Xiaoyu Yang, a graduate student at Rice, is the lead author on a study published in the journal Science on smart cell design. Photo by Jeff Fitlow/ Courtesy Rice University

Bioengineers at Rice University have developed a “new construction kit” for building custom sense-and-respond circuits in human cells, representing a major breakthrough in the field of synthetic biology, which could "revolutionize" autoimmune disease and cancer therapeutics.

In a study published in the journal Science, the team focused on phosphorylation, a cellular process in the body in which a phosphate group is added to a protein, signaling a response. In multicellular organisms, phosphorylation-based signaling can involve a multistage, or a cascading-like effect. Rice’s team set out to show that each cycle in a cascade can be treated as an elementary unit, meaning that they can be reassembled in new configurations to form entirely novel pathways linking cellular inputs and outputs.

Previous research on using phosphorylation-based signaling for therapeutic purposes has focused on re-engineering pathways.

“This opens up the signaling circuit design space dramatically,” Caleb Bashor, assistant professor of bioengineering and biosciences and corresponding author on the study, said in a news release. “It turns out, phosphorylation cycles are not just interconnected but interconnectable … Our design strategy enabled us to engineer synthetic phosphorylation circuits that are not only highly tunable but that can also function in parallel with cells’ own processes without impacting their viability or growth rate.”

Bashor is the deputy director for the Rice Synthetic Biology Institute, which launched last year.

The Rice lab's sense-and-respond cellular circuit design is also innovative because phosphorylation occurs rapidly. Thus, the new circuits could potentially be programmed to respond to physiological events in minutes, compared to other methods, which take hours to activate.

Rice’s team successfully tested the circuits for sensitivity and their ability to respond to external signals, such as inflammatory issues. The researchers then used the framework to engineer a cellular circuit that can detect certain factors, control autoimmune flare-ups and reduce immunotherapy-associated toxicity.

“This work brings us a whole lot closer to being able to build ‘smart cells’ that can detect signs of disease and immediately release customizable treatments in response,” Xiaoyu Yang, a graduate student in the Systems, Synthetic and Physical Biology Ph.D. program at Rice who is the lead author on the study, said in a news release.

Ajo-Franklin, a professor of biosciences, bioengineering, chemical and biomolecular engineering and a Cancer Prevention and Research Institute of Texas Scholar, added “the Bashor lab’s work vaults us forward to a new frontier — controlling mammalian cells’ immediate response to change.”

These three entrepreneurs saw a need in their industries and created their own solutions. Photos courtesy

3 Houston innovators to know this week

Who's who

A true innovator is someone who's able to look past how something has been done for years — decades even — and be creative enough to find a better way to do it.

From redesigning conventional lab space to seeing a niche opportunity for luxury home rentals, these three innovators to know this week have made strides in changing the game.

Caleb Bashor, professor at Rice University

Photo courtesy of Caleb Bashor

Not all labs are created equal — or affordably. Caleb Bashor, a professor at Rice University, along with seven colleagues, created a DIY lab to further research efforts based at the university.

The DIY lab, eVOLVER, comprises three modules: a customizable "smart sleeve" housing and interface for each culture vessel, a fluidic module that controls movement of liquid in and out of each culture vessel, and a modular hardware infrastructure that simplifies high-volume bi-directional data flow by decoupling each parameter into individual microcontrollers.

"The prototype 16-chamber version of eVOLVER described in the new paper cost less than $2,000, cheaper than what a lab might pay for a single continuous culture bioreactor," Bashor says. Read more about the eVOLVER here.

Sébastien Long, founder and CEO of Lodgeur

Photo courtesy of Lodgeur

Sébastien Long ended up in Houston by chance, and the city ended up being a great place to take his luxe apartment rental business plan and turn it into a reality. Houston-based Lodgeur is a rental company that takes the convenience of Airbnb and adds in the luxury experience of a hotel.

Long identified stylish apartment complexes and built his business which now has a couple properties downtown that are attractive to a niche market of clientele.

"We're roughly split between leisure guests and business travelers," Long says. "They want to feel like they're staying in a home away from home." Read more about Lodgeur here.

Gustavo Sanchez, co-founder and CEO of Pandata Tech

Photo courtesy of Pandata Tech

In oil and gas, proper data management can be the difference of millions of dollars in savings. Pandata Tech can run a data quality check for its oil and gas clients — and even engages automation and machine learning for quicker, more thorough results.

Gustavo Sanchez, co-founder and CEO of the company, is looking to bring his data systems into new industries, like health care, where data management can be hectic, overwhelming, and crucial to life-saving opportunities.

"There's so much data, and it's so noisy, that it's hard to know whether the data can be trusted or not," Sanchez says. Read more about Pandata Tech here.

The DIY lab, called the eVOLVER, costs $2,000 less than a comparable setup. Photo courtesy of Rice University

Houston scientist creates a DIY lab concept for flexible and efficient work

Work space

Every scientist needs his or her own space, and each discipline calls for different types of tools and space requirements. Caleb Bashor, a professor at Rice University, along with seven colleagues, created a DIY lab to further research efforts based at the university.

Stemming from the need of a more customized study, Bashor and his team created a setup that combines the control of automated cell-culturing systems that can run continuously for months with the scale of high-throughput systems that grow dozens of cultures at once, according to a news release issued by Rice University.

The DIY lab, eVOLVER, comprises three modules: a customizable "smart sleeve" housing and interface for each culture vessel, a fluidic module that controls movement of liquid in and out of each culture vessel, and a modular hardware infrastructure that simplifies high-volume bi-directional data flow by decoupling each parameter into individual microcontrollers.

"The prototype 16-chamber version of eVOLVER described in the new paper cost less than $2,000, cheaper than what a lab might pay for a single continuous culture bioreactor," Bashor says in the release.

Bashor, who has been at the university since 2017, has worked in science for 15 years and received his post doctorate from Massachusetts Institute of Technology, where he met many of his colleagues that collaborated on eVOLVER.

"If you don't have something to do the job in the lab, you go and you build it," says Bashor. "It might take a few rounds of building and rebuilding, but eventually you get around to having it be something that gives you what you want. In this case, it's something a lot of different academic labs want now, we have actually given this out to dozens of labs."

The DIY initiative has made waves throughout the Rice student body, Bashor shares with InnovationMap. One graduate student, Brandon Wong, tasked to help with the project has shared a how-to for the DIY lab online.

"It's a basic research tool, it's exciting," says Bashor. It's something that can be leveraged for a lot of great research projects inside of the university."

Bashor and his team in the bioengineering department support lead cellular and biomolecular engineering research, which led them to create the lab.

"We turned to DIY electronics and we decided to build it ourselves," Bashor tells InnovationMap. "The process took about three years. We had to learn all of the tools that were out there for doing DIY work and a lot of these tools have showed up in the last ten years."

Rice University's department of bioengineering is a member of the Texas Medical Center and hosts interdisciplinary training programs at MD Anderson Cancer Center and Baylor College of Medicine, according to the school's website.

"This is one of the biggest centers in the world for immunotherapy, particularly clinical immunotherapy, and so we're working with people who do immunotherapy using my special engineering techniques, which mostly involve engineering the way that cells behave to try to more effectively kill cancer," says Bashor.

Caleb Bashor and his associates created the lab. Photo courtesy of Rice University

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston team uses CPRIT funding to develop nanodrug for cancer immunotherapy

cancer research

With a relative five-year survival rate of 50 percent, pancreatic cancer is a diagnosis nobody wants. At 60 percent, the prognosis for lung cancer isn’t much rosier. That’s because both cancers contain regulatory B cells (Bregs), which block the body’s natural immunity, making it harder to fight the enemies within.

Newly popular immunotherapies in a category known as STING agonists may stimulate natural cancer defenses. However, they can also increase Bregs while simultaneously causing significant side effects. But Wei Gao, assistant professor of pharmacology at the University of Houston College of Pharmacy, may have a solution to that conundrum.

Gao and her team have developed Nano-273, a dual-function drug, packaged in an albumin-based particle, that boosts the immune system to help it better fight pancreatic and lung cancers. Gao’s lab recently received a $900,000 grant from the Cancer Prevention and Research Institute of Texas (CPRIT) to aid in fueling her research into the nanodrug.

“Nano-273 both activates STING and blocks PI3Kγ—a pathway that drives Breg expansion, while albumin nanoparticles help deliver the drug directly to immune cells, reducing unwanted side effects,” Gao said in a press release. “This approach reduces harmful Bregs while boosting immune cells that attack cancer, leading to stronger and more targeted anti-tumor responses.”

In studies using models of both pancreatic and lung cancers, Nano-273 has shown great promise with low toxicity. Its best results thus far have involved using the drug in combination with immunotherapy or chemotherapy.

With the CPRIT funds, Gao and her team will be able to charge closer to clinical use with a series of important steps. Those include continuing to test Nano-273 alongside other drugs, including immune checkpoint inhibitors. Safety studies will follow, but with future patients in mind, Gao will also work toward improving her drug’s production, making sure that it’s safe and high-quality every time, so that it is eventually ready for trials.

Gao added: “If successful, this project could lead to a new type of immunotherapy that offers lasting tumor control and improved survival for patients with pancreatic and lung cancers, two diseases that urgently need better treatments."

Houston booms as No. 2 U.S. metro for new home construction

Construction Boom

Driven by population growth, more residential rooftops are popping up across Houston and the rest of Texas than anywhere else in America.

Using data from the U.S. Census Bureau and Zillow, Construction Coverage found 65,747 new residential units were authorized in greater Houston in 2024. That figure landed Houston in second place among major metro areas for the total number of housing permits, including those for single-family homes, apartments, and condos.

Just ahead of Houston was the Dallas-Fort Worth Metroplex, which took first place with 71,788 residential permits approved in 2024. In third place was the country’s largest metro, New York City (57,929 permits).Elsewhere in Texas, the Austin metro ranked sixth (32,294 permits), and the San Antonio metro ranked 20th (14,857 permits).

Construction Coverage also sorted major metro areas based on the number of new housing units authorized per 1,000 existing homes in 2024. Raleigh, North Carolina, held the No. 1 spot (28.8 permits per 1,000 existing homes), followed by Austin at No. 2 (28.6), DFW at No. 3 (22.2), Houston at No. 4 (21.6), and San Antonio at No. 13 (13.6).

A Newsweek analysis of Census Bureau data shows building permits for 225,756 new residential units were approved in 2024 in Texas — a trend fueled largely by activity in DFW, Houston, Austin, and San Antonio. That put Texas atop the list of states building the most residential units for the year.

Through the first eight months of last year, 145,901 permits for new residential units were approved in Texas, according to Census Bureau data. That’s nearly 80,000 permits shy of the 2024 total.

Among the states, Construction Coverage ranks Texas sixth for the number of residential building permits approved in 2024 per 1,000 existing homes (17.9).

Extra housing is being built in Texas to meet demand spurred by population growth. From April 2020 to July 2024, the state’s population increased 7.3 percent, the Census Bureau says.

While builders are busy constructing new housing in Texas, they’re not necessarily profiting a lot from homebuilding activity.

“Market conditions remain challenging, with two-thirds of builders reporting they are offering incentives to move buyers off the fence,” North Carolina homebuilder Buddy Hughes, chairman of the National Association of Home Builders, said in a December news release. “Meanwhile, builders are contending with rising material and labor prices, as tariffs are having serious repercussions on construction costs.”

5+ must-know application deadlines for Houston innovators

apply now

Editor's note: As 2026 ramps up, the Houston innovation scene is looking for the latest groups of innovative startups that'll make an impact. A number of accelerators and competitions have opened applications. Read below to see which might be a good fit for you or your venture. And take careful note of the deadlines. Please note: this article may be updated to include additional information and programs.

Did we miss an accelerator or competition accepting applications? Email innoeditor@innovationmap.com for editorial consideration.

2026 HCC Business Plan Competition

Deadline: Jan. 26

Details: HCC’s annual Business Plan Competition (BPC) is an opportunity for proposed, startup and existing entrepreneurs to develop focused plans to start or grow their businesses. Accepted teams will be announced and training will begin in late February and run through early June, with six free, three-hour training sessions. Advising will be provided to each accepted team. Applicants can apply as a team of up to five persons. Finalists will present to to gudges on May 27, 2026. Last year, $26,000 was awarded in seed money to the top five teams. In-kind prizes were also awarded to all graduating teams including free products, services and memberships, with an estimated in-kind value totaling $147,000. Find more information here.

University of Houston Technology Bridge Innov8 Hub (Spring 2026)

Deadline: Jan . 30

Details: UHTB Innov8 Hub’s immersive, 12-week startup acceleration program designed to help early-stage founders launch and scale their technology startups. Selected participants will gain access to expert mentors and advisors, collaborate with a cohort of peers, and compete for cash prizes during our final pitch event. The cohort begins Feb. 16, 2026. The program culminates in Pitch Day, where participants present their ventures to an audience of investors and partners from across the UH innovation ecosystem. Find more information here.

Rice Business Plan Competition 2026

Deadline: Jan. 31

Details: The Rice Business Plan Competition, hosted by the Rice Alliance for Technology and Entrepreneurship, gives collegiate entrepreneurs real-world experience to pitch their startups, enhance their business strategy and learn what it takes to launch a successful company. Forty-two teams will compete for more than $1 million in cash, investments and prizes on April 9-11, 2026. Find more information here.

Rice Veterans Business Battle 2026

Deadline: Jan. 31

Details: The Rice Veterans Business Battle is one of the nation’s largest pitch competitions for veteran-led startups, providing founders with mentorship, exposure to investors and the opportunity to compete for non-dilutive cash prizes. The event has led to more than $10 million of investments since it began in 2015. Teams will compete April 8-9, 2026. Find more information here.

TEX-E Fellows Application 2026-2027

Deadline: Feb. 10

Details: The TEX‑E Fellowship is a hands-on program designed for students interested in energy, climate, and entrepreneurship across Texas. It connects participants with industry mentors, startup founders, investors and academic leaders while providing practical, "real-world" experience in customer discovery, business modeling, and energy-transition innovation. Fellows gain access to workshops, real-world projects, and a statewide network shaping the future of energy and climate solutions. Participants must be a student at PVAMU, UH, UT Austin, Rice University, MIT or Texas A&M. Find more information here.

2026 Energy Venture Day & Pitch Competition

Deadline: Feb. 13

Details: The Rice Alliance, the Houston Energy Transition Initiative (HETI) and TEX-E will present the annual Energy Venture Day and Pitch Competition during CERAWeek on March 24-25, 2026. Energy Venture Day features two days of presentations by energy tech ventures driving efficiency and advancements toward the energy transition. On March 24, the Pitch Preview at the Ion will feature over 50 companies presenting in front of Rice Alliance's robust network of investors and industry partners. On March 25, the Energy Venture Day and Pitch Competition during CERAWeek will showcase 36 ventures at the George R Brown Convention Center. The pitch competition is divided up into the TEX-E university track, in which Texas student-led energy startups compete for $50,000 in cash prizes, and the industry ventures track. The industry track is subdivided into three additional tracks, spanning materials to clean energy. The top three companies from each industry track will be named. The winner of the CERAWeek competition will also have the chance to advance and compete for the $1 million investment prize at the Startup World Cup. Find more information here.

Greentown Go Make 2026

Deadline: March 10

Details: Greentown Go Make 2026 is an open-innovation program with Shell and Technip Energies. The six-month program is advancing industrial decarbonization by accelerating catalytic innovations. Selected startups will gain access to a structured platform to engage leadership from Shell and Technip Energies and explore potential partnership outcomes, including pilots and demonstrations. They’ll also receive networking opportunities, partnership-focused programming, and marketing visibility throughout the program. The cohort will be selected in May. Find more information here.