Rice University's athletic programs will be supported by Houston startup BeOne Sports' technology. Photo courtesy of Rice University

Rice University — in an effort to enhance athletics and research-driven innovation — has formed a partnership with a startup founded by its alumni.

BeOne Sports, a sports performance technology company developed a platform for mobile motion-capture AI and advanced data analytics, will integrate its technology within Rice's sports medicine and rehabilitation programs.

“This partnership aligns perfectly with Rice University’s mission to harness innovation for the betterment of our community,” Rice President Reginald DesRoches says in a news release. “By integrating cutting-edge technology from BeOne Sports with our already world-class athletic and academic programs, we are providing our student athletes with the tools they need to excel both on the field and in life. This collaboration is a testament to Rice’s commitment to leading through innovation and offering unparalleled opportunities for our students.”

Rice MBA alumni Scott Deans and Jason Bell founded the company alongside former Rice student-athlete James McNaney. BeOne's “Comparative Training” technology uses artificial intelligence and computer vision technology to support elite-level training, per the Rice release.

“BeOne Sports was born from the collaborative environment at Rice, where business leaders and engineers work together to solve real-world problems” Deans, who serves as CEO of BeOne Sports, adds. “We’re thrilled to continue that journey with Rice Athletics as we build the world’s first human recognition models specifically designed for sports performance and beyond. Our mission is to provide cutting-edge technology to maximize potential in the simplest, fastest and most versatile ways possible. This partnership with Rice is an exciting step toward democratizing access to sports technology for athletes and coaches at all levels.”

Tommy McClelland, vice president and director of athletics, says the new technology will allow enhanced athlete monitoring that will contribute to rehabilitation and injury prevention.

“At Rice Athletics, we are always striving to be at the forefront of innovation, and our partnership with BeOne Sports exemplifies that commitment,” he says. “By leveraging their state-of-the-art AI technology and data analytics, we can elevate how we support and develop our athletes — ensuring they are healthier, stronger and better prepared to succeed both athletically and academically. We’re excited about how this collaboration will position Rice as a leader in athlete care and performance.”

Additionally, the partnership will create academic and professional development opportunities for students, faculty, and other Rice community members, something that Rice's Office of Innovation seeks to offer in its continuing dedication to fostering an ecosystem of innovation, says Paul Cherukuri, Rice’s chief innovation officer.

“BeOne Sports exemplifies the innovative spirit we champion at Rice, where entrepreneurship and engineering excellence converge,” he says. “As a startup founded by former Rice MBA students and athletes in collaboration with our computer science engineers, BeOne reflects Rice’s dedication to cultivating talent and driving transformative change. This partnership showcases how our innovation ecosystem is expanding beyond business into athletics, creating new opportunities that benefit both our students and the world at large.”

This year, Rice University's NRLC started with 100 student venture teams before being whittled down to the final five at the championship. Photo courtesy of Rice

Rice University's student startup competition names 2024 winners, awards $100,000 in prizes

taking home the W

A group of Rice University student-founded companies shared $100,000 of cash prizes at an annual startup competition.

Liu Idea Lab for Innovation and Entrepreneurship's H. Albert Napier Rice Launch Challenge, hosted by Rice earlier this month, named its winners for 2024. HEXASpec, a company that's created a new material to improve heat management for the semiconductor industry, won the top prize and $50,000 cash.

Founded by Rice Ph.D. candidates Tianshu Zhai and Chen-Yang Lin, who are a part of Lilie’s 2024 Innovation Fellows program, HEXASpec is improving efficiency and sustainability within the semiconductor industry, which usually consumes millions of gallons of water used to cool data centers. According to Rice's news release, HEXASpec's "next-generation chip packaging offer 20 times higher thermal conductivity and improved protection performance, cooling the chips faster and reducing the operational surface temperature."

The rest of the winners included:

  • Second place and $25,000: CoFlux Purification
  • Third place and $15,000: Bonfire
  • Outstanding Achievement in Social Impact Award and $1,500: EmpowerU
  • Outstanding Achievement in Artificial Intelligence and $1,000: Sups and Levytation
  • Outstanding Achievement in Consumer Goods Prize and $1,000: The Blind Bag
  • Frank Liu Jr. Prize for Creative Innovations in Music, Fashion and the Arts and $1,500: Melody
  • Outstanding Achievement in Climate Solutions Prizes and $1,000: Solidec and HEXASpec
  • Outstanding Undergraduate Startup Award and $2,500: Women’s Wave
  • Audience Choice Award and $2,000: CoFlux Purification

The NRLC, open to Rice students, is Lilie's hallmark event. Last year's winner was fashion tech startup, Goldie.

“We are the home of everything entrepreneurship, innovation and research commercialization for the entire Rice student, faculty and alumni communities,” Kyle Judah, executive director at Lilie, says in a news release. “We’re a place for you to immerse yourself in a problem you care about, to experiment, to try and fail and keep trying and trying and trying again amongst a community of fellow rebels, coloring outside the lines of convention."

This year, the competition started with 100 student venture teams before being whittled down to the final five at the championship. The program is supported by Lilie’s mentor team, Frank Liu and the Liu Family Foundation, Rice Business, Rice’s Office of Innovation, and other donors

“The heart and soul of what we’re doing to really take it to the next level with entrepreneurship here at Rice is this fantastic team,” Peter Rodriguez, dean of Rice Business, adds. “And they’re doing an outstanding job every year, reaching further, bringing in more students. My understanding is we had more than 100 teams submit applications. It’s an extraordinarily high number. It tells you a lot about what we have at Rice and what this team has been cooking and making happen here at Rice for a long, long time.”

HEXASpec was founded by Rice Ph.D. candidates Tianshu Zhai and Chen-Yang Lin, who are a part of Lilie’s 2024 Innovation Fellows program. Photo courtesy of Rice

The $2.5 million in NSF funding will allow Rice to increase the number of students in the Rice Emerging Scholars Program. Photo via rice.edu

Houston university lands $2.5M grant to expand STEM scholarship program for underserved communities

evolving inclusivity

Rice University will expand its Rice Emerging Scholars Program (RESP) over the next two years thanks to a recent grant from the National Science Foundation.

The $2.5 million in NSF funding will allow Rice to increase the number of scholars the RESP offers from 40 to 50 students this summer and to 60 students in 2025. The program works to address disparities among first-year students and to "assist students in adapting to the challenging pace, depth and rigor of the STEM curricula at Rice" through a six-week summer bridge program and ongoing mentorship, according to a statement from the university. Summer tuition scholarships, housing subsidies and research stipends are also provided.

Rice estimates that roughly 20 percent of its undergraduate population comes from families with limited financial resources, and 12 percent of students are the first in their families to attend college.

“Low-income students, especially those who are first-generation, face unique obstructions to pursuing college STEM degrees,” said Senior associate provost Matthew Taylor, a co-principal investigator on the grant. “RESP and Rice University are committed to eliminating these obstructions and ensuring that all students have the opportunity to thrive and achieve their academic and professional aspirations.”

Taylor created the program with Professor Emeritus of Mathematics Mike Wolf in 2012. It has since worked with more than 400 RESP scholars, according to the program's website. Most (about 79 percent) graduate with STEM degrees and an overwhelming 90 percent of RESP scholars graduate in four years, according to recent data.

“Rice recognizes the challenges faced by students from low-income backgrounds,” Angel Martí, chair and professor of chemistry, faculty director of RESP and principal investigator of the grant, said in a statement. “RESP aims to empower these students to achieve their academic and professional aspirations as future scientists and engineers.”

Earlier this year, the NSF also awarded Rice assistant professor Amanda Marciel $670,406 through its highly competitive CAREER Awards to continue her research in designing branch elastomers.

Marciel was also named to the 2024 cohort of Rice Innovation Fellows through the university's Office of Innovation and The Liu Idea Lab for Innovation and Entrepreneurship (or Lilie). The group includes 10 Ph.D. and postdoctoral students who aim to translate research into real-world startups.
Four Rice University lab-stage innovations are receiving fresh funding to get them closer to commercialization. Photo courtesy of Rice University

Rice names inaugural recipients of new grant program that's doling out $360,000

Four Houston research projects are splitting hundreds of thousands of dollars in grant funding from Rice University.

After announcing the One Small Step Grant program in September to support Rice-developed, lab-stage innovations, the university has named its inaugural recipients. After receiving nearly 30 applicants, four research projects were selected to share $360,000 in grant funding.

“Being able to fund near-commercial projects represents a leap forward in our mission of supporting the cutting-edge work of our faculty and students and helping bring those to market,” Adrian Trömel, assistant vice president for strategy and investments, says in a news release. “Feedback from industry and investors show that they’re excited on how the One Small Step grants help derisk these technologies, getting them ready to launch. Watch this space for the next generation of leading deeptech companies.”

The selected projects include:

  • PerisBio, developed by Samira Aglhara Fotovat and Samantha Fleury from Rice Professor Omid Veiseh's Lab, focuses on novel, hydrogel-encapsulated engineered "cell factories" for the minimally invasive treatment of endometriosis. The project received a $100,000 award.
  • Solidec, founded by Ryan Duchanois and Yang Xia from Rice Professor Haotian Wang's Lab, is a room temperature, solid-state direct air capture technology. The project received a $100,000 award.
  • HornetX, led by Rice Professor Aditya Mohite's Lab, aims to produce highly stable green hydrogen using a perovskite-based photoelectrochemical cell with leading efficiency. The project received a $80,000 award.
  • Coflux, developed by Jeremy Daum and Alec Ajnsztajn from the labs of Rice Professors Rafael Verduzco and Pulickel Ajayan, focuses on covalent organic framework-based photocatalysts for instream remediation of PFAS (per- and polyfluoroalkyl substances) from water. The project received a $80,000 award.

The Office of Innovation created an investment advisory committee — made up of entrepreneurs, investors and corporate executives across industries — to select these recipients. The grant program was funded by the Office of Innovation, with support from Breakthrough Energy Fellows for climate and energy projects

“The inaugural winners of the One Small Step Grant represent the innovative spirit and dedication to excellence that defines our students and faculty," Rice Chief Innovation Officer Paul Cherukuri says. "We are proud to support these groundbreaking projects on their journey from lab to market."

Rice University is in the process of restructuring operations at the Ion. Photo courtesy of the Ion

Houston innovation hub restructures, pulls in more Rice resources

cha-cha-changes

Rice University is leaning in on the Ion by restructuring the innovation hub's team and increasing the university's presence at the hub.

Paul Cherukuri, vice president for innovation, tells InnovationMap that the changes being made at the Ion — Rice's Midtown innovation hub — are a reflection of Rice President Reginald DesRoches's vision for the hub and for the university as a leader of innovation.

"We're embracing the community even further by what we've done with this restructuring," Cherukuri says. "The restructuring is really a result of Reggie's vision of us wanting to move forward with helping the community to grow innovation across Houston, throughout Texas, if not the world."

He adds that the university is "putting resources from Rice Alliance and amping up what's happening at the Ion."

Earlier this month, Rice announced that Brad Burke, executive director of the Rice Alliance for Technology and Entrepreneurship, has been named associate vice president for industry and new ventures reporting to Cherukuri's Office of Innovation.

Cherukuri confirms that the Rice Alliance will take over programming at the Ion, and that he too will have an increased presence at the hub. The restructuring includes elimination of positions at the Ion; however, Rice declined to comment on matters of personnel.

"We have members of the Ion staff who are going to be integrated to the Rice Alliance," Cherukuri says. "The direction of this is really so that we can no longer stay behind the hedges and do more for the Houston community."

Cherukuri says the university has already made a concerted effort on this, and soon will deliver on the Rice Nexus, a hub within the Ion for showcasing and connecting Rice innovation. Additionally, Rice announced last month that it's partnering with Woodside Energy, which committed $12.5 million over the next five years to create the Woodside Rice Decarbonization Accelerator.

Last year, Cherukuri joined the Houston Innovators Podcast to expound upon his vision for the Ion in his role as the inaugural vice president for innovation, which he was named to in 2022.


For the third year, Rice University has tapped 10 Rice Innovation Fellows working in engineering and materials science fields to support. Photo via rice.edu

10 Houston scientists named to fellowship for turning research into businesses

top of class

Rice University has announced its latest cohort of fellows who aim to translate research into real-world startups.

The 2024 cohort of Rice Innovation Fellows is the third of its kind since the university's Office of Innovation and The Liu Idea Lab for Innovation and Entrepreneurship (or Lilie) launched the program in 2022. The group includes 10 Ph.D. and postdoctoral students working in engineering and materials science fields.

The program provides personalized mentorship and up to $20,000 equity-free funding.

According to Lilie, the 10 members of the 2024 cohort are:

  • Barclay Jumet, a Ph.D. candidate in the department of mechanical engineering, working under Dan Preston and specializing in mechanics, thermal systems and wearable technologies. InnovationMap covered his recent technology here.
  • Tianshu Zhai, a Ph.D. student studying materials science specializing in hexagonal boron nitride-based thermal interface materials
  • Zachary Kingston, a postdoctoral research associate and lab manager for the Kavraki Lab in the Computer Science department at Rice, working under the direction of Dr. Lydia Kavraki, a pioneer in the field of robot motion planning. Kingston is developing a novel approach to high-performance, low-cost robot motion planning with Wil Thomason.
  • Soobin Cho, a Ph.D. student and co-founder of Duromem, which created the Dual-Role Electrically Conductive Membrane to improve existing water treatment systems
  • Sara Abouelniaj, a Ph.D. candidate in Material Science and Nanoengineering and founder of Graphene Grids LLC, which is exploring opportunities to diversify its range of grid types services offered
  • Alisha Menon, is founding a medical device startup that's developing wireless, AI-enabled patient monitoring devices for babies in the NICU. Her work is being done in collaboration with the Texas Medical Center and Rice, with support from NSF and the Southwest Pediatric Device Consortium.
  • Wil Thomason, a CRA Computing Innovation postdoctoral fellow in the Kavraki Lab at Rice University who is developing low-cost robot motion planning with Kingston
  • Jeremy Daum, a Ph.D. candidate at Rice in the Materials Science department working on a a novel production method to create photocatalysts
  • Jonathan Montes, a Ph.D. candidate in Bioengineering focused on combating neurodegenerative diseases with highly selective neuromodulation
  • Andrew (AJ) Walters, a Ph.D. student in Bioengineering working in the labs of Dr. Caleb Bashor (Rice) and Dr. Scott Olson (UTHealth Houston McGovern Medical School) who's building an accessible allogeneic cell therapy to treat inflammation disorders and potentially cancer. He was awarded a three-year NSF Graduate Research Fellowship in 2022.

Over the last three years, Innovation Fellows have brought in more than $6 million in funding for their ventures, according to Rice.

Last year, the cohort of 10 included doctoral and postdoctoral students working in fields from bioengineering and chemistry to civil and environmental engineering.

Late last year, Lilie also announced its new entrepreneurship council known as Lilie’s Leadership Council. The group is made up of 11 successful business leaders with ties to Houston from the likes of co-founder Frank Liu to former Houston Mayor Annise Parker and several other CEOs and board members of successful companies. The council members agreed to donate time and money to the university’s entrepreneurship programs.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas university to lead new FAA tech center focused on drones

taking flight

The Texas A&M University System will run the Federal Aviation Administration’s new Center for Advanced Aviation Technologies, which will focus on innovations like commercial drones.

“Texas is the perfect place for our new Center for Advanced Aviation Technologies,” U.S. Transportation Secretary Sean Duffy said in a release. “From drones delivering your packages to powered lift technologies like air taxis, we are at the cusp of an aviation revolution. The [center] will ensure we make that dream a reality and unleash American innovation safely.”

U.S. Sen. Ted Cruz, a Texas Republican, included creation of the center in the FAA Reauthorization Act of 2024. The center will consist of an airspace laboratory, flight demonstration zones, and testing corridors.

Texas A&M University-Corpus Christi will lead the initiative, testing unstaffed aircraft systems and other advanced technologies. The Corpus Christi campus houses the Autonomy Research Institute, an FAA-designated test site. The new center will be at Texas A&M University-Fort Worth.

The College Station-based Texas A&M system says the center will “bring together” its 19 institutions, along with partners such as the University of North Texas in Denton and Southern Methodist University in University Park.

According to a Department of Transportation news release, the center will play “a pivotal role” in ensuring the safe operation of advanced aviation technologies in public airspace.

The Department of Transportation says it chose the Texas A&M system to manage the new center because of its:

  • Proximity to major international airports and the FAA’s regional headquarters in Fort Worth
  • Existing infrastructure for testing of advanced aviation technologies
  • Strong academic programs and industry partnerships

“I’m confident this new research and testing center will help the private sector create thousands of high-paying jobs and grow the Texas economy through billions in new investments,” Cruz said.

“This is a significant win for Texas that will impact communities across our state,” the senator added, “and I will continue to pursue policies that create new jobs, and ensure the Lone Star State continues to lead the way in innovation and the manufacturing of emerging aviation technologies.”

Texas Republicans are pushing to move NASA headquarters to Houston

space city

Two federal lawmakers from Texas are spearheading a campaign to relocate NASA’s headquarters from Washington, D.C., to the Johnson Space Center in Houston’s Clear Lake area. Houston faces competition on this front, though, as lawmakers from two other states are also vying for this NASA prize.

With NASA’s headquarters lease in D.C. set to end in 2028, U.S. Sen. Ted Cruz, a Texas Republican, and U.S. Rep. Brian Babin, a Republican whose congressional district includes the Johnson Space Center, recently wrote a letter to President Trump touting the Houston area as a prime location for NASA’s headquarters.

“A central location among NASA’s centers and the geographical center of the United States, Houston offers the ideal location for NASA to return to its core mission of space exploration and to do so at a substantially lower operating cost than in Washington, D.C.,” the letter states.

Cruz is chairman of the Senate Committee on Commerce, Science, and Transportation; and Babin is chairman of the House Committee on Science, Space, and Technology. Both committees deal with NASA matters. Twenty-five other federal lawmakers from Texas, all Republicans, signed the letter.

In the letter, legislators maintain that shifting NASA’s headquarters to the Houston area makes sense because “a seismic disconnect between NASA’s headquarters and its missions has opened the door to bureaucratic micromanagement and an erosion of [NASA] centers’ interdependence.”

Founded in 1961, the $1.5 billion, 1,620-acre Johnson Space Center hosts NASA’s mission control and astronaut training operations. More than 12,000 employees work at the 100-building complex.

According to the state comptroller, the center generates an annual economic impact of $4.7 billion for Texas, and directly and indirectly supports more than 52,000 public and private jobs.

In pitching the Johnson Space Center for NASA’s HQ, the letter points out that Texas is home to more than 2,000 aerospace, aviation, and defense-related companies. Among them are Elon Musk’s SpaceX, based in the newly established South Texas town of Starbase; Axiom Space and Intuitive Machines, both based in Houston; and Firefly Aerospace, based in the Austin suburb of Cedar Park.

The letter also notes the recent creation of the Texas Space Commission, which promotes innovation in the space and commercial aerospace sectors.

Furthermore, the letter cites Houston-area assets for NASA such as:

  • A strong business environment.
  • A low level of state government regulation.
  • A cost of living that’s half of what it is in the D.C. area.

“Moving the NASA headquarters to Texas will create more jobs, save taxpayer dollars, and reinvigorate America’s space agency,” the letter says.

Last November, NASA said it was hunting for about 375,000 to 525,000 square feet of office space in the D.C. area to house the agency’s headquarters workforce. About 2,500 people work at the agency’s main offices. NASA’s announcement set off a scramble among three states to lure the agency’s headquarters.

Aside from officials in Texas, politicians in Florida and Ohio are pressing NASA to move its headquarters to their states. Florida and Ohio both host major NASA facilities.

NASA might take a different approach, however. “NASA is weighing closing its headquarters and scattering responsibilities among the states, a move that has the potential to dilute its coordination and influence in Washington,” Politico reported in March.

Meanwhile, Congressional Delegate Eleanor Holmes Norton, a Democrat who represents D.C., introduced legislation in March that would prohibit relocating a federal agency’s headquarters (including NASA’s) away from the D.C. area without permission from Congress.

“Moving federal agencies is not about saving taxpayer money and will degrade the vital services provided to all Americans across the country,” Norton said in a news release. “In the 1990s, the Bureau of Land Management moved its wildfire staff out West, only to move them back when Congress demanded briefings on new wildfires.”

Houston research breakthrough could pave way for next-gen superconductors

Quantum Breakthrough

A study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.