Houston-based Moleculin Biotech now has four different oncology treatment currently in trials. Getty Images

A Houston-based biotech company has wrapped up enrollment for its most recent clinical trial of its cancer-fighting drug.

Moleculin Biotech Inc. (Nasdaq: MBRX) has launched its fourth ongoing trial — this time focusing on Cutaneous T-Cell Lymphoma, or CTCL, treatment. The company's other three trials include treatment for glioblastoma, an aggressive brain cancer, pancreatic cancer, one of the most virulent killers in oncology, and acute myeloid leukemia, or AML.

To treat these various types of cancers, Moleculin has a several drugs it's in preclinical or clinical trials testing — most biotech companies have only one they focus on. WP1220 is the drug that will be used in this trial for topical CTCL treatment of the cancer's resulting skin lesions.

"We believe there continues to be an unmet need for an improved topical therapy for Stage I-III CTCL skin lesions," says Walter Klemp, Moleculin's chairman and CEO, in a news release, "especially one that may avoid significant unwanted side effects."

WP1220 is what's known as a p-STAT3 inhibitor. STAT3 is a transcription factor that encourages tumor development. Moleculin's technology directly attacks the tumor, but also quiets T Cells, which allows the body's own immune system to fight the cancer itself. Essentially, it works both as chemotherapy and immunotherapy.

"This proof of concept, if successful, could be an important first demonstration of a therapeutic effect in humans from such a p-STAT3 inhibitor," Klemp continues. "We are pleased with how quickly this trial reached full recruitment and we are hopeful to be able to announce results from this trial yet this year."

Klemp founded the company in 2007, and Moleculin went public in 2016. Now, with the company's four clinical trials, Moleculin is even closer to saving lives with its products.

"Notwithstanding the relatively rare nature of CTCL, we believe showing activity with one of our STAT3 inhibitors, within our WP1066 family of molecules, could be an indicator of both the value of p-STAT3 as a target and the potential for our drugs in other cancers where STAT3 is highly activated," Klemp says in the release.

With the Texas Medical Center in their backyard, these Houston biotech companies are creating breakthrough technologies. Getty Images

5 Houston biotech companies taking health care to new levels

The future is now

Houston is the home of the largest medical center in the world, so it comes as no surprise that the Bayou City is also home to breakthrough technologies. Here are five Houston companies developing some of this biotech advancements.

Moleculin Biotech Inc.

Houston-based Moleculin has three different oncology technologies currently in trials. Getty Images

Immunotherapy and personalized medicine get all the headlines lately, but in the fight against cancer, a natural compound created by bees could beat them in winning one battle.

In 2007, chairman and CEO Walter Klemp founded Moleculin Biotech Inc. as a private company. The former CPA had found success in life sciences with a company that sold devices for the treatment of acne. That introduction into the field of medical technology pushed him toward more profound issues than spotty skin.

"Coincidentally, the inventor of that technology had a brother who was a neuro-oncologist at MD Anderson," Klemp recalls.

The since-deceased Dr. Charles Conrad slowly lured Klemp into what he calls the "cancer ecosphere" of MD Anderson. In 2016, the company went public. And it looks like sooner rather than later, it could make major inroads against some of the toughest cancers to beat. Read the full story here.

Cavu Biotherapies

Dr. Colleen O'Connor has adapted immunotherapy treatments to be used in dogs. Courtesy of CAVU Biotherapies

Breakthrough biotech doesn't have to just be for humans. More than three years after its founding, Houston-based veterinary biotech company CAVU Biotherapies' had its first cancer patient: a black Labrador in Pennsylvania diagnosed with B-cell lymphoma.

Dr. Colleen O'Connor, CEO and founder of CAVU Biotherapies, established the company in July 2015 with a goal to help pets live longer post-cancer diagnoses. O'Connor, who earned a PhD in toxicology with a specialty in immunology, has more than a decade of hands-on experience researching cancer treatments.

"Our goal is to scale up and be able to increase our dogs' qualities of life with us," O'Connor said. "We want to keep families intact longer and we want to be able to modernize cancer care for our animals." Read the full story here.

Innovative Biochips

iBiochips, led by founder Lidong Qin, was awarded a $1.5 million grant in September to help develop a new technology that delivers data about the cell's genetic makeup and reports abnormalities. Courtesy of Lidong Qin

Innovative Biochips, a Houston-based biotechnology company, is one step closer to commercializing technology that the company hopes will provide an opportunity for researchers to detect diseases earlier.

The company was founded three years ago by Dr. Lidong Qin, a professor at the Houston Methodist Research Institute's department of nanomedicine. He launched iBiochips as an independent faculty startup that licensed technology from Houston Methodist. Qin says he wanted to engineer and manufacture devices that focus on revolutionizing single-cell isolation and genetic analysis. Read the full story here.

Celltex

Celltex's stem cell technology has received positive results from its multiple sclerosis, Parkinson's, and rheumatoid arthritis patients. Courtesy of Celltex

A Houston stem cell company is making strides in regenerative medicine. Celltex's treatment has been proved effective with its patients. Eighty-three percent of multiple sclerosis patients have reported improvement of symptoms specific to their disease, as have 73 percent of Parkinson's sufferers. But the staggering fact is that 100 percent of 58 respondents with rheumatoid arthritis say they have benefited.

David Eller, chairman, co-founder and CEO of the company, also recently announced the company's expansion to Saudi Arabia. Read the full story here.

Ridgeline Therapeutics

Houston-based Ridgeline Therapeutics isn't going to allow you beat aging, but someday it may well help you to live without muscle loss or diabetes. Getty Images

Stan Watowich pictures a world where elderly people have the same healthy muscles they had at a younger age. Watowich is CEO of Ridgeline Therapeutics, a spin-off company of the University of Texas Medical Branch in Galveston where he is an associate professor of biochemistry and molecular biology, and he wants to make it clear that he is not going to cure aging.

"You and I are still going to get old," he says. "But we have our hopes that as we get old our muscles will stay healthy."

He's talking about the drug candidate, RLT-72484. It has been shown to reactivate muscle stem cells and regenerate skeletal muscle in aged laboratory mice. Read the full story here.


From cryotherapy and NASA-inspired fitness to startup funding and biotech, this week's innovators to know are raising the bar on health tech and innovation. Courtesy photos

4 health-focused Houston innovators to know this week

Who's who

This week's innovators to know are focused on health and wellness, from a Houston-based cryotherapy franchise to the person behind funding medical device and digital health startups. We couldn't narrow these folks down to the usual three, so here are the four Houston innovators to know as we start the last week in February.

Juliana Garaizar, director of the Texas Medical Center Venture Fund

Courtesy of TMC

Juliana Garaizar has worked all around the world, and her international contacts and venture capital experience has landed her at the heart of the Texas Medical Center leading the TMC Venture Fund.

"I think TMC wants to be positioned as a strong competitor to the East and West Coasts as a point of entry for companies coming to the United States, but also for technology and commercializations from hospitals," she tells InnovationMap. "The fact that I'm already very connected to other countries — not only from the funding side but also from the research side, is really helpful."

Garaizar has her hands full running the $25 million nonprofit fund that invests around $2 million a year. Recipients, which all have a connection to TMC either through the accelerator or workspaces, receive a range between $250,000 to $500,000, and can go up to $1 million in a deal, Garaizar says. She is focused on securing deal flow for the fund before growing it more.

"In the long term, we would like to raise a bigger fun, around $100 million fund," she says. "We would need to make sure we have our deal flow ready for that, and a big part of that would be international deal flow."

Read more about Garaizar and the TMC Venture Fund here.

Walter Klemp, chairman and CEO of Moleculin

Courtesy of Moleculin

It's pretty concerning to Walter Klemp that, while Houston has the world's largest medical center, "the tragic irony" is that other cities have far more biotech money ready to be invested.

"The Third Coast is really starved for capital," he tells InnovationMap. "What drew me into this was I was one of the few entrepreneurs that lived here that knew the ropes in terms of tapping into East and West Coast capital structures and could make that connection for them."

In 2007, chairman and CEO Walter Klemp founded Moleculin Biotech Inc. as a private company. The company has three core technologies currently being tested with some success, but the most promising is called WP1066, which uses propolis, a compound of beeswax, sap and saliva that bees produce to seal small areas of their hives, as a base. The active compound both downregulates the STAT3, a long-time Holy Grail in the cancer research world, and directly attacking the tumor, but also quieting T Cells, which allows the body's own immune system to fight the cancer itself. Essentially, it works both as chemotherapy and immunotherapy.

Read more about Klemp and Moleculin here.

Jay Sutaria, founder and lead trainer of Sutaria Training & Fitness

Courtesy of ST&F

Earthbound Houstonians have a chance to use NASA training equipment thanks to Jay Sutaria's company, Sutaria Training & Fitness.

"It's exclusive access to the equipment that is not available openly in Houston," Sutaria tells InnovationMap. "NASA is a reference for us to become better trainers."

Sutaria founded his company in 2011 while he was a student at the University of Houston, and the company now operates with two trainers. His clients include professional athletes such as D.J. Augustin (Orlando Magic, NBA); and Tim Frazier (New Orleans Pelicans, NBA), however, Sutaria and his team offer professional personal training services to any type of athlete.

Read more about Sutaria and ST&F here.

Kyle Jones, COO of iCRYO

Courtesy of iCryo

Kyle Jones says he's always known he was destined for entrepreneurship, and when he came across the potential of cryotherapy while working at a physical therapist office, he knew it was a scalable business.

He opened his first location of iCRYO in League City in 2015. Now the company is

Jones says he used the location to work out the kinks of his business model, since he didn't really have much to model after. One thing that was most important to Jones, with his PT background, was safety of the patients. He cared about this more than making money, he says.

"I knew first and foremost the one thing that the cryotherapy space didn't have was a certification program, which is kind of terrifying to me," Jones tells InnovationMap. "Any therapy has some type of schooling or certification — massage therapy and acupuncture both have it. Cryotherapy even to date does not a certification to it."

Read more about Jones and iCRYO here.


Houston-based Moleculin has three different oncology technologies currently in trials. Getty Images

Houston biotech company aims to enhance oncology treatment of highly resistant cancers

Med tech

Immunotherapy and personalized medicine get all the headlines lately, but in the fight against cancer, a natural compound created by bees could beat them in winning one battle.

In 2007, chairman and CEO Walter Klemp founded Moleculin Biotech Inc. as a private company. The former CPA had found success in life sciences with a company that sold devices for the treatment of acne. That introduction into the field of medical technology pushed him toward more profound issues than spotty skin.

"Coincidentally, the inventor of that technology had a brother who was a neuro-oncologist at MD Anderson," Klemp recalls.

The since-deceased Dr. Charles Conrad slowly lured Klemp into what he calls the "cancer ecosphere" of MD Anderson. In 2016, the company went public. And it looks like sooner rather than later, it could make major inroads against some of the toughest cancers to beat.

Klemp observed that while Houston has the world's largest medical center, "the tragic irony" is that other cities have far more biotech money ready to be invested.

"The Third Coast is really starved for capital," he says. "What drew me into this was I was one of the few entrepreneurs that lived here that knew the ropes in terms of tapping into East and West Coast capital structures and could make that connection for them."

The company has three core technologies currently being tested with some success, but the most promising is called WP1066, named for researcher Waldemar Priebe, "a rock star" in his native Poland, according to Klemp, who works at MD Anderson. Though Priebe came to the U.S. in the 1980s, he is still an adjunct professor at the University of Warsaw and conducts some of his trials in Poland because it's easier to get grant money there.

WP1066 uses propolis, a compound of beeswax, sap and saliva that bees produce to seal small areas of their hives, as a base. The molecular compound that Priebe discovered affects STAT3 (signal transducer and activator of transcription), a transcription factor that encourages tumor development. In short, the active compound in WP1066 both downregulates the STAT3, a long-time Holy Grail in the cancer research world, and directly attacking the tumor, but also quieting T Cells, which allows the body's own immune system to fight the cancer itself. Essentially, it works both as chemotherapy and immunotherapy.

WP1066 is demonstrating drug-like properties in trials at MD Anderson on glioblastoma, the aggressive brain cancer that recently took the life of the hospital's former president, John Mendelsohn, as well as John McCain and Beau Biden. It is also being tested against pancreatic cancer, one of the most virulent killers cancer doctors combat.

Priebe also created Annamycin, named for his oldest daughter, a first-line chemotherapy drug that fights Acute Myeloid Leukemia without the cardiotoxicity that can damage patients' hearts even as they beat their cancer.

WP1122 uses yet another mechanism to fight cancer.

"Most people don't know that morphine is essentially a modified version of heroin," Klemp explains.

The difference between the poppy-based drugs? Heroin can cross the blood-brain barrier. It's described as the dicetyl ester of morphine. WP1122 is the dicetyl ester of 2DG (2-Deoxyglucose), a glycolysis inhibitor, which works by overfilling tumor cells with fake glucose so that they can't consume the real glucose that makes them grow.

"The theory is, we could feed you so full of junk food that eventually you'd starve to death," Klemp elucidates. It can cross the blood-brain barrier and is metabolized slowly, meaning that it can be made into a drug in a way that 2DG cannot.

What's impressive about Moleculin is its diversity of drugs. Most companies have one drug that gets all or most of the attention. Moleculin has strong hopes for all three currently in trials.

"It's essentially multiple shots on the goal," says executive vice president and CFO Jonathan Foster.

Moleculin has 13 total employees, five of whom are based in Houston. An office in the Memorial Park area serves as a landing pad for employees and collaborators from around the world to get their work done when in Space City. The virtual office set-up works for the company because experts can stay in their home cities to get their work done. And that work is on its way to saving scores of lives.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston neighbor named richest small town in Texas for 2025

Ranking It

Affluent Houston neighbor Bellaire is cashing in as the richest small town in Texas for 2025, according to new study from GoBankingRates.

The report, "The Richest Small Town in Every State," used data from the U.S. Census Bureau's American Community Survey to determine the 50 richest small towns in America based on their median household income.

Of course, Houstonians realize that describing Bellaire as a "small town" is a bit of misnomer. Located less than 10 miles from downtown and fully surrounded by the City of Houston, Bellaire is a wealthy enclave that boasts a population of just over 17,000 residents. These affluent citizens earn a median $236,311 in income every year, which GoBankingRates says is the 11th highest household median income out of all 50 cities included in the report.

The average home in this city is worth over $1.12 million, but Bellaire's lavish residential reputation often attracts properties with multimillion-dollar price tags.

Bellaire also earned a shining 81 livability score for its top quality schools, health and safety, commute times, and more. The livability index, provided by Toronto, Canada-based data analytics and real estate platform AreaVibes, said Bellaire has "an abundance of exceptional local amenities."

"Among these are conveniently located grocery stores, charming coffee shops, diverse dining options and plenty of spacious parks," AreaVibes said. "These local amenities contribute significantly to its overall appeal, ensuring that [residents'] daily needs are met and offering ample opportunities for leisure and recreation."

Earlier in 2025, GoBankingRates ranked Bellaire as the No. 23 wealthiest suburb in America, and it's no stranger to being named on similar lists comparing the richest American cities.

---

This article originally appeared on CultureMap.com.

How a Houston startup is taking on corrosion, a costly climate threat

now streaming

Corrosion is not something most people think about, but for Houston's industrial backbone pipelines, refineries, chemical plants, and water infrastructure, it is a silent and costly threat. Replacing damaged steel and overusing chemicals adds hundreds of millions of tons of carbon emissions every year. Despite the scale of the problem, corrosion detection has barely changed in decades.

In a recent episode of the Energy Tech Startups Podcast, Anwar Sadek, founder and CEO of Corrolytics, explained why the traditional approach is not working and how his team is delivering real-time visibility into one of the most overlooked challenges in the energy transition.

From Lab Insight to Industrial Breakthrough

Anwar began as a researcher studying how metals degrade and how microbes accelerate corrosion. He quickly noticed a major gap. Companies could detect the presence of microorganisms, but they could not tell whether those microbes were actually causing corrosion or how quickly the damage was happening. Most tests required shipping samples to a lab and waiting months for results, long after conditions inside the asset had changed.

That gap inspired Corrolytics' breakthrough. The company developed a portable, real-time electrochemical test that measures microbial corrosion activity directly from fluid samples. No invasive probes. No complex lab work. Just the immediate data operators can act on.

“It is like switching from film to digital photography,” Anwar says. “What used to take months now takes a couple of hours.”

Why Corrosion Matters in Houston's Energy Transition

Houston's energy transition is a blend of innovation and practicality. While the world builds new low-carbon systems, the region still depends on existing industrial infrastructure. Keeping those assets safe, efficient, and emission-conscious is essential.

This is where Corrolytics fits in. Every leak prevented, every pipeline protected, and every unnecessary gallon of biocide avoided reduces emissions and improves operational safety. The company is already seeing interest across oil and gas, petrochemicals, water and wastewater treatment, HVAC, industrial cooling, and biofuels. If fluids move through metal, microbial corrosion can occur, and Corrolytics can detect it.

Because microbes evolve quickly, slow testing methods simply cannot keep up. “By the time a company gets lab results, the environment has changed completely,” Anwar explains. “You cannot manage what you cannot measure.”

A Scientist Steps Into the CEO Role

Anwar did not plan to become a CEO. But through the National Science Foundation's ICorps program, he interviewed more than 300 industry stakeholders. Over 95 percent cited microbial corrosion as a major issue with no effective tool to address it. That validation pushed him to transform his research into a product.

Since then, Corrolytics has moved from prototype to real-world pilots in Brazil and Houston, with early partners already using the technology and some preparing to invest. Along the way, Anwar learned to lead teams, speak the language of industry, and guide the company through challenges. “When things go wrong, and they do, it is the CEO's job to steady the team,” he says.

Why Houston

Relocating to Houston accelerated everything. Customers, partners, advisors, and manufacturing talent are all here. For industrial and energy tech startups, Houston offers an ecosystem built for scale.

What's Next

Corrolytics is preparing for broader pilots, commercial partnerships, and team growth as it continues its fundraising efforts. For anyone focused on asset integrity, emissions reduction, or industrial innovation, this is a company to watch.

Listen to the full conversation with Anwar Sadek on the Energy Tech Startups Podcast to learn more:

---

Energy Tech Startups Podcast is hosted by Jason Ethier and Nada Ahmed. It delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.

This article originally appeared on our sister site, EnergyCapitalHTX.com.

These 50+ Houston scientists rank among world’s most cited

science stars

Fifty-one scientists and professors from Houston-area universities and institutions were named among the most cited in the world for their research in medicine, materials sciences and an array of other fields.

The Clarivate Highly Cited Researchers considers researchers who have authored multiple "Highly Cited Papers" that rank in the top 1percent by citations for their fields in the Web of Science Core Collection. The final list is then determined by other quantitative and qualitative measures by Clarivate's judges to recognize "researchers whose exceptional and community-wide contributions shape the future of science, technology and academia globally."

This year, 6,868 individual researchers from 60 different countries were named to the list. About 38 percent of the researchers are based in the U.S., with China following in second place at about 20 percent.

However, the Chinese Academy of Sciences brought in the most entries, with 258 researchers recognized. Harvard University with 170 researchers and Stanford University with 141 rounded out the top 3.

Looking more locally, the University of Texas at Austin landed among the top 50 institutions for the first time this year, tying for 46th place with the Mayo Clinic and University of Minnesota Twin Cities, each with 27 researchers recognized.

Houston once again had a strong showing on the list, with MD Anderson leading the pack. Below is a list of the Houston-area highly cited researchers and their fields.

UT MD Anderson Cancer Center

  • Ajani Jaffer (Cross-Field)
  • James P. Allison (Cross-Field)
  • Maria E. Cabanillas (Cross-Field)
  • Boyi Gan (Molecular Biology and Genetics)
  • Maura L. Gillison (Cross-Field)
  • David Hong (Cross-Field)
  • Scott E. Kopetz (Clinical Medicine)
  • Pranavi Koppula (Cross-Field)
  • Guang Lei (Cross-Field)
  • Sattva S. Neelapu (Cross-Field)
  • Padmanee Sharma (Molecular Biology and Genetics)
  • Vivek Subbiah (Clinical Medicine)
  • Jennifer A. Wargo (Molecular Biology and Genetics)
  • William G. Wierda (Clinical Medicine)
  • Ignacio I. Wistuba (Clinical Medicine)
  • Yilei Zhang (Cross-Field)
  • Li Zhuang (Cross-Field)

Rice University

  • Pulickel M. Ajayan (Materials Science)
  • Pedro J. J. Alvarez (Environment and Ecology)
  • Neva C. Durand (Cross-Field)
  • Menachem Elimelech (Chemistry and Environment and Ecology)
  • Zhiwei Fang (Cross-Field)
  • Naomi J. Halas (Cross-Field)
  • Jun Lou (Materials Science)
  • Aditya D. Mohite (Cross-Field)
  • Peter Nordlander (Cross-Field)
  • Andreas S. Tolias (Cross-Field)
  • James M. Tour (Cross-Field)
  • Robert Vajtai (Cross-Field)
  • Haotian Wang (Chemistry and Materials Science)
  • Zhen-Yu Wu (Cross-Field)

Baylor College of Medicine

  • Nadim J. Ajami (Cross-Field)
  • Biykem Bozkurt (Clinical Medicine)
  • Hashem B. El-Serag (Clinical Medicine)
  • Matthew J. Ellis (Cross-Field)
  • Richard A. Gibbs (Cross-Field)
  • Peter H. Jones (Pharmacology and Toxicology)
  • Sanjay J. Mathew (Cross-Field)
  • Joseph F. Petrosino (Cross-Field)
  • Fritz J. Sedlazeck (Biology and Biochemistry)
  • James Versalovic (Cross-Field)

University of Houston

  • Zhifeng Ren (Cross-Field)
  • Yan Yao (Cross-Field)
  • Yufeng Zhao (Cross-Field)
  • UT Health Science Center Houston
  • Hongfang Liu (Cross-Field)
  • Louise D. McCullough (Cross-Field)
  • Claudio Soto (Cross-Field)

UTMB Galveston

  • Erez Lieberman Aiden (Cross-Field)
  • Pei-Yong Shi (Cross-Field)

Houston Methodist

  • Eamonn M. M. Quigley (Cross-Field)