The WaTER Institute is housed in Rice University's Ralph S. O'Connor Building. Photo via Rice.edu

Researchers at Rice University are making cleaner water through the use of nanotech.

Decades of research have culminated in the creation of the Water Technologies Entrepreneurship and Research (WaTER) Institute launched in January 2024 and its new Rice PFAS Alternatives and Remediation Center (R-PARC).

“Access to safe drinking water is a major limiting factor to human capacity, and providing access to clean water has the potential to save more lives than doctors,” Rice’s George R. Brown Professor of Civil and Environmental Engineering Pedro Alvarez says in a news release.

The WaTER Institute has made advancements in clean water technology research and applications established during a 10-year period of Nanotechnology Enabled Water Treatment (NEWT), which was funded by the National Science Foundation. R-PARC will use the institutional investments, which include an array of PFAS-dedicated advanced analytical equipment.

Alvarez currently serves as director of NEWT and the WaTER Institute. He’s joined by researchers that include Michael Wong, Rice’s Tina and Sunit Patel Professor in Molecular Nanotechnology, chair and professor of chemical and biomolecular engineering and leader of the WaTER Institute’s public health research thrust, and James Tour, Rice’s T.T. and W.F. Chao Professor of Chemistry and professor of materials science and nanoengineering.

“We are the leaders in water technologies using nano,” adds Wong. “Things that we’ve discovered within the NEWT Center, we’ve already started to realize will be great for real-world applications.”

The NEWT center plans to equip over 200 students to address water safety issues, and assist/launch startups.

“Across the world, we’re seeing more serious contamination by emerging chemical and biological pollutants, and climate change is exacerbating freshwater scarcity with more frequent droughts and uncertainty about water resources,” Alvarez said in a news release. “The Rice WaTER Institute is growing research and alliances in the water domain that were built by our NEWT Center.”

A new program at Rice University will educate recent graduates or returning learners on key opportunities within energy transition. Photo via Rice.edu

New program to produce innovative, sustainability-focused workforce for energy industry

coming this fall

A Houston university has committed to preparing the workforce for the future of energy with its newest program.

Rice University announced plans to launch the Master of Energy Transition and Sustainability, or METS, in the fall. The 31 credit-hour program, which is a joint initiative between Rice's George R. Brown School of Engineering and the Wiess School of Natural Sciences, "will train graduates to face emergent challenges in the energy sector and drive innovation in sustainability across a wide range of domains from technology to economics and policy," according to the university.

“We believe that METS graduates will emerge as leaders and innovators in the energy industry, equipped with the skills and knowledge to drive sustainable solutions,” Rice President Reginald DesRoches says in the release. “Together we can shape a brighter, more resilient and cleaner future for generations to come.”

Some of the focus points of the program will be geothermal, hydrogen, and critical minerals recovery. Additionally, there will be education around new technologies within traditional oil and gas industry, like carbon capture and sequestration and subsurface storage.

“We are excited to welcome the inaugural cohort of METS students in the fall of 2024,” Thomas Killian, dean of the Wiess School of Natural Sciences and a professor of physics and astronomy, says in the release. “This program offers a unique opportunity for students to delve into cutting-edge research, tackle real-world challenges and make a meaningful impact on the future of energy.”

The new initiative is just the latest stage in Rice's relationship with the energy industry.

“This is an important initiative for Rice that is very much aligned with the university’s long-term commitment to tackle urgent generational challenges, not only in terms of research — we are well positioned to make significant contributions on that front — but also in terms of education,” says Michael Wong, the Tina and Sunit Patel Professor in Molecular Nanotechnology, chair and professor of chemical and biomolecular engineering and a professor of chemistry, materials science and nanotechnology and of civil and environmental engineering. “We want prospective students to know that they can confidently learn the concepts and tools they need to thrive as sustainability and energy transition experts and thought leaders.”

------

This article originally ran on EnergyCapital.

Breakthrough research on metastatic breast cancer, a new way to turn toxic pollutants into valuable chemicals, and an evolved brain tumor chip are three cancer-fighting treatments coming out of Houston. Getty Inages

These 3 Houston research projects are aiming to fight or prevent cancer

Research roundup

Cancer remains to be one of the medical research community's huge focuses and challenges, and scientists in Houston are continuing to innovate new treatments and technologies to make an impact on cancer and its ripple effect.

Three research projects coming out of Houston institutions are providing solutions in the fight against cancer — from ways to monitor treatment to eliminating cancer-causing chemicals in the first place.

Baylor College of Medicine's breakthrough in breast cancer

Photo via bcm.edu

Researchers at Baylor College of Medicine and Harvard Medical School have unveiled a mechanism explains how "endocrine-resistant breast cancer acquires metastatic behavior," according to a news release from BCM. This research can be game changing for introducing new therapeutic strategies.

The study was published in the Proceedings of the National Academy of Sciences and shows that hyperactive FOXA1 signaling — previously reported in endocrine-resistant metastatic breast cancer — can trigger genome-wide reprogramming that enhances resistance to treatment.

"Working with breast cancer cell lines in the laboratory, we discovered that FOXA1 reprograms endocrine therapy-resistant breast cancer cells by turning on certain genes that were turned off before and turning off other genes," says Dr. Xiaoyong Fu, assistant professor of molecular and cellular biology and part of the Lester and Sue Smith Breast Center at Baylor, in the release.

"The new gene expression program mimics an early embryonic developmental program that endow cancer cells with new capabilities, such as being able to migrate to other tissues and invade them aggressively, hallmarks of metastatic behavior."

Patients whose cancer is considered metastatic — even ones that initially responded to treatment — tend to relapse and die due to the cancer's resistance to treatment. This research will allow for new conversations around therapeutic treatment that could work to eliminate metastatic cancer.

University of Houston's evolved brain cancer chip

Photo via uh.edu

A biomedical research team at the University of Houston has made improvements on its microfluidic brain cancer chip. The Akay Lab's new chip "allows multiple-simultaneous drug administration, and a massive parallel testing of drug response for patients with glioblastoma," according to a UH news release. GBM is the most common malignant brain tumor and makes up half of all cases. Patients with GBM have a five-year survival rate of only 5.6 percent.

"The new chip generates tumor spheroids, or clusters, and provides large-scale assessments on the response of these GBM tumor cells to various concentrations and combinations of drugs. This platform could optimize the use of rare tumor samples derived from GBM patients to provide valuable insight on the tumor growth and responses to drug therapies," says Metin Akay, John S. Dunn Endowed Chair Professor of Biomedical Engineering and department chair, in the release.

Akay's team published a paper in the inaugural issue of the IEEE Engineering in Medicine & Biology Society's Open Journal of Engineering in Medicine and Biology. The report explains how the technology is able to quickly assess how well a cancer drug is improving its patients' health.

"When we can tell the doctor that the patient needs a combination of drugs and the exact proportion of each, this is precision medicine," Akay explains in the release.

Rice University's pollution transformation technology

Photo via rice.edu

Rice University engineers have developed a way to get rid of cancer-causing pollutants in water and transform them into valuable chemicals. A team lead by Michael Wong and Thomas Senftle has created this new catalyst that turns nitrate into ammonia. The study was published in the journal ACS Catalysis.

"Agricultural fertilizer runoff is contaminating ground and surface water, which causes ecological effects such as algae blooms as well as significant adverse effects for humans, including cancer, hypertension and developmental issues in babies," says Wong, professor and chair of the Department of Chemical and Biomolecular Engineering in Rice's Brown School of Engineering, in a news release. "I've been very curious about nitrogen chemistry, especially if I can design materials that clean water of nitrogen compounds like nitrites and nitrates."

The ability to transform these chemicals into ammonia is crucial because ammonia-based fertilizers are used for global food supplies and the traditional method of creating ammonia is energy intensive. Not only does this process eliminate that energy usage, but it's ridding the contaminated water of toxic chemicals.

"I'm excited about removing nitrite, forming ammonia and hydrazine, as well as the chemistry that we figured out about how all this happens," Wong says in the release. "The most important takeaway is that we learned how to clean water in a simpler way and created chemicals that are more valuable than the waste stream."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston space tech startups share latest updates on lunar missions and more

space update

Houston-based space tech companies Axiom Space and Intuitive Machines recently shared updates on innovative projects and missions, each set to launch by 2027.

Axiom Space

Axiom Space, developer of the world’s first commercial space station and other space infrastructure, is gearing up to launch two orbital data center nodes to low-earth orbit by the end of 2025.

The Axiom Space nodes will lay the foundation for space-based cloud computing. Axiom says orbital data centers provide cloud-enabled data storage and processing, artificial intelligence, and machine learning directly to satellites, constellations, and other spacecraft in Earth’s orbit. This innovation will reduce reliance on earth-based systems, enhance wireless mesh networks and improve real-time operation of space-borne assets, according to Axiom.

Axiom has been working on the development of orbital data centers since 2022. The two nodes going into space in 2025 will be part of Kepler Communications’ 10-satellite data relay network, which is scheduled to launch by the end of this year. Axiom Space and Kepler Communications have been collaborating since 2023.

Kam Ghaffarian, co-founder, executive chairman, and CEO of Axiom, says his company already has deals in place with buyers of space-based cloud computing services. Orbital data centers “are integral to Axiom Space’s vision of era-defining space infrastructure, unlocking transformational capabilities and economic growth,” he says.

Axiom Space says it will be able to buy additional payloads on Kepler’s network to boost capacity for orbital data centers. The two companies will team up to provide network and orbital data center services to various customers.

Intuitive Machines

Meanwhile, Intuitive Machines, a space exploration, infrastructure and services company, has picked SpaceX’s Falcon 9 rocket to launch its fourth delivery mission to the moon. The launch will include two lunar data relay satellites for NASA.

Intuitive Machines says its fourth lunar delivery mission is scheduled for 2027. The mission will comprise six NASA commercial lunar payloads, including a European Space Agency drill set designed to search for water at the moon’s south pole.

“Lunar surface delivery and data relay satellites are central to our strategy to commercialize the moon,” Intuitive Machines CEO Steve Altemus says.

The first of five lunar data relay satellites will be included in the company’s third delivery mission to the moon. The fourth mission, featuring two more satellites, will be followed by two other satellite-delivery missions.

Houston doctor aims to revolutionize hearing aid industry with tiny implant

small but mighty

“What is the future of hearing aids?” That’s the question that led to a potential revolution.

“The current hearing aid market and technology is old, and there are little incremental improvements, but really no significant, radical new ideas, and I like to challenge the status quo,” says Dr. Ron Moses, an ENT specialist and surgeon at Houston Methodist.

Moses is the creator of NanoEar, which he calls “the world’s smallest hearing aid.” NanoEar is an implantable device that combines the invisibility of a micro-sized tympanostomy tube with more power—and a superior hearing experience—than the best behind-the-ear hearing aid.

“You put the NanoEar inside of the eardrum in an in-office procedure that takes literally five minutes,” Moses says.

As Moses explains, because of how the human cochlea is formed, its nerves break down over time. It’s simply an inevitability that if we live long enough, we will need hearing aids.

“The question is, ‘Are we going to all be satisfied with what exists?’” he asks.

Moses says that currently, only about 20 percent of patients who need hearing aids have them. That’s because of the combination of the stigma, the expense, and the hassle and discomfort associated with the hearing aids currently available on the market. That leaves 80 percent untapped among a population of 466 million people with hearing impairment, and more to come as our population ages. In a nearly $7 billion global market, that additional 80 percent could mean big money.

Moses initially patented a version of the invention in 2000, but says that it took finding the right team to incorporate as NanoEar. That took place in 2016, when he joined forces with cofounders Michael Moore and Willem Vermaat, now the company’s president and CFO, respectively. Moore is a mechanical engineer, while Vermaat is a “financial guru;” both are repeat entrepreneurs in the biotech space.

Today, NanoEar has nine active patents. The company’s technical advisors include “the genius behind developing the brains in this device,” Chris Salthouse; NASA battery engineer Will West; Dutch physicist and audiologist Joris Dirckx; and Daniel Spitz, a third-generation master watchmaker and the original guitarist for the famed metal band Anthrax.

The NanoEar concept has done proof-of-concept testing on both cadavers at the University of Antwerp and on chinchillas, which are excellent models for human hearing, at Tulane University. As part of the TMC Innovation Institute program in 2017, the NanoEar team met with FDA advisors, who told them that they might be eligible for an expedited pathway to approval.

Thus far, NanoEar has raised about $900,000 to get its nine patents and perform its proof-of-concept experiments. The next step is to build the prototype, but completing it will take $2.75 million of seed funding.

Despite the potential for making global change, Moses has said it’s been challenging to raise funds for his innovation.

“We're hoping to find that group of people or person who may want to hear their children or grandchildren better. They may want to join with others and bring a team of investors to offset that risk, to move this forward, because we already have a world-class team ready to go,” he says.

To that end, NanoEar has partnered with Austin-based Capital Factory to help with their raise. “I have reached out to their entire network and am getting a lot of interest, a lot of interest,” says Moses. “But in the end, of course, we need the money.”

It will likely, quite literally, be a sound investment in the future of how we all hear the next generation.