial sources," according to a news release from DOE.

“With this competition, DOE hopes to inspire the next generation of carbon management professionals to develop carbon dioxide transport infrastructure that will help drive technological innovation and emissions reductions, new regional economic development, and high-wage employment for communities across the United States,” Brad Crabtree, assistant secretary of fossil energy and carbon management at DOE, says in the release.

GreenHouston, the University of Houston team mentored by Assistant Professor Jian Shi from the UH Cullen College of Engineering, took third place in the competition, securing a $5,000 cash prize. Sequestration Squad of University of Michigan secured first place and $12,000 and Biggest Little Lithium of the University of Nevada won second and a $8,000 prize.

The UH team's proposal was for an optimized carbon dioxide transportation pipeline for the Houston area. The presentation included cost analysis, revenue potential, safety considerations, weather hazards, and social impact on neighboring communities, according to a release from UH.

“We chose the greater Houston metropolitan area as our target transition area because it is a global hub of the hydrocarbon energy industry,” says Fatemeh Kalantari, team leader, in the release.

“Our team was committed to delivering an optimized and cost-effective carbon dioxide transfer plan in the Houston area, with a focus on safety, environmental justice, and social engagement,” she continues. “Our goal is to ensure the health and safety of the diverse population residing in Houston by mitigating the harmful effects of carbon dioxide emissions from refineries and industries in the area, thus avoiding environmental toxicity.”

With the third place win, GreenHouston will get to present their proposal at DOE’s annual Carbon Management Research Project Review Meeting slated for August.

"We are thrilled to see the exceptional work and dedication displayed by the GreenHouston team in this competition," said Ramanan Krishnamoorti, vice president of energy and innovation at UH. "The team’s innovative proposal exemplifies UH’s commitment to addressing the pressing global issue of carbon management and advancing sustainable practices. We wish the students continued success."

The team included four Cullen College of Engineering doctoral students from the Department of Electrical and Computer Engineering – Kalantari, Massiagbe Diabate, Steven Chen, and Simon Peter Nsah Abongmbo – and one student, Bethel O. Mbakaogu, pursuing his master’s degree in supply chain and logistics technology.

The prize money will go toward funding additional research, refining existing technologies, addressing remaining challenges and raising awareness of CCUS and its project, according to the release, as the team feels a responsibility to continue to work on the GreenHouston project.

“The energy landscape by 2050 will be characterized by reduced greenhouse gas emissions, cleaner air quality, and a more sustainable environment,” Kalantari says. “The transition to green energy will not only mitigate the harmful effects of carbon dioxide on climate change but also create new jobs, promote economic growth, and enhance energy security. This is important, and we want to be part of it.”

The team of students plans to continue to work on the GreenHouston project.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University lands $18M to revolutionize lymphatic disease detection

fresh funding

An arm of the U.S. Department of Health and Human Services has awarded $18 million to scientists at Rice University for research that has the potential to revolutionize how lymphatic diseases are detected and help increase survivability.

The lymphatic system is the network of vessels all over the body that help eliminate waste, absorb fat and maintain fluid balance. Diseases in this system are often difficult to detect early due to the small size of the vessels and the invasiveness of biopsy testing. Though survival rates of lymph disease have skyrocketed in the United States over the last five years, it still claims around 200,000 people in the country annually.

Early detection of complex lymphatic anomalies (CLAs) and lymphedema is essential in increasing successful treatment rates. That’s where Rice University’s SynthX Center, directed by Han Xiao and Lei Li, an assistant professor of electrical and computer engineering, comes in.

Aided by researchers from Texas Children’s Hospital, Baylor College of Medicine, the University of Texas at Dallas and the University of Texas Southwestern Medical Center, the center is pioneering two technologies: the Visual Imaging System for Tracing and Analyzing Lymphatics with Photoacoustics (VISTA-LYMPH) and Digital Plasmonic Nanobubble Detection for Protein (DIAMOND-P).

Simply put, VISTA-LYMPH uses photoacoustic tomography (PAT), a combination of light and sound, to more accurately map the tiny vessels of the lymphatic system. The process is more effective than diagnostic tools that use only light or sound, independent of one another. The research award is through the Advanced Research Projects Agency for Health (ARPA-H) Lymphatic Imaging, Genomics and pHenotyping Technologies (LIGHT) program, part of the U.S. HHS, which saw the potential of VISTA-LYMPH in animal tests that produced finely detailed diagnostic maps.

“Thanks to ARPA-H’s award, we will build the most advanced PAT system to image the body’s lymphatic network with unprecedented resolution and speed, enabling earlier and more accurate diagnosis,” Li said in a news release.

Meanwhile, DIAMOND-P could replace the older, less exact immunoassay. It uses laser-heated vapors of plasmonic nanoparticles to detect viruses without having to separate or amplify, and at room temperature, greatly simplifying the process. This is an important part of greater diagnosis because even with VISTA-LYMPH’s greater imaging accuracy, many lymphatic diseases still do not appear. Detecting biological markers is still necessary.

According to Rice, the efforts will help address lymphatic disorders, including Gorham-Stout disease, kaposiform lymphangiomatosis and generalized lymphatic anomaly. They also could help manage conditions associated with lymphatic dysfunction, including cancer metastasis, cardiovascular disease and neurodegeneration.

“By validating VISTA-LYMPH and DIAMOND-P in both preclinical and clinical settings, the team aims to establish a comprehensive diagnostic pipeline for lymphatic diseases and potentially beyond,” Xiao added in the release.

The ARPA-H award funds the project for up to five years.

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.