This week's roundup of Houston innovators includes Daniel Powell of Spark Biomedical, Carrie Colbert of Curate Capital, and Carson Hager of SafeFun. Courtesy photos

Editor's note: In this week's roundup of Houston innovators to know, I'm introducing you to three local innovators across industries — venture capital, medical devices, and software — recently making headlines in Houston innovation.

Daniel Powell, CEO of Spark Biomedical

A new medical device created in Houston is revolutionizing opioid withdrawal treatment. Photo via sparkbiomedical.com

Houston-based Spark Biomedical has created an opioid withdrawal treatment device known as the Sparrow Therapy System. It's worn over the ear and sends mild electrical signals to trigger cranial nerves that release endorphins that the body has stopped producing on its own during opioid use. These endorphins help the user to make clearer, more logical decisions as they come off of the drug.

"If you ask 100 people who've gone through opioid withdrawal, I would bet 99 of them will tell you they thought they were going to die," Spark BioMed CEO Daniel Powell says. "Giving them the ability to manage that is huge. It's the first step towards addiction recovery. It's not solving the addiction, but it is an absolute barrier to move forward."

Carrie Colbert, general partner at Curate Capital

Carrie Colbert saw an opportunity is funding female-founded companies, and she's taking it. Photo courtesy of Curate Capital

Carrie Colbert has gone from energy executive to fashion and lifestyle content creation to her latest venture — venture investment. With her multifaceted career, she's grown her network across industries and platforms and now some of her followers have become Curate Capital's limited partners.

"Instagram turned out to be one of the best networking tools for me," Colbert says. "You can connect with people wherever they are and wherever you are." Read more.

Carson Hager, president at SafeFun

A Houston entrepreneur created a free smartphone app to easily track and share COVID-19 testing results. Photo courtesy of SafeFun

Last year, Carson Hager felt helpless as he saw Houston restaurants and bars being shut down amid the COVID-19 pandemic.

"I was thinking what's it going to take for people to be able to feel comfortable to go back out again and go out to bars and restaurants, gyms, salons, club, etcetera," he says.

In April 2020, he decided to act. And with the help of a few programmer friends pulling long hours for about 100 days straight, Hager created SafeFun, a Houston-based digital health passport that allows users to voluntarily and easily share COVID-19 test results and information. Read more.

A new medical device created in Houston is revolutionizing opioid withdrawal treatment. Photo via sparkbiomedical.com

Houston med-tech companies partner on wearable device for opioid withdrawal

treating addiction

Houston-based Spark Biomedical has created a revolutionary wearable device that provides unprecedented levels of opioid withdrawal relief.

The device known as the Sparrow Therapy System is worn over the ear for five to seven days and sends mild electrical signals to trigger cranial nerves that sit near the skin's surface.

Once activated, the nerves release endorphins that the body has stopped producing on its own during opioid use. The endorphins satisfy the opioid receptors and in turn reduce or prevent the intense symptoms that often come along with opioid withdrawal. According to Spark BioMed CEO Daniel Powell, the technology also helps patients better control their "flight or fight mechanisms," allowing them to make clearer, more logical decisions as they come off of the drug.

"If you ask 100 people who've gone through opioid withdrawal, I would bet 99 of them will tell you they thought they were going to die," Powell says. "Giving them the ability to manage that is huge. It's the first step towards addiction recovery. It's not solving the addiction, but it is an absolute barrier to move forward."

The product was approved by the FDA in January of 2020, after clinical trials showed that the Sparrow could meaningfully reduce withdrawal symptoms in the first hour of use. According to Powell, roughly a third of patients in the trial were completely out of withdrawal and patients' Clinical Opioid Withdrawal Scales scores reduced by more than 53 percent across the board.

Spark, which won Venture Houston's inaugural pitch competition earlier this year, partnered with Houston-based Velentium (which also happened to grow 93 percent last year after partnering with General Motors on Project V) to bring the product from concept to commercial physician prescribed product. "We needed a more sophisticated design house to help us finish it," Powell says.

The up-and-comers were connected through one of Spark's investors. Powell, in a previous career, had also sold a neurostimulator that Velentium CTO Randy Armstrong had invented.

"You're seeing more and more Houston centric medical innovation than we've ever seen before," says Velentium CEO Dan Purvis. "And the cool thing about that is there ends up being a camaraderie amongst entrepreneurs, medical researchers and scientists."

And though the release of Sparrow marks a huge milestone, neither Spark of Velentium are stopping there. Moving forward, Spark aims to conduct a massive study on how a similar technology, dubbed the Roo, can aid infants born to opioid-dependent mothers wean from the drug.

The company also aims to create a next generation Sparrow with the help of Velentium, and will look at long-term uses of the product. Powell says that Spark will look to determine if the product can prevent relapses and help to cure addiction when worn daily or regularly.

"Our big, crazy, ambitious goal is can we actually help people recover from addiction," Powell says. "We're really not addressing psychology, that's going to be in cognitive behavioral therapy. But if we can remove the neurological results of drug use, we think we can make at least start to stack the deck in the favor of the patient versus having the deck stacked completely against them all the time."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH researchers develop breakthrough material to boost efficiency of sodium-ion batteries

eyes on clean energy

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

------

This article originally appeared on EnergyCapital.

Houston hospital names leading cancer scientist as new academic head

new hire

Houston Methodist Academic Institute has named cancer clinician and scientist Dr. Jenny Chang as its new executive vice president, president, CEO, and chief academic officer.

Chang was selected following a national search and will succeed Dr. H. Dirk Sostman, who will retire in February after 20 years of leadership. Chang is the director of the Houston Methodist Dr. Mary and Ron Neal Cancer Center and the Emily Herrmann Presidential Distinguished Chair in Cancer Research. She has been with Houston Methodist for 15 years.

Over the last five years, Chang has served as the institute’s chief clinical science officer and is credited with strengthening cancer clinical trials. Her work has focused on therapy-resistant cancer stem cells and their treatment, particularly relating to breast cancer.

Her work has generated more than $35 million in funding for Houston Methodist from organizations like the National Institutes of Health and the National Cancer Institute, according to the health care system. In 2021, Dr. Mary Neal and her husband Ron Neal, whom the cancer center is now named after, donated $25 million to support her and her team’s research on advanced cancer therapy.

In her new role, Chang will work to expand clinical and translational research and education across Houston Methodist in digital health, robotics and bioengineered therapeutics.

“Dr. Chang’s dedication to Houston Methodist is unparalleled,” Dr. Marc L. Boom, Houston Methodist president and CEO, said in a news release. “She is committed to our mission and to helping our patients, and her clinical expertise, research innovation and health care leadership make her the ideal choice for leading our academic mission into an exciting new chapter.”

Chang is a member of the American Association of Cancer Research (AACR) Stand Up to Cancer Scientific Advisory Council. She earned her medical degree from Cambridge University in England and completed fellowship training in medical oncology at the Royal Marsden Hospital/Institute for Cancer Research. She earned her research doctorate from the University of London.

She is also a professor at Weill Cornell Medical School, which is affiliated with the Houston Methodist Academic Institute.

Texas A&M awarded $1.3M federal grant to develop clean energy tech from electronic waste

seeing green

Texas A&M University in College Station has received a nearly $1.3 million federal grant for development of clean energy technology.

The university will use the $1,280,553 grant from the U.S. Department of Energy to develop a cost-effective, sustainable method for extracting rare earth elements from electronic waste.

Rare earth elements (REEs) are a set of 17 metallic elements.

“REEs are essential components of more than 200 products, especially high-tech consumer products, such as cellular telephones, computer hard drives, electric and hybrid vehicles, and flat-screen monitors and televisions,” according to the Eos news website.

REEs also are found in defense equipment and technology such as electronic displays, guidance systems, lasers, and radar and sonar systems, says Eos.

The grant awarded to Texas A&M was among $17 million in DOE grants given to 14 projects that seek to accelerate innovation in the critical materials sector. The federal Energy Act of 2020 defines a critical material — such as aluminum, cobalt, copper, lithium, magnesium, nickel, and platinum — as a substance that faces a high risk of supply chain disruption and “serves an essential function” in the energy sector.

“DOE is helping reduce the nation’s dependence on foreign supply chains through innovative solutions that will tap domestic sources of the critical materials needed for next-generation technologies,” says U.S. Energy Secretary Jennifer Granholm. “These investments — part of our industrial strategy — will keep America’s growing manufacturing industry competitive while delivering economic benefits to communities nationwide.”

------

This article originally appeared on EnergyCapital.