The WaTER Institute is housed in Rice University's Ralph S. O'Connor Building. Photo via Rice.edu

Researchers at Rice University are making cleaner water through the use of nanotech.

Decades of research have culminated in the creation of the Water Technologies Entrepreneurship and Research (WaTER) Institute launched in January 2024 and its new Rice PFAS Alternatives and Remediation Center (R-PARC).

“Access to safe drinking water is a major limiting factor to human capacity, and providing access to clean water has the potential to save more lives than doctors,” Rice’s George R. Brown Professor of Civil and Environmental Engineering Pedro Alvarez says in a news release.

The WaTER Institute has made advancements in clean water technology research and applications established during a 10-year period of Nanotechnology Enabled Water Treatment (NEWT), which was funded by the National Science Foundation. R-PARC will use the institutional investments, which include an array of PFAS-dedicated advanced analytical equipment.

Alvarez currently serves as director of NEWT and the WaTER Institute. He’s joined by researchers that include Michael Wong, Rice’s Tina and Sunit Patel Professor in Molecular Nanotechnology, chair and professor of chemical and biomolecular engineering and leader of the WaTER Institute’s public health research thrust, and James Tour, Rice’s T.T. and W.F. Chao Professor of Chemistry and professor of materials science and nanoengineering.

“We are the leaders in water technologies using nano,” adds Wong. “Things that we’ve discovered within the NEWT Center, we’ve already started to realize will be great for real-world applications.”

The NEWT center plans to equip over 200 students to address water safety issues, and assist/launch startups.

“Across the world, we’re seeing more serious contamination by emerging chemical and biological pollutants, and climate change is exacerbating freshwater scarcity with more frequent droughts and uncertainty about water resources,” Alvarez said in a news release. “The Rice WaTER Institute is growing research and alliances in the water domain that were built by our NEWT Center.”

A new program at Rice University will educate recent graduates or returning learners on key opportunities within energy transition. Photo via Rice.edu

New program to produce innovative, sustainability-focused workforce for energy industry

coming this fall

A Houston university has committed to preparing the workforce for the future of energy with its newest program.

Rice University announced plans to launch the Master of Energy Transition and Sustainability, or METS, in the fall. The 31 credit-hour program, which is a joint initiative between Rice's George R. Brown School of Engineering and the Wiess School of Natural Sciences, "will train graduates to face emergent challenges in the energy sector and drive innovation in sustainability across a wide range of domains from technology to economics and policy," according to the university.

“We believe that METS graduates will emerge as leaders and innovators in the energy industry, equipped with the skills and knowledge to drive sustainable solutions,” Rice President Reginald DesRoches says in the release. “Together we can shape a brighter, more resilient and cleaner future for generations to come.”

Some of the focus points of the program will be geothermal, hydrogen, and critical minerals recovery. Additionally, there will be education around new technologies within traditional oil and gas industry, like carbon capture and sequestration and subsurface storage.

“We are excited to welcome the inaugural cohort of METS students in the fall of 2024,” Thomas Killian, dean of the Wiess School of Natural Sciences and a professor of physics and astronomy, says in the release. “This program offers a unique opportunity for students to delve into cutting-edge research, tackle real-world challenges and make a meaningful impact on the future of energy.”

The new initiative is just the latest stage in Rice's relationship with the energy industry.

“This is an important initiative for Rice that is very much aligned with the university’s long-term commitment to tackle urgent generational challenges, not only in terms of research — we are well positioned to make significant contributions on that front — but also in terms of education,” says Michael Wong, the Tina and Sunit Patel Professor in Molecular Nanotechnology, chair and professor of chemical and biomolecular engineering and a professor of chemistry, materials science and nanotechnology and of civil and environmental engineering. “We want prospective students to know that they can confidently learn the concepts and tools they need to thrive as sustainability and energy transition experts and thought leaders.”

------

This article originally ran on EnergyCapital.

Breakthrough research on metastatic breast cancer, a new way to turn toxic pollutants into valuable chemicals, and an evolved brain tumor chip are three cancer-fighting treatments coming out of Houston. Getty Inages

These 3 Houston research projects are aiming to fight or prevent cancer

Research roundup

Cancer remains to be one of the medical research community's huge focuses and challenges, and scientists in Houston are continuing to innovate new treatments and technologies to make an impact on cancer and its ripple effect.

Three research projects coming out of Houston institutions are providing solutions in the fight against cancer — from ways to monitor treatment to eliminating cancer-causing chemicals in the first place.

Baylor College of Medicine's breakthrough in breast cancer

Photo via bcm.edu

Researchers at Baylor College of Medicine and Harvard Medical School have unveiled a mechanism explains how "endocrine-resistant breast cancer acquires metastatic behavior," according to a news release from BCM. This research can be game changing for introducing new therapeutic strategies.

The study was published in the Proceedings of the National Academy of Sciences and shows that hyperactive FOXA1 signaling — previously reported in endocrine-resistant metastatic breast cancer — can trigger genome-wide reprogramming that enhances resistance to treatment.

"Working with breast cancer cell lines in the laboratory, we discovered that FOXA1 reprograms endocrine therapy-resistant breast cancer cells by turning on certain genes that were turned off before and turning off other genes," says Dr. Xiaoyong Fu, assistant professor of molecular and cellular biology and part of the Lester and Sue Smith Breast Center at Baylor, in the release.

"The new gene expression program mimics an early embryonic developmental program that endow cancer cells with new capabilities, such as being able to migrate to other tissues and invade them aggressively, hallmarks of metastatic behavior."

Patients whose cancer is considered metastatic — even ones that initially responded to treatment — tend to relapse and die due to the cancer's resistance to treatment. This research will allow for new conversations around therapeutic treatment that could work to eliminate metastatic cancer.

University of Houston's evolved brain cancer chip

Photo via uh.edu

A biomedical research team at the University of Houston has made improvements on its microfluidic brain cancer chip. The Akay Lab's new chip "allows multiple-simultaneous drug administration, and a massive parallel testing of drug response for patients with glioblastoma," according to a UH news release. GBM is the most common malignant brain tumor and makes up half of all cases. Patients with GBM have a five-year survival rate of only 5.6 percent.

"The new chip generates tumor spheroids, or clusters, and provides large-scale assessments on the response of these GBM tumor cells to various concentrations and combinations of drugs. This platform could optimize the use of rare tumor samples derived from GBM patients to provide valuable insight on the tumor growth and responses to drug therapies," says Metin Akay, John S. Dunn Endowed Chair Professor of Biomedical Engineering and department chair, in the release.

Akay's team published a paper in the inaugural issue of the IEEE Engineering in Medicine & Biology Society's Open Journal of Engineering in Medicine and Biology. The report explains how the technology is able to quickly assess how well a cancer drug is improving its patients' health.

"When we can tell the doctor that the patient needs a combination of drugs and the exact proportion of each, this is precision medicine," Akay explains in the release.

Rice University's pollution transformation technology

Photo via rice.edu

Rice University engineers have developed a way to get rid of cancer-causing pollutants in water and transform them into valuable chemicals. A team lead by Michael Wong and Thomas Senftle has created this new catalyst that turns nitrate into ammonia. The study was published in the journal ACS Catalysis.

"Agricultural fertilizer runoff is contaminating ground and surface water, which causes ecological effects such as algae blooms as well as significant adverse effects for humans, including cancer, hypertension and developmental issues in babies," says Wong, professor and chair of the Department of Chemical and Biomolecular Engineering in Rice's Brown School of Engineering, in a news release. "I've been very curious about nitrogen chemistry, especially if I can design materials that clean water of nitrogen compounds like nitrites and nitrates."

The ability to transform these chemicals into ammonia is crucial because ammonia-based fertilizers are used for global food supplies and the traditional method of creating ammonia is energy intensive. Not only does this process eliminate that energy usage, but it's ridding the contaminated water of toxic chemicals.

"I'm excited about removing nitrite, forming ammonia and hydrazine, as well as the chemistry that we figured out about how all this happens," Wong says in the release. "The most important takeaway is that we learned how to clean water in a simpler way and created chemicals that are more valuable than the waste stream."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston company awarded $2.5B NASA contract to support astronaut health and space missions

space health

Houston-based technology and energy solution company KBR has been awarded a $2.5 billion NASA contract to support astronaut health and reduce risks during spaceflight missions.

Under the terms of the Human Health and Performance Contract 2, KBR will provide support services for several programs, including the Human Research Program, International Space Station Program, Commercial Crew Program, Artemis campaign and others. This will include ensuring crew health, safety, and performance; occupational health services and risk mitigation research for future flights.

“This contract reinforces KBR’s leadership in human spaceflight operations and highlights our expertise in supporting NASA’s vision for space exploration,” Mark Kavanaugh, KBR president of defense, intel and space, said in a news release.

The five-year contract will begin Nov. 1 with possible extension option periods that could last through 2035. The total estimated value of the base period plus the optional periods is $3.6 billion, and the majority of the work will be done at NASA’s Johnson Space Center.

“We’re proud to support NASA’s critical work on long-duration space travel, including the Artemis missions, while contributing to solutions that will help humans live and thrive beyond Earth,” Kavanaugh adde in the news release.

Recently, KBR and Axiom Space completed three successful crewed underwater tests of the Axiom Extravehicular Mobility Unit (AxEMU) at NASA's Neutral Buoyancy Laboratory (NBL) at Johnson Space Center. The tests were part of an effort to help both companies work to support NASA's return to the Moon, according to a release.

KBR also landed at No. 3 in a list of Texas businesses on Time and Statista’s new ranking of the country’s best midsize companies.

UH receives $1M grant to advance research on rare pediatric disorder

peds research

The University of Houston has received a two-year, $1.1 million gift from the Cynthia and George Mitchell Foundation to advance research on a rare genetic disorder that can lead to both deafness and blindness in children, known as Usher Syndrome.

The current grant will support the research of UH biomedical engineering professors Muna Naash and Muayyad Al-Ubaidi, who work in the Laboratory for Retinal Molecular and Cellular Biology and Gene Therapy in the Cullen College of Engineering. The professors have published their findings in the journal Nature Communications.

Naash and Al-Ubaidi’s research focuses on mutations in the USH2A gene, which is crucial to the development and maintenance of the inner ear and retina. The work was inspired by a chance meeting that changed Naash’s life.

“Our work began more than two decades ago when I met a young boy who had lost his both his vision and hearing, and it made me realize just how precious those two senses are, and it truly touched my heart,” Naash said in a news release from UH. “Thanks to the generosity of the Cynthia and George Mitchell Foundation, we can now take the next critical steps in our research and bring hope to families affected by this challenging condition.”

The grant from the foundation comes in addition to a previous $1.6 million award from the National Eye Institute in 2023, which helped create a research platform for innovative gene therapy approaches for the condition.

Usher Syndrome affects 25,000 people in the U.S. and is the most common genetic condition worldwide that impacts both hearing and vision in children. Currently, there is no cure for any of the main three types of the condition. UH believes support from the Cynthia and George Mitchell Foundation will help elevate research, advance real-world solutions in health and improve lives.

“What makes UH such a powerful hub for research is not just its own resources, but also its location and strategic partnerships, including those with the Texas Medical Center,” Al-Ubaidi said in a news release. “We have access to an extraordinary network, and that kind of collaborative environment is essential when tackling complex diseases like Usher syndrome, where no single lab can do it alone.”

Members-only coworking club Switchyards to open first Houston location

Where to Work

An innovative take on the coworking space is coming to Houston. Switchyards will open its first location in the Bayou City on Monday, September 29.

Located in the former Buffalo Exchange at 2901 S Shepherd Drive, Switchyards is well located on the border of Montrose, River Oaks, and Upper Kirby. Founded in Atlanta, the Houston location will join 30 outposts in cities such as Austin, Dallas, Denver, Kansas City, and Nashville.

Unlike WeWork, which caters to companies looking for office space for groups of employees, Switchyards pitches itself as a club for individuals who want to get a little work done away from their home offices.

“Working from home all the time is pretty lonesome,” Switchyards creative director Brandon Hinman says. “It feels good to have places to get out and mix it up. To change paces and change scenery.”

Switchyards facilitates that change of scenery with an environment that blends touches of hotel lobbies, college libraries, and coffee shops. As seen in the photos of the company’s other location, the furniture is a mix of desks, comfy chairs, and couches for individuals or small groups. It’s a far cry from the cube farms of the Office Space era.

“They tend to be historic, textured, layered,” Hinman says about the company’s locations. “A lot of really good furniture. Really thoughtful for getting a couple hours of work done.”

Each location features fast wi-fi, plenty of electrical outlets, and good quality coffee and tea. All 250 members have 24/7 access to the space. And by choosing the real estate they lease carefully, Switchyards keeps its membership price to $100 per month.

“Packaging it together like that and opening in these neighborhoods where people actually live has been pretty magical,” Hinman says. "The big opportunity, I think, is that 90 percent of our members have never had a shared space before. It is unlocking a new thing for people.”

Those who are interested in learning more can sign up at switchyards.com/houston-tx to get early access to memberships and an invite to a sneak peek party.

Memberships go on sale Thursday, September 25 at 10 am. Switchyards notes that the last 14 clubs have sold out on day one.

---

This story originally appeared on CultureMap.com.