vetting ventilators

Houston company partners with General Motors, others to boost country’s ventilator supply

By September 1, Project V delivered its first order of 30,000 ventilators just 154 days after launching. Photo by AJ Mast for General Motors and Ventec

Houston-based Velentium played a key role in mobilizing thousands of ventilators in the United States at a time when the pandemic and the uncertainty around it was surmounting around the country.

The medical technology company primarily worked in code, software, and cloud-based programs up until March.

"Then we had this opportunity come up in COVID that changed everything for us," says CEO Dan Purvis.

On March 14, an article for Forbes referenced one of Velentium's long-time clients Ventec Life Systems, a manufacturer of ventilators based in Washington. In the article, their client said they could increase production of their much-needed ventilators five-fold if they only had the right resources and partners. Purvis quickly decided that he and his team at Velentium would be one of them.

Velentium first aimed to help the small factory double or triple their production.

"When we first joined the process we were just going to our client, which was a relatively young start up firm, to try to help them go from 120 to 250 [units]," Purvis says.

But then General Motors showed up. And the scale changed dramatically.

The automotive behemoth launched Project V, which would marry it's manufacturing prowess with the technical expertise of the technology and engineering companies to mass produce Ventec's VOCSN ventilator systems. By March 25, operations launched at GM's Kokomo, Indiana, powerhouse plant where they were to produce 10,000 ventilators per month in just about eight week's time.

Velentium was charged with creating 141 automated test stands to verify that every one of Project V's 10,000 units were up to FDA standards. The stands featured 27 unique test systems that monitored 14 critical subcomponents, like air flow in metering valves and oxygen blends, and ultimately approved a ventilator for use through two final tests.

"It's one thing to build [ventilators]," Purvis says. "You need to build them safely, accurately, and in a repeatable way that is going to help people. And that's what our test systems insured."

And though Velentium had created many of these systems before, they had never done so at this scale or speed. Success required around-the-clock work from the then-60-person firm and new risks, that today Purvis says were worth taking.

"I was like, 'If we really want this to work we have to jump on this like nobody's business,'" Purvis recalls. "We bought $2 million worth of parts for test systems essentially at risk. We had not gotten our negotiation with General Motors done yet. But there was no way I could wait an extra week if I had eight weeks to do it. It was kind of terrifying, but it was the right thing to do. It totally aligned with our culture of saving lives."

By September 1, Project V delivered its first order of 30,000 ventilators to the U.S. Department of Health and Human Services, just 154 days after launching.

Today, Velentium maintains a few team members at the Kokomo facility who run sustaining engineering. Throughout the project, Velentium added 60 team members to their staff and doubled down on manufacturing capabilities. They plan to double their production space again as they continue to place more emphasis on their manufacturing arm, which Purvis says opens up new opportunities for the firm that he hopes only continues to grow.

"One of the big goals for me as a strategic leader at the company was to make sure that pre-Project V to post-Project V the transformation that happened to our company through that period would not regress to where we were before," he says. "We had so much impact and so much growth through that time I didn't ever want to change."

He adds: "We asked the question over and over again during the first few weeks of the pandemic in March: Why not us? If I will continue to ask the question…we can accomplish major things."

Trending News

Building Houston

 
 

Houston-based Soliton can use its audio pulse technology to erase scars, cellulite, and tattoos. Photo via soliton.com

Soliton, a Houston-based technology company, is using audio pulses to make waves in the med-aesthetic industry.

The company, which is licensed from the University of Texas on behalf of MD Anderson, announced that it had received FDA approval earlier this month for its novel and proprietary technology that can reduce the appearance of cellulite.

MIT engineer and doctor Christopher Capelli first developed the basis of the tool while he led the Office of Technology Based Ventures at M.D. Anderson.

Capelli uncovered that he could remove tattoos more effectively by treating the skin with up to 100 waves per second (about five to 10 times greater than other devices on the market), giving birth to the company's proprietary Rapid Acoustic Pulse (RAP) platform.

In 2012 he formed Soliton with co-founder and entrepreneur Walter Klemp, who also founded Houston-based Moleculin, and later brought on Brad Hauser as CEO. By 2019, the company had received FDA approval for using the technology for tattoo removal.

"The original indication was tattoo removal, which is what Chris envisioned," Hauser says. "The sound wave can increase in speed whenever it hits a stiffer or denser material. And tattoo ink is denser, stiffer than the surrounding dermis. That allows a shearing effect of the sound wave to disrupt that tattoo ink and help clear tattoos."

According to Hauser, the team then turned to a second application for the technology in the short-term improvement in the appearance of cellulite. With the use of the technology, patients can undergo a relatively pain-free, 40- to 60-minute non-invasive session with no recovery time.

Brad Hauser is the CEO of Soliton. Photo courtesy of Soliton

"It works similarly in the fibrous septa, which are the tethered bands that create the dimples and cellulite and the uneven skin. Those are stiffer than the surrounding fat cells in the subcutaneous tissue," Hauser says. "That allows the technology to disrupt those fibrous septa and loosen and release the dimples."

In 2021 the company plans to commercialize their product and get it into the hands of dermatologists, plastic surgeons, and other medical professionals for 25 key accounts—potentially including ones Houston—with a plan for a national rollout in 2022.

And they don't plan to stop there.

The company has already announced a partnership for a proof-of-concept study with the U.S. Navy in which Soliton will aim to use its technology to reduce the visibility of fibrotic scars, and more importantly work to increase mobility or playability of scars.

"Often the scar ends up causing restrictions in motion and discomfort with pressure of even clothing and certainly with sleeping," Hauser says. "We believe based on the reduction in volume and the increase in playability that we saw in our original proof-of-concept study that we will be able to bring benefits to these military patients."

Work on the study is slated to begin in the first half of this year.

In the meantime, the company is making headway with treatment of liver fibrosis, announcing just this week that it's pre-clinical study in animals demonstrated positive results and a reduction in effects by 42 percent seven days after the completion of carbon tetrachloride (CCL4) induction. The RAP technology was also named the best new technology by the Aesthetic Industry Association earlier this month.

"It's really targeting collagen fiber and fibroblasts on a cellular level" Hauser says. "Which we think has numerous potential uses in the future."

Trending News