At Rezvani Lab in MD Anderson Cancer Center, scientists train immune cells to fight cancer. Photo via Getty Images

Replay, a genome-writing company headquartered in San Diego, has announced that its first patient has been dosed with an engineered T-Cell Receptor Natural Killer (TCR-NK) cell therapy for relapsed or refractory multiple myeloma.

What does that have to do with Houston? Last year, Replay incorporated a first-in-class engineered TCR-NK cell therapy product company, Syena, using technology developed by Dr. Katy Rezvani at The University of Texas MD Anderson Cancer Center.

Rezvani, a professor of stem cell transplantation and cellular therapy, is the force behind MD Anderson’s Rezvani Lab, a group of 55 people, all focused on harnessing natural killer cells to combat cancer.

“Everybody thinks that the immune system is fighting viruses and infections, but I feel our immune system is capable of recognizing and killing abnormal cells or cells that are becoming cancerous and they're very powerful. This whole field of immunotherapy really refers to the power of the immune system,” Rezvani tells InnovationMap.

Dr. Katy Rezvani is a professor of stem cell transplantation and cellular therapy and the force behind MD Anderson’s Rezvani Lab, which is focused on harnessing natural killer cells to combat cancer. Photo via mdanderson.org

At Rezvani Lab, scientists train immune cells to fight cancer. While cancer drugs like chemotherapy are still the norm, immunotherapy has gained ground, led by Houston research, including the work of Nobel laureate Jim Allison. The harnessed cells are taught to attack cancerous cells, while ignoring healthy ones, says Rezvani. “We’re turning them into heat-seeking missiles,” she explains.

However, there must be a beacon to signal to those “missiles” that there is something to attack. Much of the field has used chimeric antigen receptors (CARs) to achieve that. But they have limitations.

“CARs can only recognize beacons that sit on the surface of the tumor cells,” Rezvani says. “So basically, it's like the tumor cell has to have a hat on it.”

She says that this usually means that the targets that send off a signal are relatively limited, mostly blood cancers. Using T cell receptors (TCRs) may be able to open up the field to look beyond the “hat.” In other words, TCRs can peer inside cells and see what differentiates a tumor cell from healthy cells. With Replay, Rezvani Lab has developed a first-in-class and first-in-human approach of engineering natural killer cells to express the TCR.

There are six different FDA-approved products that use CAR-T cells, but Rezvani says that her TCR-NK-based technology, though still in its early phases, shows great promise.

“We could use it to target many different types of antigens, many different types of cancers, especially solid tumors," she explains. "These cell therapies have a lot of potential — we call them living drugs… It's not like chemotherapy where you have to keep giving different multiple cycles, these cells are very long lived.”

Rezvani, who started her career in London, says that Houston has been instrumental in the success of her lab.

“There are so many opportunities because we have access to some of the most brilliant minds in research,” Rezvani says. “We have some of the best clinicians in the world. We have patients who come to us who are willing to participate in our clinical trials — really put their trust in us — and are committed and want to participate in these clinical studies.”

The role of funding also plays a part. As Rezvani admitted, bringing a new technology to the market is expensive. The philanthropists who help support trials can’t be forgotten among Houston’s finest.

Whether or not Syena produces the first TCR-NK product on the market, Rezvani is enthusiastic and hopeful for the future of her patients.

“The field of immunotherapy is really expanding, the field of cell therapies is expanding, and there is so much promise,” she says. “The promise of AI, big data, all the engineering tools that we have available, the promise of CRISPR — all of that is going to bring what we've learned from biology, from basic science, together to help us make the cell therapies that are going to be safe and and also very effective for our patients.”

7 Hills Pharma, an innovative immunotherapy company, was awarded a $13.5 million grant from the Cancer Prevention and Research Institute of Texas. Photo via Getty Images

Houston immunotherapy company to use $13.5M grant to further develop cancer treatments

future of pharma

Between Bangalore and Chennai in the Indian state of Andhra Pradesh, you’ll find the town of Tirupati. It’s home to seven peaks that host a Hindu temple complex devoted to a form of Vishnu, Venkateshvara. It is also the region from which Upendra Marathi originally hails. It’s where his father, and many other family members, attended medical school.

“My father’s first job was to take care of the pilgrims,” recalls Marathi.

It's only natural that his groundbreaking Houston company would be named 7 Hills Pharma.

“That sort of selflessness and giving back, I wanted to embody it in the name of the company,” Marathi says.

Now, 7 Hills Pharma is announcing that last month, it was awarded a $13.5 million grant from the Cancer Prevention and Research Institute of Texas (CPRIT). That’s on top of more than $13 million in NIH grants, making the company the second largest recipient of SBIR/STTR grants in Texas.

Launched in 2016, 7 Hills Pharma is working to develop drugs that can overcome the all-too-common problem of immunotherapy resistance. Thanks to the Nobel Prize-winning work of Jim Allison in the realm of immuno-oncology, the field was “very hot” at the time, says Marathi, particularly in Houston.

So what has 7 Hills developed? Oral small molecules that activate integrins — the receptors that allow cells to bind to one another — allowing for the cell-to-cell interactions that create a successful immune response to immune checkpoint inhibitors such as Yervoy. In other words, they have created capsules that increase the effectiveness of drugs that allow the body’s own immune response to fight cancers.

But that’s not all. Tests have shown that the same discovery, called alintegimod, can also augment the effectiveness of vaccines. The pill, which co-founder and co-inventor Peter Vanderslice calls “a beautiful way to amplify the vaccines,” can potentially be applied to anything from influenza to coronavirus.

Their greatest challenge, says Vanderslice, is the very fact that the technology is so novel.

“Most large pharmas are very risk averse,” he explains. “They only want to do ‘me-too’ kinds of drugs.”

7 Hills Pharma is the third company Marathi, both a PhD and an MBA, has helped to found based on technology he co-invented. Vanderslice is director of the molecular cardiology research laboratories at The Texas Heart Institute.

“It’s very much a homegrown company,” Marathi says.

And a small one, at least for now. Working out of JLabs@TMC, the full-time team is currently just Marathi and Siddhartha De, the senior director of development. Marathi convinced De to transplant himself and his family from India for the purpose of assisting 7 Hills with preparing its drugs for clinical readiness.

The CPRIT funds will allow 7 Hills Pharma to hire several long-time team members full-time and with benefits.

“The bringing of talent and bringing of technology to TMC and what was born at Texas Heart Institute is rather remarkable,” says Rob Bent, the company’s director of operations.

The next step for 7 Hills Pharma is a Phase Ib/IIa clinical trial in patients with treatment-resistant solid tumors. And the team just finalized the deck that will help raise another $10 million to $250 million in the company’s series A. And hopefully sooner rather than later, a new set of medical pilgrims will be thanking 7 Hill Pharma for its care.

Three Houston innovators to know this week include Kim Raath of Topl, Gaurav Khandelwal of ChaiOne, and Nobel Prize winner Jim Allison. Courtesy photos

3 Houston innovators to know this week

Who's who

This week's Houston innovators to know include a blockchain expert with insight on how COVID-19 is affecting supply chain, a Houston tech leader with a logistics software solution, and a streamable story on cancer treatment innovation.

Kim Raath, CEO and co-founder of Topl

Photo courtesy of Topl

Amid the negativity the COVID-19 news, one Houston startup had an exciting announcement. It reworked its C-suite and Kim Raath, who just finished Ph.D in statistics and a Master's in economics at Rice University, has transitioned into the CEO role. Raath and her co-founders, James Aman and Chris Georgen, recently convened to re-envision the company's next phase.

"It was definitely a cool experience for us as founders to go through together, but I'm glad that all three of us came out of this excited about what we're doing moving forward," says Raath. Read more.

Gaurav Khandelwal, CEO and founder of ChaiOne

Photo courtesy of ChaiOne

Houston tech company ChaiOne recently announced the soft launch of Velostics, the "slack" for logistics that solve wait times and cash flow challenges in the supply chain and logistics industry. The digital logistics platform is set to aid the struggling supply chain as surging demands stretch suppliers, offering their platform free for 60 days.

"At ChaiOne we have a history of helping Houstonians whenever disaster strikes," says CEO and founder, Gaurav Khandelwal. "We created a disaster connect app during Hurricane Harvey for free that connected people with the resources they need. Velostics by pure happenstance happened to be ready for situations like [the coronavirus] when there's a lot of parties that need to collaborate." Read more.

James Allison, chair of Immunology and executive director of the Immunotherapy Platform at MD Anderson Cancer Center

Jim Allison MD Anderson

Photo courtesy of MD Anderson Cancer Center

In a time when our health care heroes are serving on the front lines of the coronavirus, it's a great reminder of the work they all do round — from the research labs and academic institutions to the patient rooms. Jim Allison, a researcher in immunotherapy for MD Anderson Cancer Center recently took home the Nobel Prize for his work. He went on to be the subject of a documentary that premiered at SXSW last year, and that film will be coming to a TV near you.

Jim Allison: Breakthrough premieres on Independent Lens at 9 pm Monday, April 27, on PBS, PBS.org, and the PBS Video App. Read more.

Houston's Nobel Prize winner, Jim Allison, is the star of Breakthrough, which premieres on Independent Lens at 9 pm Monday, April 27, on PBS, PBS.org, and the PBS Video App. Photo via SXSW.com

Documentary featuring Houston Nobel Prize winner to air on PBS

to-watch list

Not all heroes wear capes. In fact, our current coronavirus heroes are donning face masks as they save lives. One local health care hero has a different disease as his enemy, and you'll soon be able to stream his story.

Dr. James "Jim" Allison won the 2018 Nobel Prize in Physiology or Medicine for his work in battling cancer by treating the immune system — rather than the tumor. Allison, who is the chair of Immunology and executive director of the Immunotherapy Platform at MD Anderson Cancer Center, has quietly and often, singularly, waged war with cancer utilizing this unique approach.

The soft-spoken trailblazer is the subject of an award-winning documentary, Jim Allison: Breakthrough, which will air on PBS and its streaming channels on Monday, April 27 at 9 pm (check local listings for channel information). Lauded as "the most cheering film of the year" by the Washington Post, the film follows Allison's personal journey to defeat cancer, inspired and driven by the disease killed his mother.

Breakthrough is narrated by Woody Harrelson and features music by Willie Nelson, adding a distinct hint of Texana. (The film was a star at 2019's South by Southwest film festival.) The documentary charts Alice, Texas native as he enrolls at the University of Texas, Austin and ultimately, cultivates an interest in T cells and the immune system — and begins to frequent Austin's legendary music scene. Fascinated by the immune system's power to protect the body from disease, Allison's research soon focuses on how it can be used to treat cancer.

Viewers will find Allison charming, humble, and entertaining: the venerable doctor is also an accomplished blues harmonica player. Director Bill Haney weaves Allison's personal story with the medical case of Sharon Belvin, a patient diagnosed with melanoma in 2004 who soon enrolled in Allison's clinical trials. Belvin has since been entirely cancer-free, according to press materials.

"We are facing a global health challenge that knows no boundaries or race or religion, and we are all relying on gifted and passionate scientists and healthcare workers to contain and ultimately beat this thing," said Haney, in a statement. "Jim Allison and the unrelenting scientists like him are my heroes – and I'll bet they become yours!"

Jim Allison: Breakthrough premieres on Independent Lens at 9 pm Monday, April 27, on PBS, PBS.org, and the PBS Video App.

------

This article originally ran on CultureMap.

Jim Allison's groundbreaking work with T cells helped him net the award. Photo courtesy of MD Anderson Cancer Center

Houston scientist wins Nobel Prize for breakthrough cancer treatment

Research Recognition

A University of Texas MD Anderson Cancer Center scientist has been lauded for his cancer research. Jim Allison, Ph.D., was announced as the recipient of the 2018 Nobel Prize in Physiology or Medicine on October 1.

Allison, who is the chair of Immunology and executive director of the Immunotherapy Platform, is the first MD Anderson scientist to receive the world's most coveted award for discoveries in the fields of life sciences and medicine. Allison won for his work in launching an effective new way to attack cancer by treating the immune system rather than the tumor, according to a release.

"I'm honored and humbled to receive this prestigious recognition," Allison says in a statement. "A driving motivation for scientists is simply to push the frontiers of knowledge. I didn't set out to study cancer, but to understand the biology of T cells, these incredible cells to travel our bodies and work to protect us."

Allison shares the award with Tasuku Honjo, M.D., Ph.D., of Kyoto University in Japan. When announcing the honor, the Nobel Assembly of Karolinska Institute in Stockholm noted in a statement that "stimulating the ability of our immune system to attack tumor cells, this year's Nobel Prize laureates have established an entirely new principle for cancer therapy."

The prize recognizes Allison's basic science discoveries on the biology of T cells, the adaptive immune system's soldiers, and his invention of immune checkpoint blockade to treat cancer. According to MD Anderson, Allison's crucial insight was to block a protein on T cells that acts as a brake on their activation, freeing the T cells to attack cancer. He developed an antibody to block the checkpoint protein CTLA-4 and demonstrated the success of the approach in experimental models.

Allison's work led to the development of the first immune checkpoint inhibitor drug which would become the first to extend the survival of patients with late-stage melanoma. Follow-up studies show 20 percent of those treated live for at least three years, with many living for 10 years and beyond, unprecedented results, according to the cancer center.

"Jim Allison's accomplishments on behalf of patients cannot be overstated," says MD Anderson president Peter WT Pisters, M.D., in a statement. "His research has led to life-saving treatments for people who otherwise would have little hope. The significance of immunotherapy as a form of cancer treatment will be felt for generations to come."

"I never dreamed my research would take the direction it has," Allison adds. "It's a great, emotional privilege to meet cancer patients who've been successfully treated with immune checkpoint blockade. They are living proof of the power of basic science, of following our urge to learn and to understand how things work."

---

This story originally appeared on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston hospital names leading cancer scientist as new academic head

new hire

Houston Methodist Academic Institute has named cancer clinician and scientist Dr. Jenny Chang as its new executive vice president, president, CEO, and chief academic officer.

Chang was selected following a national search and will succeed Dr. H. Dirk Sostman, who will retire in February after 20 years of leadership. Chang is the director of the Houston Methodist Dr. Mary and Ron Neal Cancer Center and the Emily Herrmann Presidential Distinguished Chair in Cancer Research. She has been with Houston Methodist for 15 years.

Over the last five years, Chang has served as the institute’s chief clinical science officer and is credited with strengthening cancer clinical trials. Her work has focused on therapy-resistant cancer stem cells and their treatment, particularly relating to breast cancer.

Her work has generated more than $35 million in funding for Houston Methodist from organizations like the National Institutes of Health and the National Cancer Institute, according to the health care system. In 2021, Dr. Mary Neal and her husband Ron Neal, whom the cancer center is now named after, donated $25 million to support her and her team’s research on advanced cancer therapy.

In her new role, Chang will work to expand clinical and translational research and education across Houston Methodist in digital health, robotics and bioengineered therapeutics.

“Dr. Chang’s dedication to Houston Methodist is unparalleled,” Dr. Marc L. Boom, Houston Methodist president and CEO, said in a news release. “She is committed to our mission and to helping our patients, and her clinical expertise, research innovation and health care leadership make her the ideal choice for leading our academic mission into an exciting new chapter.”

Chang is a member of the American Association of Cancer Research (AACR) Stand Up to Cancer Scientific Advisory Council. She earned her medical degree from Cambridge University in England and completed fellowship training in medical oncology at the Royal Marsden Hospital/Institute for Cancer Research. She earned her research doctorate from the University of London.

She is also a professor at Weill Cornell Medical School, which is affiliated with the Houston Methodist Academic Institute.

Texas A&M awarded $1.3M federal grant to develop clean energy tech from electronic waste

seeing green

Texas A&M University in College Station has received a nearly $1.3 million federal grant for development of clean energy technology.

The university will use the $1,280,553 grant from the U.S. Department of Energy to develop a cost-effective, sustainable method for extracting rare earth elements from electronic waste.

Rare earth elements (REEs) are a set of 17 metallic elements.

“REEs are essential components of more than 200 products, especially high-tech consumer products, such as cellular telephones, computer hard drives, electric and hybrid vehicles, and flat-screen monitors and televisions,” according to the Eos news website.

REEs also are found in defense equipment and technology such as electronic displays, guidance systems, lasers, and radar and sonar systems, says Eos.

The grant awarded to Texas A&M was among $17 million in DOE grants given to 14 projects that seek to accelerate innovation in the critical materials sector. The federal Energy Act of 2020 defines a critical material — such as aluminum, cobalt, copper, lithium, magnesium, nickel, and platinum — as a substance that faces a high risk of supply chain disruption and “serves an essential function” in the energy sector.

“DOE is helping reduce the nation’s dependence on foreign supply chains through innovative solutions that will tap domestic sources of the critical materials needed for next-generation technologies,” says U.S. Energy Secretary Jennifer Granholm. “These investments — part of our industrial strategy — will keep America’s growing manufacturing industry competitive while delivering economic benefits to communities nationwide.”

------

This article originally appeared on EnergyCapital.

Biosciences startup becomes Texas' first decacorn after latest funding

A Dallas-based biosciences startup whose backers include millionaire investors from Austin and Dallas has reached decacorn status — a valuation of at least $10 billion — after hauling in a series C funding round of $200 million, the company announced this month. Colossal Biosciences is reportedly the first Texas startup to rise to the decacorn level.

Colossal, which specializes in genetic engineering technology designed to bring back or protect various species, received the $200 million from TWG Global, an investment conglomerate led by billionaire investors Mark Walter and Thomas Tull. Walter is part owner of Major League Baseball’s Los Angeles Dodgers, and Tull is part owner of the NFL’s Pittsburgh Steelers.

Among the projects Colossal is tackling is the resurrection of three extinct animals — the dodo bird, Tasmanian tiger and woolly mammoth — through the use of DNA and genomics.

The latest round of funding values Colossal at $10.2 billion. Since launching in 2021, the startup has raised $435 million in venture capital.

In addition to Walter and Tull, Colossal’s investors include prominent video game developer Richard Garriott of Austin and private equity veteran Victor Vescov of Dallas. The two millionaires are known for their exploits as undersea explorers and tourist astronauts.

Aside from Colossal’s ties to Dallas and Austin, the startup has a Houston connection.

The company teamed up with Baylor College of Medicine researcher Paul Ling to develop a vaccine for elephant endotheliotropic herpesvirus (EEHV), the deadliest disease among young elephants. In partnership with the Houston Zoo, Ling’s lab at the Baylor College of Medicine has set up a research program that focuses on diagnosing and treating EEHV, and on coming up with a vaccine to protect elephants against the disease. Ling and the BCMe are members of the North American EEHV Advisory Group.

Colossal operates research labs Dallas, Boston and Melbourne, Australia.

“Colossal is the leading company working at the intersection of AI, computational biology, and genetic engineering for both de-extinction and species preservation,” Walter, CEO of TWG Globa, said in a news release. “Colossal has assembled a world-class team that has already driven, in a short period of time, significant technology innovations and impact in advancing conservation, which is a core value of TWG Global.”

Well-known genetics researcher George Church, co-founder of Colossal, calls the startup “a revolutionary genetics company making science fiction into science fact.”

“We are creating the technology to build de-extinction science and scale conservation biology,” he added, “particularly for endangered and at-risk species.”