Breakthrough research on metastatic breast cancer, a new way to turn toxic pollutants into valuable chemicals, and an evolved brain tumor chip are three cancer-fighting treatments coming out of Houston. Getty Inages

Cancer remains to be one of the medical research community's huge focuses and challenges, and scientists in Houston are continuing to innovate new treatments and technologies to make an impact on cancer and its ripple effect.

Three research projects coming out of Houston institutions are providing solutions in the fight against cancer — from ways to monitor treatment to eliminating cancer-causing chemicals in the first place.

Baylor College of Medicine's breakthrough in breast cancer

Photo via bcm.edu

Researchers at Baylor College of Medicine and Harvard Medical School have unveiled a mechanism explains how "endocrine-resistant breast cancer acquires metastatic behavior," according to a news release from BCM. This research can be game changing for introducing new therapeutic strategies.

The study was published in the Proceedings of the National Academy of Sciences and shows that hyperactive FOXA1 signaling — previously reported in endocrine-resistant metastatic breast cancer — can trigger genome-wide reprogramming that enhances resistance to treatment.

"Working with breast cancer cell lines in the laboratory, we discovered that FOXA1 reprograms endocrine therapy-resistant breast cancer cells by turning on certain genes that were turned off before and turning off other genes," says Dr. Xiaoyong Fu, assistant professor of molecular and cellular biology and part of the Lester and Sue Smith Breast Center at Baylor, in the release.

"The new gene expression program mimics an early embryonic developmental program that endow cancer cells with new capabilities, such as being able to migrate to other tissues and invade them aggressively, hallmarks of metastatic behavior."

Patients whose cancer is considered metastatic — even ones that initially responded to treatment — tend to relapse and die due to the cancer's resistance to treatment. This research will allow for new conversations around therapeutic treatment that could work to eliminate metastatic cancer.

University of Houston's evolved brain cancer chip

Photo via uh.edu

A biomedical research team at the University of Houston has made improvements on its microfluidic brain cancer chip. The Akay Lab's new chip "allows multiple-simultaneous drug administration, and a massive parallel testing of drug response for patients with glioblastoma," according to a UH news release. GBM is the most common malignant brain tumor and makes up half of all cases. Patients with GBM have a five-year survival rate of only 5.6 percent.

"The new chip generates tumor spheroids, or clusters, and provides large-scale assessments on the response of these GBM tumor cells to various concentrations and combinations of drugs. This platform could optimize the use of rare tumor samples derived from GBM patients to provide valuable insight on the tumor growth and responses to drug therapies," says Metin Akay, John S. Dunn Endowed Chair Professor of Biomedical Engineering and department chair, in the release.

Akay's team published a paper in the inaugural issue of the IEEE Engineering in Medicine & Biology Society's Open Journal of Engineering in Medicine and Biology. The report explains how the technology is able to quickly assess how well a cancer drug is improving its patients' health.

"When we can tell the doctor that the patient needs a combination of drugs and the exact proportion of each, this is precision medicine," Akay explains in the release.

Rice University's pollution transformation technology

Photo via rice.edu

Rice University engineers have developed a way to get rid of cancer-causing pollutants in water and transform them into valuable chemicals. A team lead by Michael Wong and Thomas Senftle has created this new catalyst that turns nitrate into ammonia. The study was published in the journal ACS Catalysis.

"Agricultural fertilizer runoff is contaminating ground and surface water, which causes ecological effects such as algae blooms as well as significant adverse effects for humans, including cancer, hypertension and developmental issues in babies," says Wong, professor and chair of the Department of Chemical and Biomolecular Engineering in Rice's Brown School of Engineering, in a news release. "I've been very curious about nitrogen chemistry, especially if I can design materials that clean water of nitrogen compounds like nitrites and nitrates."

The ability to transform these chemicals into ammonia is crucial because ammonia-based fertilizers are used for global food supplies and the traditional method of creating ammonia is energy intensive. Not only does this process eliminate that energy usage, but it's ridding the contaminated water of toxic chemicals.

"I'm excited about removing nitrite, forming ammonia and hydrazine, as well as the chemistry that we figured out about how all this happens," Wong says in the release. "The most important takeaway is that we learned how to clean water in a simpler way and created chemicals that are more valuable than the waste stream."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston expert on the advantages of adopting robotic dog technology

guest column

What has 4 legs, can recognize your face, and precisely obey commands on cue? If you guessed a dog, you’re half right.

I’m referring to robotic dogs, a modern marvel of innovative engineering. AT&T recently expanded our solution offers to include network-connected robotic dogs for public safety, defense, federal and state agencies, local police and fire departments, and commercial customers. We do this in collaboration with a leading provider of robotic dogs, Ghost Robotics.

Robotic dogs are just one way we are proving the innovation and transformational possibilities of 5G and IoT. Network-connected robotic dogs can deliver a broad range of IoT use cases, including many that have previously required putting personnel in dangerous situations. Here’s a quick look at some of the fantastic capabilities network-connected robotic dogs deliver.

  • Our robotic dogs can support public safety agencies and organizations on FirstNet – the nation’s only network built with and for America’s first responders. FirstNet delivers always-on prioritized network connectivity for these “first responder” robotic dogs, helping them stay connected during disaster response and recovery, facilities surveillance, and security operations. They can support search and rescue, venture into areas that could imperil human lives, and support the ability to reestablish local communications services following major infrastructure damage.
  • We can integrate Geocast into the robotic dogs to provide Beyond-Visual-Line-of-Sight (BVLOS) operational command and control so that operators of the dogs can be located virtually anywhere in the world and remotely operate them. Geocast is an AT&T innovation covered by 37 patents.
  • The robotic dogs can be equipped with sensors that allow them to operate autonomously without human intervention. They can be outfitted with drones that can launch and return to their backs while in motion, allowing the drones and dogs to perform missions as an integrated team.
  • Rugged terrain? Water? Not a problem. These robotic dogs can move across natural terrain, including sand, rocks, hills, rubble, and human-built environments, like stairs. They can operate fully submerged in water and, like living dogs, can swim.
  • An early use case adopted by the military involves equipping our robotic dogs with wireless network-connected cameras and deploying them to patrol military bases. Robotic dogs we provided to the Air Force at Tyndall Air Force Base in the Florida panhandle are doing just that. Our robotic dogs patrol the flight line and base perimeter at Tyndall, feeding video data in real-time to base personnel who can safely track activity 24/7/365 and support the safety of base operations. They can perform the same task for commercial users, indoors or outdoors. For example, they can patrol the perimeters of large warehouses or outdoor fence lines.
  • They can also support hazmat efforts, inspect mines and high-voltage equipment, and detect explosive devices including improvised explosive devices (IEDs): all while keeping people out of harm’s way.
  • Another interesting use case involves equipping robotic dogs with Long Range Acoustic Devices (LRADs). LRADs are sound cannons that produce noise at high decibels and varying frequencies. We have discussed with the Navy the possibility of outfitting our robotic dogs with sound cannons to warn off wild boars and feral dog packs that have impeded operating crews working on telecommunications infrastructure located in remote areas of one of its bases.

Commercial applications for network-connected robotic dogs are proliferating. Utility companies, for example, are using robotic dogs equipped with video cameras to perform routine equipment inspections in substations. Human inspection requires operators to shut down the facilities during inspections; the robotic dogs eliminate the need to take this precaution. Allied Market Research projects a $13.4 billion global market for the particular use case of robotic dogs performing such inspections.

Our robotic dogs can also be equipped with technology that extends network connectivity into difficult-to-reach areas or mechanical arms that can grip and carry materials such as tools. Their use cases include Pick and Pack capabilities for warehouse operations to improve order fulfillment efficiency.

And this is just the beginning. We’ve said from the outset that the 5G journey of innovation and solution development would evolve to deliver new ways to conquer many challenges.

Now, we’ve let the dogs out.

------

Lance Spencer is the Houston-based client executive vice president of defense at AT&T Public Sector.

Exclusive: Hardtech-focused program announces Houston expansion, seeks local leader

changing the world

An organization that directs support to scientists developing impactful technology has decided on Houston for its fifth program.

Activate was founded in Berkeley, California, in 2015 to bridge the gap between the federal and public sectors to deploy capital and resources into the innovators creating transformative products. The nonprofit expanded its programs to Boston and New York before launching a virtual fellowship program — Activate Anywhere, which is for scientists 50 or more miles outside one of the three hubs.

"Our mission is to empower scientists to reinvent the world by bringing their research to market," Aimee Rose, executive managing director of Activate, tells InnovationMap. "There's so much technical talent that we educate in this country every year and so many amazing inventions that happen, that combining the two, which is the sort of inventor/entrepreneur, and giving them the support mechanisms they need to get on their feet and be successful, has the potential to unlock an incredible amount of value for the country, for the environment, and to address other social problems."

This year, Activate is planting seeds in Houston to grow a presence locally and have its first set of fellows in 2024. While Activate is industry agnostic, Rose says a big draw from Houston is the ability to impact the future of energy.

"We're super excited about Houston as an emerging ecosystem for the clean energy transition as being the energy capital of the world, as well as all the other emerging players there are across the landscape in Houston," Rose says. "I think we can move the needle in Houston because of our national footprint."

The first order of business, Rose says, is hiring a managing director for Activate Houston. The job, which is posted online, is suited for an individual who has already developed a hardtech business and has experience and connections within Houston's innovation ecosystem.

"We want to customize the program so that it makes the most sense for the community," Rose says about the position. "So, somebody that has the relationships and the knowledge of the ecosystem to be able to do that and somebody that's kind of a mentor at heart."

The program is for early-stage founders — who have raised less than $2 million in funding — working on high-impact technology. Rose explains that Activate has seen a number of microelectronics and new materials companies go through the program, and, while medical innovation is impactful, Activate doesn't focus on pharmaceutical or therapeutic industries since there are existing pathways for those products.

Ultimately, Activate is seeking innovators whose technologies fall through the cracks of existing innovation infrastructure.

"Not every business fits into the venture capital model in terms of what investors would expect to be eventual outcomes, but these these types of businesses can still have significant impact and make the world a better place," Rose says, explaining how Activate is different from an incubator or accelerator. "As opposed as compared to a traditional incubator, this is a very high touch program. You get a living stipend so you can take a big business technical risk without a personal risk. We give you a lot of hands on support and mentoring."

Each of the programs selects 10 fellows that join the program for two years. The fellows receive a living stipend, connections from Activate's robust network of mentors, and access to a curriculum specific to the program.

Since its inception, Activate has supported 104 companies and around 146 entrepreneurs associated with those companies. With the addition of Houston, Activate will be able to back 50 individuals a year.

Four Houston scientists named rising stars in research

who to watch

Four Houston scientists were named among a total of five Texas rising stars in research by the Texas Academy of Medicine, Engineering, Science & Technology, or TAMEST, last month.

The group will be honored at the 2023 Edith and Peter O’Donnell Awards by TAMEST in May. According to Edith and Peter O’Donnell Committee Chair Ann Beal Salamone, the researchers "epitomize the Texas can-do spirit."

The Houston winners include:

Medicine: Dr. Jennifer Wargo

A physician and professor of surgical oncology and genomic medicine at The University of Texas MD Anderson Cancer Center, Wargo was named a 2023 honoree for her discoveries surrounding the "important connection between treatment outcomes and a patient’s gut microbiome," according to a statement from TAMEST.

Engineering: Jamie Padgett

The Stanley C. Moore Professor of Engineering at Rice University, Padgett was honored for her work that aims to "enhance reliability and improve the sustainability of critical community infrastructure" through developing new methods for multi-hazard resilience modeling.

Physical sciences: Erez Lieberman Aiden

As a world-leading biophysical scientist and an associate professor of molecular and human genetics at Baylor College of Medicine, is being honored for his work that has "dramatically impacting the understanding of genomic 3D structures." He is working with BCM to apply his findings to clinical settings, with the hope that it will eventually be used to treat disease by targeting dark matter in the body.

Technology innovation: Chengbo Li

As a geophysicist at ConocoPhillips, Li is being recognized for innovations in industry-leading Compressive Seismic Imaging (CSI) technology. "This CSI technology allows the oil and gas industry to produce these seismic surveys in less time, with less shots and receivers, and most importantly, with less of an environmental impact," his nominator Jie Zhang, founder and chief scientist of GeoTomo LLC, said in a statement.


James J. Collins III at UT Southwestern Medical Center in Dallas was also named this year's rising star in the biological sciences category for his research on schistosomiasis, a disease that impacts some of the world’s poorest individuals.

The O'Donnell Awards have granted more than $1.5 million to more than 70 recipients since they were founded in 2006. Each award includes a $25,000 honorarium and an invitation to present at TAMEST’s Annual Conference each year, according to TAMEST's website.

The awards expanded in 2002 to include both a physical and biological sciences award each year, thanks to a $1.15 million gift from the O’Donnell Foundation in 2022.