The grant is part of the selective Course & Program Grants program, which supports faculty and staff in U.S. higher education institutions to expand and strengthen STEM innovation and entrepreneurship ecosystems. Photo via shsu.edu

Three academics at Sam Houston State University have secured grant funding to support innovation and entrepreneurship at the university across science, technology, engineering, and mathematics.

Kyle Scott, assistant professor of entrepreneurship, and Bob Milner and Pamela Zelbst, co-directors of the Center for Innovation, Technology and Entrepreneurship at Sam Houston State University, have been awarded catalytic grant funding from VentureWell, a nonprofit that supports early-stage science and technology innovators. Sam Houston State University’s project was selected from a national pool of applicants.

The grant is part of the selective Course & Program Grants program, which supports faculty and staff in U.S. higher education institutions to expand and strengthen STEM innovation and entrepreneurship ecosystems. The goal for these grants is to assist with “accelerating sustainable and inclusive innovation” according to a news release.VentureWell will also help grantees in a cohort-based community of practice that will provide networking opportunities and assistance.

The grantee teams can use the funds to develop new technology transfer certificate programs for underrepresented STEM student entrepreneurs.

“VentureWell is committed to broadening pathways for science and technology innovators and the faculty supporting them—particularly those from historically underrepresented groups in the field,” said VentureWell President and CEO Phil Weilerstein in a news release . “We are excited to provide these talented grantees with resources and support to create impactful programs and learning experiences on their campuses, in their communities, and in the broader innovation and entrepreneurship ecosystem.”

Some of the projects the Center for Innovation, Technology & Entrepreneurship has recently done include a “Robohand” to help a child with Amniotic Band Syndrome (ABS).

Women in science, technology, engineering, and mathematics are well represented in Houston, according to a recent report. Photo via Christina Morillo/Pexels

Houston named a top city for women in STEM fields

who runs the world?

If you're a woman in science, technology, engineering, or mathematics and you call Houston home, according to a new report, you're doing it right.

In honor of Women's History Month, CommercialCafe updated its 2020 ranking of the top U.S. cities for women working in STEM. According to the report, Houston ranks at No. 5 on the list of the best southern cities in the United States for women in STEM. The Bayou City also claims the No. 19 spot nationally.

Here are some other key findings about Houston on the report:

  • STEM jobs in Houston account for 7 percent of all jobs, and a little less than a third of these positions are held by women.
  • About 23,964 women work in STEM in Houston — which is the most out of any other city in the South.
  • Houston gained 4,318 new women STEM employees since 2015, the third-highest number in this regional ranking.
  • The median annual income for women in STEM here is $68,172.
Texas makes up about half of the top 10 Southern states — Austin places in second, while Frisco (No. 7), Dallas (No. 8) and Plano (No. 10) fall behind Houston. Nationally, New York City, San Francisco, and Seattle take the top three spots, respectively.

Women working in STEM - South 2021 - Infograminfogram.com

Houston has been recognized for its STEM fields before, and last fall, SmartAsset ranked Houston as No. 7 in STEM nationally based on workforce size. And, in 2019, Houston placed sixth for STEM workforce diversity. Last year Houston also ranked No. 6 for women in tech, also according to SmartAsset.

Houston isn't very attractive of an ecosystem for STEM professionals, according to a new report. Getty Images

​​Report finds Houston has room to grow as an attractive city for STEM professionals​​

Needs improvement

Houston has been heralded as a great place to find a job in many instances, so it may come as some surprise that when it comes to science, technology, engineering, and mathematics, the Bayou City isn't primed for professionals.

The city ranked No. 33 out of the 100 largest metros in the United States in a study conducted by WalletHub. The 17 metrics corresponded to professional opportunities, STEM friendliness, or quality of life. Within those categories, Houston ranked No. 47, No. 20, and No. 54, respectively.

Some of the areas where the Houston area stood out is wage, engineering educational opportunities, and projected demand for STEM jobs in 2020. Houston had the highest annual median wage for STEM workers, which was adjusted for cost of living.

While Houston seems to be predicted to need STEM professionals, the city currently has among the worst STEM employment growth and among the highest unemployment rate for STEM professionals with a Bachelor's degree or higher.

Austin, which ranked at No. 4, was the only Texas city to rank higher than Houston, and Dallas followed close behind Houston at No. 38. Dallas actually performed similar to Houston across the categories, while Austin's scores reflected that the city provided the 8th best STEM professional opportunities in the country.

Rounding out the top five on the list was Seattle at No. 1, Boston at No. 2, Pittsburgh at No. 3, and San Francisco at No.5.

In November, Accenture's Brian Richards wrote a guest column for InnovationMap on how Houston could advance as a premier city for tech and innovation. He proffered that STEM talent is a key component the city needs — both coming into the ecosystem as well as remaining here.

"Houston already has tremendous amounts of STEM talent but doesn't produce enough talent or retain enough of the locally-grown talent," he writes. "To jumpstart, we are going to have to import it initially."

Apparently, this isn't an issue unique to Houston. According to Martin Storksdieck, director for the Center for Research on Lifelong STEM Learning in Oregon, while the U.S. has been successfully attracting outsiders to STEM higher education roles, there's a growing need for specific STEM jobs like nurses and computer scientists.

"The US is neither creating, attracting nor retaining middle-skilled STEM professionals in any competitive fashion," Storksdieck says in the report. "[Meanwhile], about half of academic STEM graduate students in the US are foreign born."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston engineers develop breakthrough device to advance spinal cord treatment

future of health

A team of Rice University engineers has developed an implantable probe over a hundred times smaller than the width of a hair that aims to help develop better treatments for spinal cord disease and injury.

Detailed in a recent study published in Cell Reports, the probe or sensor, known as spinalNET, is used to explore how neurons in the spinal cord process sensation and control movement, according to a statement from Rice. The research was supported by the National Institutes of Health, Rice, the California-based Salk Institute for Biological Studies, and the philanthropic Mary K. Chapman Foundation based in Oklahoma.

The soft and flexible sensor was used to record neuronal activity in freely moving mice with high resolution for multiple days. Historically, tracking this level of activity has been difficult for researchers because the spinal cord and its neurons move so much during normal activity, according to the team.

“We developed a tiny sensor, spinalNET, that records the electrical activity of spinal neurons as the subject performs normal activity without any restraint,” Yu Wu, a research scientist at Rice and lead author of the study said in a statement. “Being able to extract such knowledge is a first but important step to develop cures for millions of people suffering from spinal cord diseases.”

The team says that before now the spinal cord has been considered a "black box." But the device has already helped the team uncover new findings about the body's rhythmic motor patterns, which drive walking, breathing and chewing.

Lan Luan (from left), Yu Wu, and Chong Xie are working on the breakthrough device. Photo by Jeff Fitlow/Rice University

"Some (spinal neurons) are strongly correlated with leg movement, but surprisingly, a lot of neurons have no obvious correlation with movement,” Wu said in the statement. “This indicates that the spinal circuit controlling rhythmic movement is more complicated than we thought.”

The team said they hope to explore these findings further and aim to use the technology for additional medical purposes.

“In addition to scientific insight, we believe that as the technology evolves, it has great potential as a medical device for people with spinal cord neurological disorders and injury,” Lan Luan, an associate professor of electrical and computer engineering at Rice and a corresponding author on the study, added in the statement.

Rice researchers have developed several implantable, minimally invasive devices to address health and mental health issues.

In the spring, the university announced that the United States Department of Defense had awarded a four-year, $7.8 million grant to the Texas Heart Institute and a Rice team led by co-investigator Yaxin Wang to continue to break ground on a novel left ventricular assist device (LVAD) that could be an alternative to current devices that prevent heart transplantation.

That same month, the university shared news that Professor Jacob Robinson had published findings on minimally invasive bioelectronics for treating psychiatric conditions. The 9-millimeter device can deliver precise and programmable stimulation to the brain to help treat depression, obsessive-compulsive disorder and post-traumatic stress disorder.

Houston clean hydrogen startup to pilot tech with O&G co.

stay gold

Gold H2, a Houston-based producer of clean hydrogen, is teaming up with a major U.S.-based oil and gas company as the first step in launching a 12-month series of pilot projects.

The tentative agreement with the unnamed oil and gas company kicks off the availability of the startup’s Black 2 Gold microbial technology. The technology underpins the startup’s biotech process for converting crude oil into proprietary Gold Hydrogen.

The cleantech startup plans to sign up several oil and gas companies for the pilot program. Gold H2 says it’s been in discussions with companies in North America, Latin America, India, Eastern Europe and the Middle East.

The pilot program is aimed at demonstrating how Gold H2’s technology can transform old oil wells into hydrogen-generating assets. Gold H2, a spinout of Houston-based biotech company Cemvita, says the technology is capable of producing hydrogen that’s cheaper and cleaner than ever before.

“This business model will reshape the traditional oil and gas industry landscape by further accelerating the clean energy transition and creating new economic opportunities in areas that were previously dismissed as unviable,” Gold H2 says in a news release.

The start of the Black 2 Gold demonstrations follows the recent hiring of oil and gas industry veteran Prabhdeep Singh Sekhon as CEO.

“With the proliferation of AI, growth of data centers, and a national boom in industrial manufacturing underway, affordable … carbon-free energy is more paramount than ever,” says Rayyan Islam, co-founder and general partner at venture capital firm 8090 Industries, an investor in Gold H2. “We’re investing in Gold H2, as we know they’ll play a pivotal role in unleashing a new dawn for energy abundance in partnership with the oil industry.”

------

This article originally ran on EnergyCapital.

3 Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes an e-commerce startup founder, an industrial biologist, and a cellular scientist.

Omair Tariq, co-founder and CEO of Cart.com

Omair Tariq of Cart.com joins the Houston Innovators Podcast to share his confidence in Houston as the right place to scale his unicorn. Photo via Cart.com

Houston-based Cart.com, which operates a multichannel commerce platform, has secured $105 million in debt refinancing from investment manager BlackRock.

The debt refinancing follows a recent $25 million series C extension round, bringing Cart.com’s series C total to $85 million. The scaleup’s valuation now stands at $1.2 billion, making it one of the few $1 billion-plus “unicorns” in the Houston area.

Cart.com was co-founded by CEO Omair Tariq in October 2020. Read more.

Nádia Skorupa Parachin, vice president of industrial biotechnology at Cemvita

Nádia Skorupa Parachin joined Cemvita as vice president of industrial biotechnology. Photo courtesy of Cemvita

Houston-based biotech company Cemvita recently tapped two executives to help commercialize its sustainable fuel made from carbon waste.

Nádia Skorupa Parachin came aboard as vice president of industrial biotechnology, and Phil Garcia was promoted to vice president of commercialization.

Parachin most recently oversaw several projects at Boston-based biotech company Ginkjo Bioworks. She previously co-founded Brazilian biotech startup Integra Bioprocessos. Read more.

Han Xiao, associate professor of chemistry at Rice University

The funds were awarded to Han Xiao, a chemist at Rice University.

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories. Xiao will use the five-year grant to advance his work on noncanonical amino acids.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement. Read more.