Work space

Houston scientist creates a DIY lab concept for flexible and efficient work

The DIY lab, called the eVOLVER, costs $2,000 less than a comparable setup. Photo courtesy of Rice University

Every scientist needs his or her own space, and each discipline calls for different types of tools and space requirements. Caleb Bashor, a professor at Rice University, along with seven colleagues, created a DIY lab to further research efforts based at the university.

Stemming from the need of a more customized study, Bashor and his team created a setup that combines the control of automated cell-culturing systems that can run continuously for months with the scale of high-throughput systems that grow dozens of cultures at once, according to a news release issued by Rice University.

The DIY lab, eVOLVER, comprises three modules: a customizable "smart sleeve" housing and interface for each culture vessel, a fluidic module that controls movement of liquid in and out of each culture vessel, and a modular hardware infrastructure that simplifies high-volume bi-directional data flow by decoupling each parameter into individual microcontrollers.

"The prototype 16-chamber version of eVOLVER described in the new paper cost less than $2,000, cheaper than what a lab might pay for a single continuous culture bioreactor," Bashor says in the release.

Bashor, who has been at the university since 2017, has worked in science for 15 years and received his post doctorate from Massachusetts Institute of Technology, where he met many of his colleagues that collaborated on eVOLVER.

"If you don't have something to do the job in the lab, you go and you build it," says Bashor. "It might take a few rounds of building and rebuilding, but eventually you get around to having it be something that gives you what you want. In this case, it's something a lot of different academic labs want now, we have actually given this out to dozens of labs."

The DIY initiative has made waves throughout the Rice student body, Bashor shares with InnovationMap. One graduate student, Brandon Wong, tasked to help with the project has shared a how-to for the DIY lab online.

"It's a basic research tool, it's exciting," says Bashor. It's something that can be leveraged for a lot of great research projects inside of the university."

Bashor and his team in the bioengineering department support lead cellular and biomolecular engineering research, which led them to create the lab.

"We turned to DIY electronics and we decided to build it ourselves," Bashor tells InnovationMap. "The process took about three years. We had to learn all of the tools that were out there for doing DIY work and a lot of these tools have showed up in the last ten years."

Rice University's department of bioengineering is a member of the Texas Medical Center and hosts interdisciplinary training programs at MD Anderson Cancer Center and Baylor College of Medicine, according to the school's website.

"This is one of the biggest centers in the world for immunotherapy, particularly clinical immunotherapy, and so we're working with people who do immunotherapy using my special engineering techniques, which mostly involve engineering the way that cells behave to try to more effectively kill cancer," says Bashor.

Caleb Bashor and his associates created the lab. Photo courtesy of Rice University

Family firms aren't investing in research and development — but why? Getty Images

Family firms are publicly traded companies in which family members own at least 20 percent of the voting stock, and at least two board members belong to the family. For obvious reasons, the central principals in these firms tend to have a longer view than principals in non-family firms. Yet family firms invest less in research and development (R&D) in technology firms than their non-family counterparts. Since investments in R&D are stakes in the future, why this disparity?

Robert E. Hoskisson, a management professor at Rice Business, joined several colleagues to answer this question. Refining a sociological theory called the behavioral agency model (BAM), the researchers defined family-firm decisions as "mixed gambles" — that is, decisions that could result in either gains or losses.

Because success in high technology relies so much on innovation, it's especially puzzling when such a family owned business underinvests in R&D. So Hoskisson and his colleagues focused on the paradox of family firms in high tech.

According to previous research, family owners weigh both economic and non-economic factors when making business decisions. Hoskisson and his team labeled these non-economic factors socioemotional wealth (SEW). SEW can include family prestige through identifying with and controlling a business, emotional attachment to the firm or the legacy of a multigenerational link to the firm.

That intangible wealth (SEW) explained some of the families' R&D choices. While investment in R&D may lower future financial risk, it can threaten other resources the family holds dear. Expanded R&D spending, for instance, is linked with competitiveness. At the same time, it is associated with less family control. That's because to invest more in R&D, businesses typically need more external capital and expertise. So when a family firm underinvests in R&D, it may in fact be protecting its socioemotional wealth.

To further understand these dynamics, the researchers looked at three factors that they expected would raise families' R&D spending to levels more like non-family counterparts.

The first factor was corporate governance. As predicted, the researchers found that family firms with a higher percentage of institutional investors invested in R&D at levels more like those of non-family firms. The institutional investors naturally prioritized economic benefits far more than the founding family's legacy wealth (SEW).

The researchers also analyzed corporate strategy. Family firms, they found, invested more in R&D when it might be applied to related products or markets. Even families bent on preserving non-economic wealth could be lured by a big economic payoff, and related business are easier to control because they are closer to the family legacy business expertise.

Finally, Hoskisson and his colleagues looked at performance. When a family firm's performance lagged behind that of competitors, they reasoned, the owners would spend more on R&D. A higher percentage of institutional investors, the team theorized, would magnify this effect. Interestingly, the primary data (from 2004 to 2009) failed to support this hypothesis, while an alternative data set (from 1994 to 2002) confirmed it.

Further research, the investigators wrote, could shed useful light on this puzzle. They also encouraged study of how family firms conduct mergers and acquisitions. After all, while families can seem inscrutable from the outside, most run on some kind of economic system. The currency just includes more than money.

------

This story originally ran on Rice Business Wisdom.

Robert E. Hoskisson is the George R. Brown Emeritus Professor of Management at Jones Graduate School of Business at Rice University.