The grant is part of the selective Course & Program Grants program, which supports faculty and staff in U.S. higher education institutions to expand and strengthen STEM innovation and entrepreneurship ecosystems. Photo via shsu.edu

Three academics at Sam Houston State University have secured grant funding to support innovation and entrepreneurship at the university across science, technology, engineering, and mathematics.

Kyle Scott, assistant professor of entrepreneurship, and Bob Milner and Pamela Zelbst, co-directors of the Center for Innovation, Technology and Entrepreneurship at Sam Houston State University, have been awarded catalytic grant funding from VentureWell, a nonprofit that supports early-stage science and technology innovators. Sam Houston State University’s project was selected from a national pool of applicants.

The grant is part of the selective Course & Program Grants program, which supports faculty and staff in U.S. higher education institutions to expand and strengthen STEM innovation and entrepreneurship ecosystems. The goal for these grants is to assist with “accelerating sustainable and inclusive innovation” according to a news release.VentureWell will also help grantees in a cohort-based community of practice that will provide networking opportunities and assistance.

The grantee teams can use the funds to develop new technology transfer certificate programs for underrepresented STEM student entrepreneurs.

“VentureWell is committed to broadening pathways for science and technology innovators and the faculty supporting them—particularly those from historically underrepresented groups in the field,” said VentureWell President and CEO Phil Weilerstein in a news release . “We are excited to provide these talented grantees with resources and support to create impactful programs and learning experiences on their campuses, in their communities, and in the broader innovation and entrepreneurship ecosystem.”

Some of the projects the Center for Innovation, Technology & Entrepreneurship has recently done include a “Robohand” to help a child with Amniotic Band Syndrome (ABS).

Women in science, technology, engineering, and mathematics are well represented in Houston, according to a recent report. Photo via Christina Morillo/Pexels

Houston named a top city for women in STEM fields

who runs the world?

If you're a woman in science, technology, engineering, or mathematics and you call Houston home, according to a new report, you're doing it right.

In honor of Women's History Month, CommercialCafe updated its 2020 ranking of the top U.S. cities for women working in STEM. According to the report, Houston ranks at No. 5 on the list of the best southern cities in the United States for women in STEM. The Bayou City also claims the No. 19 spot nationally.

Here are some other key findings about Houston on the report:

  • STEM jobs in Houston account for 7 percent of all jobs, and a little less than a third of these positions are held by women.
  • About 23,964 women work in STEM in Houston — which is the most out of any other city in the South.
  • Houston gained 4,318 new women STEM employees since 2015, the third-highest number in this regional ranking.
  • The median annual income for women in STEM here is $68,172.
Texas makes up about half of the top 10 Southern states — Austin places in second, while Frisco (No. 7), Dallas (No. 8) and Plano (No. 10) fall behind Houston. Nationally, New York City, San Francisco, and Seattle take the top three spots, respectively.

Women working in STEM - South 2021 - Infograminfogram.com

Houston has been recognized for its STEM fields before, and last fall, SmartAsset ranked Houston as No. 7 in STEM nationally based on workforce size. And, in 2019, Houston placed sixth for STEM workforce diversity. Last year Houston also ranked No. 6 for women in tech, also according to SmartAsset.

Houston isn't very attractive of an ecosystem for STEM professionals, according to a new report. Getty Images

​​Report finds Houston has room to grow as an attractive city for STEM professionals​​

Needs improvement

Houston has been heralded as a great place to find a job in many instances, so it may come as some surprise that when it comes to science, technology, engineering, and mathematics, the Bayou City isn't primed for professionals.

The city ranked No. 33 out of the 100 largest metros in the United States in a study conducted by WalletHub. The 17 metrics corresponded to professional opportunities, STEM friendliness, or quality of life. Within those categories, Houston ranked No. 47, No. 20, and No. 54, respectively.

Some of the areas where the Houston area stood out is wage, engineering educational opportunities, and projected demand for STEM jobs in 2020. Houston had the highest annual median wage for STEM workers, which was adjusted for cost of living.

While Houston seems to be predicted to need STEM professionals, the city currently has among the worst STEM employment growth and among the highest unemployment rate for STEM professionals with a Bachelor's degree or higher.

Austin, which ranked at No. 4, was the only Texas city to rank higher than Houston, and Dallas followed close behind Houston at No. 38. Dallas actually performed similar to Houston across the categories, while Austin's scores reflected that the city provided the 8th best STEM professional opportunities in the country.

Rounding out the top five on the list was Seattle at No. 1, Boston at No. 2, Pittsburgh at No. 3, and San Francisco at No.5.

In November, Accenture's Brian Richards wrote a guest column for InnovationMap on how Houston could advance as a premier city for tech and innovation. He proffered that STEM talent is a key component the city needs — both coming into the ecosystem as well as remaining here.

"Houston already has tremendous amounts of STEM talent but doesn't produce enough talent or retain enough of the locally-grown talent," he writes. "To jumpstart, we are going to have to import it initially."

Apparently, this isn't an issue unique to Houston. According to Martin Storksdieck, director for the Center for Research on Lifelong STEM Learning in Oregon, while the U.S. has been successfully attracting outsiders to STEM higher education roles, there's a growing need for specific STEM jobs like nurses and computer scientists.

"The US is neither creating, attracting nor retaining middle-skilled STEM professionals in any competitive fashion," Storksdieck says in the report. "[Meanwhile], about half of academic STEM graduate students in the US are foreign born."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston scientists develop breakthrough AI-driven process to design, decode genetic circuits

biotech breakthrough

Researchers at Rice University have developed an innovative process that uses artificial intelligence to better understand complex genetic circuits.

A study, published in the journal Nature, shows how the new technique, known as “Combining Long- and Short-range Sequencing to Investigate Genetic Complexity,” or CLASSIC, can generate and test millions of DNA designs at the same time, which, according to Rice.

The work was led by Rice’s Caleb Bashor, deputy director for the Rice Synthetic Biology Institute and member of the Ken Kennedy Institute. Bashor has been working with Kshitij Rai and Ronan O’Connell, co-first authors on the study, on the CLASSIC for over four years, according to a news release.

“Our work is the first demonstration that you can use AI for designing these circuits,” Bashor said in the release.

Genetic circuits program cells to perform specific functions. Finding the circuit that matches a desired function or performance "can be like looking for a needle in a haystack," Bashor explained. This work looked to find a solution to this long-standing challenge in synthetic biology.

First, the team developed a library of proof-of-concept genetic circuits. It then pooled the circuits and inserted them into human cells. Next, they used long-read and short-read DNA sequencing to create "a master map" that linked each circuit to how it performed.

The data was then used to train AI and machine learning models to analyze circuits and make accurate predictions for how untested circuits might perform.

“We end up with measurements for a lot of the possible designs but not all of them, and that is where building the (machine learning) model comes in,” O’Connell explained in the release. “We use the data to train a model that can understand this landscape and predict things we were not able to generate data on.”

Ultimately, the researchers believe the circuit characterization and AI-driven understanding can speed up synthetic biology, lead to faster development of biotechnology and potentially support more cell-based therapy breakthroughs by shedding new light on how gene circuits behave, according to Rice.

“We think AI/ML-driven design is the future of synthetic biology,” Bashor added in the release. “As we collect more data using CLASSIC, we can train more complex models to make predictions for how to design even more sophisticated and useful cellular biotechnology.”

The team at Rice also worked with Pankaj Mehta’s group in the department of physics at Boston University and Todd Treangen’s group in Rice’s computer science department. Research was supported by the National Institutes of Health, Office of Naval Research, the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation, the American Heart Association, National Library of Medicine, the National Science Foundation, Rice’s Ken Kennedy Institute and the Rice Institute of Synthetic Biology.

James Collins, a biomedical engineer at MIT who helped establish synthetic biology as a field, added that CLASSIC is a new, defining milestone.

“Twenty-five years ago, those early circuits showed that we could program living cells, but they were built one at a time, each requiring months of tuning,” said Collins, who was one of the inventors of the toggle switch. “Bashor and colleagues have now delivered a transformative leap: CLASSIC brings high-throughput engineering to gene circuit design, allowing exploration of combinatorial spaces that were previously out of reach. Their platform doesn’t just accelerate the design-build-test-learn cycle; it redefines its scale, marking a new era of data-driven synthetic biology.”

Axiom Space wins NASA contract for fifth private mission, lands $350M in financing

ready for takeoff

Editor's note: This story has been updated to include information about Axiom's recent funding.

Axiom Space, a Houston-based space infrastructure company that’s developing the first commercial space station, has forged a deal with NASA to carry out the fifth civilian-staffed mission to the International Space Station.

Axiom Mission 5 is scheduled to launch in January 2027, at the earliest, from NASA’s Kennedy Space Center in Florida. The crew of non-government astronauts is expected to spend up to 14 days docked at the International Space Station (ISS). Various science and research activities will take place during the mission.

The crew for the upcoming mission hasn’t been announced. Previous Axiom missions were commanded by retired NASA astronauts Michael López-Alegría, the company’s chief astronaut, and Peggy Whitson, the company’s vice president of human spaceflight.

“All four previous [Axiom] missions have expanded the global community of space explorers, diversifying scientific investigations in microgravity, and providing significant insight that is benefiting the development of our next-generation space station, Axiom Station,” Jonathan Cirtain, president and CEO of Axiom, said in a news release.

As part of Axiom’s new contract with NASA, Voyager Technologies will provide payload services for Axiom’s fifth mission. Voyager, a defense, national security, and space technology company, recently announced a four-year, $24.5 million contract with NASA’s Johnson Space Center in Houston to provide mission management services for the ISS.

Axiom also announced today, Feb. 12, that it has secured $350 million in a financing round led by Type One Ventures and Qatar Investment Authority.

The company shared in a news release that the funding will support the continued development of its commercial space station, known as Axiom Station, and the production of its Axiom Extravehicular Mobility Unit (AxEMU) under its NASA spacesuit contract.

NASA awarded Axiom a contract in January 2020 to create Axiom Station. The project is currently underway.

"Axiom Space isn’t just building hardware, it’s building the backbone of humanity’s next era in orbit," Tarek Waked, Founding General Partner at Type One Ventures, said in a news release. "Their rare combination of execution, government trust, and global partnerships positions them as the clear successor-architect for life after the ISS. This is how the United States continues to lead in space.”

Houston edtech company closes oversubscribed $3M seed round

fresh funding

Houston-based edtech company TrueLeap Inc. closed an oversubscribed seed round last month.

The $3.3 million round was led by Joe Swinbank Family Limited Partnership, a venture capital firm based in Houston. Gamper Ventures, another Houston firm, also participated with additional strategic partners.

TrueLeap reports that the funding will support the large-scale rollout of its "edge AI, integrated learning systems and last-mile broadband across underserved communities."

“The last mile is where most digital transformation efforts break down,” Sandip Bordoloi, CEO and president of TrueLeap, said in a news release. “TrueLeap was built to operate where bandwidth is limited, power is unreliable, and institutions need real systems—not pilots. This round allows us to scale infrastructure that actually works on the ground.”

True Leap works to address the digital divide in education through its AI-powered education, workforce systems and digital services that are designed for underserved and low-connectivity communities.

The company has created infrastructure in Africa, India and rural America. Just this week, it announced an agreement with the City of Kinshasa in the Democratic Republic of Congo to deploy a digital twin platform for its public education system that will allow provincial leaders to manage enrollment, staffing, infrastructure and performance with live data.

“What sets TrueLeap apart is their infrastructure mindset,” Joe Swinbank, General Partner at Joe Swinbank Family Limited Partnership, added in the news release. “They are building the physical and digital rails that allow entire ecosystems to function. The convergence of edge compute, connectivity, and services makes this a compelling global infrastructure opportunity.”

TrueLeap was founded by Bordoloi and Sunny Zhang and developed out of Born Global Ventures, a Houston venture studio focused on advancing immigrant-founded technology. It closed an oversubscribed pre-seed in 2024.