Houston regenerative medicine company opens new lab at UH

cell therapy innovation

FibroBiologics is opening a unique new lab at the University of Houston's Technology Bridge. Photo by Natalie Harms/InnovationMap

Pete O’Heeron wants you to know that “Bohemian Rhapsody” was originally released as a B-side. What does this nugget about Queen have to do with regenerative medicine? For O’Heeron and his company, FibroBiologics, it means everything.

That’s because most scientists consider stem cells the A-side when it comes to the race to curing disease. But FibroBiologics has set its sights on fibroblasts. The most common cell in the body, fibroblasts are the main cell type in connective tissue.

“Everyone was betting on stem cells, and we started betting on fibroblasts,” says O’Heeron, who started the company in 2008 as SpinalCyte. “I think what we're going to see is that fibroblasts are going to end up winning, there are more robust, more that are lower cost cell, they have higher therapeutic values, higher immune modulation. They're just a better overall cell than the than the stem cells.”

Since a neurosurgeon and a dermatologist first introduced O’Heeron to the idea of using fibroblasts to regrow discs in the spine, the company has expanded its reach to include promising treatments for multiple sclerosis and cancer and in wound care. Imagine a world where doctors lay fibroblasts directly onto surgical incisions after surgery, cutting the time for healing in half.

FibroBiologics has organically written and filed more than 320 patents.

“It's quite a unique situation. I don’t think that in other areas of science that you have such a wide open area to go out and patent. It's just it was a brand new area nobody had been working on,” O’Heeron explains.

And soon, investors will be able to own a stake in the impressive work being forged in Houston. FibroBiologics, previously FibroGenesis, was formed in order to go public in a direct NASDAQ listing. The goal is to access the capital necessary to go to human trials. Earlier this year, the company also launched a crowdfunding campaign.

“We’ve had really fantastic results with animals and now we’re ready for humans,” says O’Heeron. “We've done small human trials, but we haven't done the large ones that are going to get the commercialization approval from the FDA.”

With that in mind, the company just signed a deal with University of Houston’s Innovation Center. On Thursday, September 7, FibroBiologics will dedicate the Newlin-Linscomb Lab for Cell Therapies in the UH Technology Bridge. The new lab is named for former player and color commentator for the Houston Rockets, Mike Newlin and his wife, Cindy, as well as Pam and Dan Linscomb, a founding partner of Kuhl-Linscomb, one of the largest wealth management companies in Houston.

Other big local names newly attached to the company are astronaut Kate Rubins and Elizabeth Shpall, the director of the cell therapy laboratory at MD Anderson Cancer Center. Both have joined FibroBiologics as members of its scientific advisory board.

To fill the lab, O’Heeron says that he is adding to his team as quickly as he is able. The barrier is the fact that there are few, if any people in the world with the exact qualifications he’s seeking.

“Anytime you're breaking new scientific ground, you can't really just go out and recruit someone with that background because it really doesn't exist,” he says. But he is willing to teach and challenge scientists who are the right fit, and is hoping to expand the team in the new lab.

But like Queen did in 1975, FibroBiologics is pioneering a category of its own. And that’s something worth betting on.

Space experts discussed the city's role in the space industry at a recent event. Photo via NASA

Overheard: Houston needs to strengthen infrastructure, workforce to maintain Space City status

eavesdropping in houston

In no time at all, humans will return to the moon and as they make the first spacewalks in fifty years — wearing suits designed in Houston — they will call down to earth, and only one city in the world will be named on the radio transmissions.

Houston is the Space City — but what will it take to maintain that moniker? This was a big topic of the Greater Houston Partnership's second annual State of Space event hosted on Tuesday, October 11.

A diverse and impressive panel discussed the Space City's future, the upcoming moon missions, commercializations, and more. If you missed the discussion, check out some key moments from the event.

"Houston has a significant role in all areas of Artemis."

— Vanessa Wyche, director of NASA's Johnson Space Center. "We have crew missions, robotic missions, and other technologies that will make up Artemis."

"The big mission we have is for Houston to remain the hub in human space flight moving forward."

— Wyche says, adding "for us to be the nexus and accelerator of research, innovation, and STEM, we need to work together for workforce development for the space economy."

"We're at a point were we can pivot to develop scalable products at a much lower cost — it really reduces the barrier of entry for commercial space partners."

— Peggy Guirgis, general manager of space systems for Collins Aerospace. "We're building in Houston because this is really an engineering hub," she adds, noting the industries and schools here that support the industry.

"Why Houston? Because of, more than anything, the sense of community."

— Steve Altemus, president and CEO of Intuitive Machines, noting the support behind building the Houston Spaceport and the existing Johnson Space Center, as well as all the other players within the space sector locally.

"At some point in the very near future we are going to land humans on the moon — the first woman on the moon, the first person of color on the moon — and we're going to say, 'Moon, Houston.' This is the only city in the world that's going to be said on those loops."

— Kate Rubins, NASA astronaut. "I feel very fortunate to be here."

"Right here in Houston — at the HoustonSpaceport, we're building a space where the Space Force can do classified work."

— Altemus says. "That's one area that I'd like to see grow."

"We need to continue to build a talent pipeline as well as generating a workforce that is able to keep pace with the rapidly growing space industry."

— Guirgis says.

"When people think about Houston, NASA has been the nexus and center of gravity, but all of Houston has been a magnet. It's a draw to come and work here."

— Rubins says. "One way to continue this is through infrastructure that's being built here — it's incredible. It's going to cement this as a place that you want to come if you're a commercial company and you want to partner with NASA, or you want to be a contractor for one of these other companies. ... And the startup scene is booming these days in Houston."

"We need to make sure that we have the world-class capabilities."

— Wyche says. "The workforce is so very important."

Here are three of the latest updates on new execs and advisory appointments from two Houston startups and a local venture group. Photo via Getty Images

3 Houston organizations announce strategic appointments across biotech and VC

short stories

Five Houston innovators have new roles they're excited about this spring. From new advisory board members to c-level execs, here's who's moving and shaking in Houston innovation.

The Artemis Fund names new vice president of finance and operations

Adrienne Mangual has a background in finance and consulting. Photo courtesy of Artemis

The Artemis Fund, a venture capital firm that funds female-founded startups with technology solutions in fintech, e-commerce tech, and care-tech, has announced a new member of its leadership.

Adrienne Mangual is the new vice president of finance and operations at the firm, joining Artemis's co-founders and general partners, Stephanie Campbell, Leslie Goldman, and Diana Murakhovskaya, along with Austin-based Juliette Richert, a senior analyst.

Mangual received her MBA from Rice University in 2019 after working 15 years in finance roles at J.P. Morgan and Key Energy Services. Over the past few years, she's worked in consulting positions with startups and technology.

"This is an exciting time to join The Artemis Fund as the fund is growing and our reach is expanding and continuing to make an impact on female founders," Mangual tells InnovationMap. "I am looking forward to supporting existing and future female founders and working with Diana, Stephanie, and Leslie as part of the team making investment decisions for the fund."

FibroBiologics appoints scientific advisory board member

Former astronaut Kate Rubins, who's spent a total of 300 days in space, has joined the a Houston company's scientific advisory board. Photo courtesy of FibroBiologics

Houston-based clinical-stage therapeutics company FibroBiologics announced the appointment of Kathleen “Kate” Rubins, Ph.D., to its scientific advisory board. A microbiologist and NASA astronaut, Rubins has conducted medical research on earth at academic institutions as well as on board the International Space Station.

“We are honored to welcome Dr. Rubins to our SAB,” says Pete O’Heeron, CEO and chairman of FibroBiologics, in a news release. “She has distinguished herself in both terrestrial research at the Salk and Whitehead Institutes and through her ethereal work on the International Space Station.

"It’s rare to have such a unique perspective on microbiology," he continues. "Dr. Rubins joins a board of world-renowned scientists who will help to guide us as we advance fibroblast cell-based therapeutics through preclinical and clinical development. We are the only company focused on this unique opportunity in leveraging fibroblasts as treatments for chronic diseases and Dr. Rubins will be a key advisor in our pursuit to bring relief to the patients.”

In 2016, Rubins completed her first spaceflight on Expedition 48/49, where she became the first person to sequence DNA in space. Most recently, she served on the ISS as a flight engineer for Expedition 63/64. Across her two flights, she has spent a total of 300 days in space, the fourth most days in space by a U.S. female astronaut, according to the release.

Cemvita Factory hires, promotes within its leadership team

Tara Karimi, co-founder and CTO, stands with Cemvita Factory's two new hires and recently promoted employee. Photo courtesy of Cemvita

Cemvita Factory has made big moves in its leadership team. The low-carbon biotech and synthetic biology solution provider has recently made three strategic appointments: Charles Nelson was hired as chief business officer, Roger A. Harris was promoted to chief commercial officer, and Alex Juminaga was recruited as head of strain development.

“Scaling to meet market demand requires the right team at the right time,” says Tara Karimi, co-founder and CTO of Cemvita, in a news release. “With Charlie, Roger, and Alex’s leadership, we’re well-positioned for growth at a time when the demand for decarbonization solutions is greater than ever.”

With over 10 years in product development, engineering, and technology commercialization experience, Nelson will oversee all aspects of sales, business development, and customer success.

“At Cemvita, we create sustainable solutions to challenges across heavy industries,” says Nelson in the release. “Our goal is to reinvent heavy industries in ways that speak to the future, reduce companies’ carbon footprints, and even create jobs; I’m delighted to help lead the charge.”

Harris originally joined Cemvita as vice president of technology commercialization a year ago and has over two decades of experience in research and development, and engineering. In his new role, he is responsible for scaling and commercializing the startup's technology.

“Cemvita is positioned incredibly well to support heavy industry in efforts to innovate, and to help oil and gas diversify offerings and reduce dependency on carbon-intensive products,” says Harris in the release. “It is an exciting time and I’m thrilled to be with Cemvita.”

Lastly, Alex Juminaga will lead the Cemvita biofoundry’s production of novel biomolecules. He brings over a decade of laboratory experience — specializing in metabolic engineering, protein expression/purification, enzyme kinetics and binding assays, analytical chemistry, and more.

“The field of synthetic biology is just getting started, with thousands of microbes yet to be discovered,” says Juminaga. “I’m excited to work alongside the brilliant scientists at Cemvita as we uncover new microbiomes and new uses for these tiny treasures.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

New Rice Brain Institute partners with TMC to award inaugural grants

brain trust

The recently founded Rice Brain Institute has named the first four projects to receive research awards through the Rice and TMC Neuro Collaboration Seed Grant Program.

The new grant program brings together Rice faculty with clinicians and scientists at The University of Texas Medical Branch, Baylor College of Medicine, UTHealth Houston and The University of Texas MD Anderson Cancer Center. The program will support pilot projects that address neurological disease, mental health and brain injury.

The first round of awards was selected from a competitive pool of 40 proposals, and will support projects that reflect Rice Brain Institute’s research agenda.

“These awards are meant to help teams test bold ideas and build the collaborations needed to sustain long-term research programs in brain health,” Behnaam Aazhang, Rice Brain Institute director and co-director of the Rice Neuroengineering Initiative, said in a news release.

The seed funding has been awarded to the following principal investigators:

  • Kevin McHugh, associate professor of bioengineering and chemistry at Rice, and Peter Kan, professor and chair of neurosurgery at the UTMB. McHugh and Kan are developing an injectable material designed to seal off fragile, abnormal blood vessels that can cause life-threatening bleeding in the brain.
  • Jerzy Szablowski, assistant professor of bioengineering at Rice, and Jochen Meyer, assistant professor of neurology at Baylor. Szablowski and Meyer are leading a nonsurgical, ultrasound approach to deliver gene-based therapies to deep brain regions involved in seizures to control epilepsy without implanted electrodes or invasive procedures.
  • Juliane Sempionatto, assistant professor of electrical and computer engineering at Rice, and Aaron Gusdon, associate professor of neurosurgery at UTHealth Houston. Sempionatto and Gusdon are leading efforts to create a blood test that can identify patients at high risk for delayed brain injury following aneurysm-related hemorrhage, which could lead to earlier intervention and improved outcomes.
  • Christina Tringides, assistant professor of materials science and nanoengineering at Rice, and Sujit Prabhu, professor of neurosurgery at MD Anderson, who are working to reduce the risk of long-term speech and language impairment during brain tumor removal by combining advanced brain recordings, imaging and noninvasive stimulation.

The grants were facilitated by Rice’s Educational and Research Initiatives for Collaborative Health (ENRICH) Office. Rice says that the unique split-funding model of these grants could help structure future collaborations between the university and the TMC.

The Rice Brain Institute launched this fall and aims to use engineering, natural sciences and social sciences to research the brain and reduce the burden of neurodegenerative, neurodevelopmental and mental health disorders. Last month, the university's Shepherd School of Music also launched the Music, Mind and Body Lab, an interdisciplinary hub that brings artists and scientists together to study the "intersection of the arts, neuroscience and the medical humanities." Read more here.

Your data center is either closer than you think or much farther away

houston voices

A new study shows why some facilities cluster in cities for speed and access, while others move to rural regions in search of scale and lower costs. Based on research by Tommy Pan Fang (Rice Business) and Shane Greenstein (Harvard).

Key findings:

  • Third-party colocation centers are physical facilities in close proximity to firms that use them, while cloud providers operate large data centers from a distance and sell access to virtualized computing resources as on‑demand services over the internet.
  • Hospitals and financial firms often require urban third-party centers for low latency and regulatory compliance, while batch processing and many AI workloads can operate more efficiently from lower-cost cloud hubs.
  • For policymakers trying to attract data centers, access to reliable power, water and high-capacity internet matter more than tax incentives.

Recent outages and the surge in AI-driven computing have made data center siting decisions more consequential than ever, especially as energy and water constraints tighten. Communities invest public dollars on the promise of jobs and growth, while firms weigh long-term commitments to land, power and connectivity.

Against that backdrop, a critical question comes into focus: Where do data centers get built — and what actually drives those decisions?

A new study by Tommy Pan Fang (Rice Business) and Shane Greenstein (Harvard Business School) provides the first large-scale statistical analysis of data center location strategies across the United States. It offers policymakers and firms a clearer starting point for understanding how different types of data centers respond to economic and strategic incentives.

Forthcoming in the journal Strategy Science, the study examines two major types of infrastructure: third-party colocation centers that lease server space to multiple firms, and hyperscale cloud centers owned by providers like Amazon, Google and Microsoft.

Two Models, Two Location Strategies

The study draws on pre-pandemic data from 2018 and 2019, a period of relative geographic stability in supply and demand. This window gives researchers a clean baseline before remote work, AI demand and new infrastructure pressures began reshaping internet traffic patterns.

The findings show that data centers follow a bifurcated geography. Third-party centers cluster in dense urban markets, where buyers prioritize proximity to customers despite higher land and operating costs. Cloud providers, by contrast, concentrate massive sites in a small number of lower-density regions, where electricity, land and construction are cheaper and economies of scale are easier to achieve.

Third-party data centers, in other words, follow demand. They locate in urban markets where firms in finance, healthcare and IT value low latency, secure storage, and compliance with regulatory standards.

Using county-level data, the researchers modeled how population density, industry mix and operating costs predict where new centers enter. Every U.S. metro with more than 700,000 residents had at least one third-party provider, while many mid-sized cities had none.

ImageThis pattern challenges common assumptions. Third-party facilities are more distributed across urban America than prevailing narratives suggest.

Customer proximity matters because some sectors cannot absorb delay. In critical operations, even slight pauses can have real consequences. For hospital systems, lag can affect performance and risk exposure. And in high-frequency trading, milliseconds can determine whether value is captured or lost in a transaction.

“For industries where speed is everything, being too far from the physical infrastructure can meaningfully affect performance and risk,” Pan Fang says. “Proximity isn’t optional for sectors that can’t absorb delay.”

The Economics of Distance

For cloud providers, the picture looks very different. Their decisions follow a logic shaped primarily by cost and scale. Because cloud services can be delivered from afar, firms tend to build enormous sites in low-density regions where power is cheap and land is abundant.

These facilities can draw hundreds of megawatts of electricity and operate with far fewer employees than urban centers. “The cloud can serve almost anywhere,” Pan Fang says, “so location is a question of cost before geography.”

The study finds that cloud infrastructure clusters around network backbones and energy economics, not talent pools. Well-known hubs like Ashburn, Virginia — often called “Data Center Alley” — reflect this logic, having benefited from early network infrastructure that made them natural convergence points for digital traffic.

Local governments often try to lure data centers with tax incentives, betting they will create high-tech jobs. But the study suggests other factors matter more to cloud providers, including construction costs, network connectivity and access to reliable, affordable electricity.

When cloud centers need a local presence, distance can sometimes become a constraint. Providers often address this by working alongside third-party operators. “Third-party centers can complement cloud firms when they need a foothold closer to customers,” Pan Fang says.

That hybrid pattern — massive regional hubs complementing strategic colocation — may define the next phase of data center growth.

Looking ahead, shifts in remote work, climate resilience, energy prices and AI-driven computing may reshape where new facilities go. Some workloads may move closer to users, while others may consolidate into large rural hubs. Emerging data-sovereignty rules could also redirect investment beyond the United States.

“The cloud feels weightless,” Pan Fang says, “but it rests on real choices about land, power and proximity.”

---

This article originally appeared on Rice Business Wisdom. Written by Scott Pett.

Pan Fang and Greenstein (2025). “Where the Cloud Rests: The Economic Geography of Data Centers,” forthcoming in Strategy Science.

Houston climbs to top 10 spot on North American tech hubs index

tech report

Houston already is the Energy Capital of the World, and now it’s gaining ground as a tech hub.

On Site Selection magazine’s 2026 North American Tech Hub Index, Houston jumped to No. 10 from No. 16 last year. The index relies on data from Site Selection as well as data from CBRE, CompTIA and TeleGeography to rank the continent’s tech hotspots. The index incorporates factors such as internet connectivity, tech talent and facility projects for tech companies.

In 2023, the Greater Houston Partnership noted the region had “begun to receive its due as a prominent emerging tech hub, joining the likes of San Francisco and Austin as a major player in the sector, and as a center of activity for the next generation of innovators and entrepreneurs.”

The Houston-area tech sector employs more than 230,000 people, according to the partnership, and generates an economic impact of $21.2 billion.

Elsewhere in Texas, two other metros fared well on the Site Selection index:

  • Dallas-Fort Worth nabbed the No. 1 spot, up from No. 2 last year.
  • Austin rose from No. 8 last year to No. 7 this year.

San Antonio slid from No. 18 in 2025 to No. 22 in 2026, however.

Two economic development officials in DFW chimed in about the region’s No. 1 ranking on the index:

  • “This ranking affirms what we’ve long seen on the ground — Dallas-Fort Worth is a top-tier technology and innovation center,” said Duane Dankesreiter, senior vice president of research and innovation at the Dallas Regional Chamber. “Our region’s scale, talent base, and diverse strengths … continue to set DFW apart as a national leader.”
  • “Being recognized as the top North American tech hub underscores the strength of the entire Dallas-Fort Worth region as a center of innovation and next-generation technology,” said Robert Allen, president and CEO of the Fort Worth Economic Development Partnership.

While not directly addressing Austin’s Site Selection ranking, Thom Singer, CEO of the Austin Technology Council, recently pondered whether Silicon Hills will grow “into the kind of community that other cities study for the right reasons.”

“Austin tech is not a club. It is not a scene. It is not a hashtag, a happy hour, or any one place or person,” Singer wrote on the council’s blog. “Austin tech is an economic engine and a global brand, built by thousands of people who decided to take a risk, build something, hire others, and be part of a community that is still young enough to reinvent itself.”

South of Austin, Port San Antonio is driving much of that region’s tech activity. Occupied by more than 80 employers, the 1,900-acre tech and innovation campus was home to 18,400 workers in 2024 and created a local economic impact of $7.9 billion, according to a study by Zenith Economics.

“Port San Antonio is a prime example of how innovation and infrastructure come together to strengthen [Texas’] economy, support thousands of good jobs, and keep Texas competitive on the global stage,” said Kelly Hancock, the acting state comptroller.