Nexalin Technology is launching a Phase II clinical trial of its neurostimulation device for adult patients suffering from anxiety and insomnia. File image.

Houston-based Nexalin Technology’s proprietary neurostimulation device will move forward with a new clinical trial evaluating its treatment of anxiety disorders and chronic insomnia in Brazil.

The first of Nexalin’s Gen-2 15-milliamp neurostimulation devices have been shipped to São Paulo, Brazil, and the study will be conducted at the Instituto de Psiquiatria university hospital (IPq-HCFMUSP). The shipments aim to support the launch of a Phase II clinical trial in adult patients suffering from anxiety and insomnia, according to a news release.

“Brazil is an important emerging market for mental health innovation, and this collaboration marks our first IRB-approved study in the region,” Mike White, CEO of Nexalin, said in the release.

The study will be led by Dr. Andre Russowsky Brunoni, who specializes in neuromodulation and interventional psychiatry. He currently serves as director of the interventional psychiatry division at IPq-HCFMUSP and this summer will join UT Southwestern in Dallas and its Peter O’Donnell Jr. Brain Institute as a professor of psychiatry.

The Phase II study plans to enroll 30 adults in São Paulo and assess the efficacy of Nexalin’s non-invasive deep intracranial frequency stimulation (DIFS™) of the brain in reducing anxiety symptoms and improving sleep quality, according to the company. Using the Hamilton Anxiety Rating Scale (HAM-A), the trial’s goal is a reduction in anxiety symptoms, and assessments of sleep onset latency, total sleep time, overall sleep quality, depressive symptoms and clinical impression of improvement. The company plans to share results in a peer-reviewed scientific journal.

“Anxiety and insomnia are very common conditions that often occur together and cause significant distress,” Brunoni added in the news release. “In this study, we are testing a new, non-invasive brain stimulation technology that has shown promising results in recent research. Our goal is to offer a safe, painless, and accessible alternative to improve people’s well being and sleep quality.”

The Nexalin Gen-2 15-milliamp neurostimulation device has been approved in China, Brazil, and Oman.

The company also enrolled the first patients in its clinical trial at the University of California, San Diego, in collaboration with the VA San Diego Healthcare System for its Nexalin HALO, which looks to treat mild traumatic brain injury and post-traumatic stress disorder in military personnel and the civilian population. It also recently raised $5 million through a public stock offering. Read more here.

A new medical device created in Houston is revolutionizing opioid withdrawal treatment. Photo via sparkbiomedical.com

Houston med-tech companies partner on wearable device for opioid withdrawal

treating addiction

Houston-based Spark Biomedical has created a revolutionary wearable device that provides unprecedented levels of opioid withdrawal relief.

The device known as the Sparrow Therapy System is worn over the ear for five to seven days and sends mild electrical signals to trigger cranial nerves that sit near the skin's surface.

Once activated, the nerves release endorphins that the body has stopped producing on its own during opioid use. The endorphins satisfy the opioid receptors and in turn reduce or prevent the intense symptoms that often come along with opioid withdrawal. According to Spark BioMed CEO Daniel Powell, the technology also helps patients better control their "flight or fight mechanisms," allowing them to make clearer, more logical decisions as they come off of the drug.

"If you ask 100 people who've gone through opioid withdrawal, I would bet 99 of them will tell you they thought they were going to die," Powell says. "Giving them the ability to manage that is huge. It's the first step towards addiction recovery. It's not solving the addiction, but it is an absolute barrier to move forward."

The product was approved by the FDA in January of 2020, after clinical trials showed that the Sparrow could meaningfully reduce withdrawal symptoms in the first hour of use. According to Powell, roughly a third of patients in the trial were completely out of withdrawal and patients' Clinical Opioid Withdrawal Scales scores reduced by more than 53 percent across the board.

Spark, which won Venture Houston's inaugural pitch competition earlier this year, partnered with Houston-based Velentium (which also happened to grow 93 percent last year after partnering with General Motors on Project V) to bring the product from concept to commercial physician prescribed product. "We needed a more sophisticated design house to help us finish it," Powell says.

The up-and-comers were connected through one of Spark's investors. Powell, in a previous career, had also sold a neurostimulator that Velentium CTO Randy Armstrong had invented.

"You're seeing more and more Houston centric medical innovation than we've ever seen before," says Velentium CEO Dan Purvis. "And the cool thing about that is there ends up being a camaraderie amongst entrepreneurs, medical researchers and scientists."

And though the release of Sparrow marks a huge milestone, neither Spark of Velentium are stopping there. Moving forward, Spark aims to conduct a massive study on how a similar technology, dubbed the Roo, can aid infants born to opioid-dependent mothers wean from the drug.

The company also aims to create a next generation Sparrow with the help of Velentium, and will look at long-term uses of the product. Powell says that Spark will look to determine if the product can prevent relapses and help to cure addiction when worn daily or regularly.

"Our big, crazy, ambitious goal is can we actually help people recover from addiction," Powell says. "We're really not addressing psychology, that's going to be in cognitive behavioral therapy. But if we can remove the neurological results of drug use, we think we can make at least start to stack the deck in the favor of the patient versus having the deck stacked completely against them all the time."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston scientists develop breakthrough AI-driven process to design, decode genetic circuits

biotech breakthrough

Researchers at Rice University have developed an innovative process that uses artificial intelligence to better understand complex genetic circuits.

A study, published in the journal Nature, shows how the new technique, known as “Combining Long- and Short-range Sequencing to Investigate Genetic Complexity,” or CLASSIC, can generate and test millions of DNA designs at the same time, which, according to Rice.

The work was led by Rice’s Caleb Bashor, deputy director for the Rice Synthetic Biology Institute and member of the Ken Kennedy Institute. Bashor has been working with Kshitij Rai and Ronan O’Connell, co-first authors on the study, on the CLASSIC for over four years, according to a news release.

“Our work is the first demonstration that you can use AI for designing these circuits,” Bashor said in the release.

Genetic circuits program cells to perform specific functions. Finding the circuit that matches a desired function or performance "can be like looking for a needle in a haystack," Bashor explained. This work looked to find a solution to this long-standing challenge in synthetic biology.

First, the team developed a library of proof-of-concept genetic circuits. It then pooled the circuits and inserted them into human cells. Next, they used long-read and short-read DNA sequencing to create "a master map" that linked each circuit to how it performed.

The data was then used to train AI and machine learning models to analyze circuits and make accurate predictions for how untested circuits might perform.

“We end up with measurements for a lot of the possible designs but not all of them, and that is where building the (machine learning) model comes in,” O’Connell explained in the release. “We use the data to train a model that can understand this landscape and predict things we were not able to generate data on.”

Ultimately, the researchers believe the circuit characterization and AI-driven understanding can speed up synthetic biology, lead to faster development of biotechnology and potentially support more cell-based therapy breakthroughs by shedding new light on how gene circuits behave, according to Rice.

“We think AI/ML-driven design is the future of synthetic biology,” Bashor added in the release. “As we collect more data using CLASSIC, we can train more complex models to make predictions for how to design even more sophisticated and useful cellular biotechnology.”

The team at Rice also worked with Pankaj Mehta’s group in the department of physics at Boston University and Todd Treangen’s group in Rice’s computer science department. Research was supported by the National Institutes of Health, Office of Naval Research, the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation, the American Heart Association, National Library of Medicine, the National Science Foundation, Rice’s Ken Kennedy Institute and the Rice Institute of Synthetic Biology.

James Collins, a biomedical engineer at MIT who helped establish synthetic biology as a field, added that CLASSIC is a new, defining milestone.

“Twenty-five years ago, those early circuits showed that we could program living cells, but they were built one at a time, each requiring months of tuning,” said Collins, who was one of the inventors of the toggle switch. “Bashor and colleagues have now delivered a transformative leap: CLASSIC brings high-throughput engineering to gene circuit design, allowing exploration of combinatorial spaces that were previously out of reach. Their platform doesn’t just accelerate the design-build-test-learn cycle; it redefines its scale, marking a new era of data-driven synthetic biology.”

Axiom Space wins NASA contract for fifth private mission, lands $350M in financing

ready for takeoff

Editor's note: This story has been updated to include information about Axiom's recent funding.

Axiom Space, a Houston-based space infrastructure company that’s developing the first commercial space station, has forged a deal with NASA to carry out the fifth civilian-staffed mission to the International Space Station.

Axiom Mission 5 is scheduled to launch in January 2027, at the earliest, from NASA’s Kennedy Space Center in Florida. The crew of non-government astronauts is expected to spend up to 14 days docked at the International Space Station (ISS). Various science and research activities will take place during the mission.

The crew for the upcoming mission hasn’t been announced. Previous Axiom missions were commanded by retired NASA astronauts Michael López-Alegría, the company’s chief astronaut, and Peggy Whitson, the company’s vice president of human spaceflight.

“All four previous [Axiom] missions have expanded the global community of space explorers, diversifying scientific investigations in microgravity, and providing significant insight that is benefiting the development of our next-generation space station, Axiom Station,” Jonathan Cirtain, president and CEO of Axiom, said in a news release.

As part of Axiom’s new contract with NASA, Voyager Technologies will provide payload services for Axiom’s fifth mission. Voyager, a defense, national security, and space technology company, recently announced a four-year, $24.5 million contract with NASA’s Johnson Space Center in Houston to provide mission management services for the ISS.

Axiom also announced today, Feb. 12, that it has secured $350 million in a financing round led by Type One Ventures and Qatar Investment Authority.

The company shared in a news release that the funding will support the continued development of its commercial space station, known as Axiom Station, and the production of its Axiom Extravehicular Mobility Unit (AxEMU) under its NASA spacesuit contract.

NASA awarded Axiom a contract in January 2020 to create Axiom Station. The project is currently underway.

"Axiom Space isn’t just building hardware, it’s building the backbone of humanity’s next era in orbit," Tarek Waked, Founding General Partner at Type One Ventures, said in a news release. "Their rare combination of execution, government trust, and global partnerships positions them as the clear successor-architect for life after the ISS. This is how the United States continues to lead in space.”

Houston edtech company closes oversubscribed $3M seed round

fresh funding

Houston-based edtech company TrueLeap Inc. closed an oversubscribed seed round last month.

The $3.3 million round was led by Joe Swinbank Family Limited Partnership, a venture capital firm based in Houston. Gamper Ventures, another Houston firm, also participated with additional strategic partners.

TrueLeap reports that the funding will support the large-scale rollout of its "edge AI, integrated learning systems and last-mile broadband across underserved communities."

“The last mile is where most digital transformation efforts break down,” Sandip Bordoloi, CEO and president of TrueLeap, said in a news release. “TrueLeap was built to operate where bandwidth is limited, power is unreliable, and institutions need real systems—not pilots. This round allows us to scale infrastructure that actually works on the ground.”

True Leap works to address the digital divide in education through its AI-powered education, workforce systems and digital services that are designed for underserved and low-connectivity communities.

The company has created infrastructure in Africa, India and rural America. Just this week, it announced an agreement with the City of Kinshasa in the Democratic Republic of Congo to deploy a digital twin platform for its public education system that will allow provincial leaders to manage enrollment, staffing, infrastructure and performance with live data.

“What sets TrueLeap apart is their infrastructure mindset,” Joe Swinbank, General Partner at Joe Swinbank Family Limited Partnership, added in the news release. “They are building the physical and digital rails that allow entire ecosystems to function. The convergence of edge compute, connectivity, and services makes this a compelling global infrastructure opportunity.”

TrueLeap was founded by Bordoloi and Sunny Zhang and developed out of Born Global Ventures, a Houston venture studio focused on advancing immigrant-founded technology. It closed an oversubscribed pre-seed in 2024.