San Jacinto College's new Center for Biotechnology at the Generation Park Campus is expected to be completed early next year. Photo courtesy of San Jacinto College

San Jacinto College and McCord Development Inc. broke ground on the new Center for Biotechnology at the Generation Park Campus in Northeast Houston.

The 4,000-square-foot, state-of-the-art facility is slated to allow for more hands-on training within simulated environments and will allow students to earn associate of applied science degrees in biomanufacturing technology, as well as credentials for those already in the workforce. It's scheduled to be completed in the first quarter of 2025.

“The Center and the overall components of the Biotechnology program will play a vital role in meeting the growing demand for skilled professionals in the biotechnology sector,” Brenda Hellyer, chancellor of San Jacinto College, says in a statement.

“We are committed to equipping our students with the skills and knowledge necessary for success in the dynamic biopharmaceutical industry," she continues. "Our vision is to not only meet the workforce needs of today but will also shape the future of biotechnology education and training in our region.”

San Jacinto College and McCord Development Inc. celebrated the groundbreaking of the new Center for Biotechnology at the Generation Park Campus in Northeast Houston. Photo courtesy of San Jacinto College

The new Center for Biotechnology curriculum is in partnership with the Ireland-based National Institute for Bioprocessing Research and Training. It is the only NIBRT-licensed training in the Southwest and Southeast region.

At the groundbreaking, San Jacinto College celebrated the ribbon-cutting for the Biomanufacturing Training Program at the South Campus, the first of the college's comprehensive biotechnology offerings.

The Biomanufacturing Training Program will be a customizable two-week hybrid program that combines theoretical teachings with hands-on experience.

“This program is designed to provide a seamless entry into the field for new professionals, with a focus on practical experience and exposure to industry practices,” Christopher Wild, executive director of San Jacinto College Center for Biotechnology, added in a statement.

The new center is part of Generation Park, a 4,300-acre master-planned development in Northeast Houston. In late 2022, San Jac and McCord, which is developing Generation Park, shared that they had signed a memorandum of understanding with the NIBRT to launch the program and center.

At the time, San Jacinto College was slated to be the institute’s sixth global partner and second U.S. partner.

Last summer, McCord also revealed plans for its 45-acre biomanufacturing campus at Generation Park.
The Houston Spaceport at Ellington Airport has broken ground, which means San Jacinto College is a step closer to its EDGE Center becoming a reality. Photo courtesy of San Jacinto College

Houston college system prepares for takeoff of its spaceport training system

Breaking ground

The first phase of the Houston Spaceport at Ellington Airport broke ground last month, and that means a lot of things for a lot of entities like the Houston Airport System, the Houston City Council, and the Federal Aviation Administration, to name a few. But, to San Jacinto College, it means being one step closer to its on-site training facility, called the EDGE Center.

The facility will offer four training programs to start provided by San Jacinto College, the official education training partner for the Houston Spaceport. The programs include: composites manufacturing and repair technician, aerospace electrical assembly technician, aerospace structures technician, and mechatronics and industrial automation technician.

Aside from these four initial programs, the college will be able to over customized and individualized training as needed.

"We are excited for this opportunity," says Brenda Hellyer, San Jacinto College chancellor, in a release. "We look forward to creating an educational space that will support and enhance the workforce needs of current and future businesses in the Houston Spaceport. We thank the City of Houston, the Houston Airport System, and the Bay Area Houston Economic Partnership for working with us to make this EDGE Center a reality."

EDGE is just one part of the 154 acres of development currently in the works at Ellington Airport. The full property includes 450 acres that will all eventually be developed.

"Once completed, Phase 1 will stand ready to encourage even more progress to help companies with development of satellite technologies, drone technology, and urban air mobility initiatives," says Houston Airport System Director Mario Diaz in the release. "And beyond technology, it will help develop the talent to drive innovation forward. San Jacinto College is taking steps to open an aerospace workforce training center here, providing a talent pipeline that will help attract companies to Houston."

Houston's commercial spaceport plans were only the 10th to be approved by the FAA — and the only one to be centrally located to a major city (the site is less than 20 minutes from downtown Houston, according to the website). In October, the city council approved the $18.8 million Phase I budget for the project, which will account for developing the infrastructure of the project and, eventually, even coworking and innovation space for aerospace companies, according to a release.


Photo via fly2houston.com

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston space tech startups share latest updates on lunar missions and more

space update

Houston-based space tech companies Axiom Space and Intuitive Machines recently shared updates on innovative projects and missions, each set to launch by 2027.

Axiom Space

Axiom Space, developer of the world’s first commercial space station and other space infrastructure, is gearing up to launch two orbital data center nodes to low-earth orbit by the end of 2025.

The Axiom Space nodes will lay the foundation for space-based cloud computing. Axiom says orbital data centers provide cloud-enabled data storage and processing, artificial intelligence, and machine learning directly to satellites, constellations, and other spacecraft in Earth’s orbit. This innovation will reduce reliance on earth-based systems, enhance wireless mesh networks and improve real-time operation of space-borne assets, according to Axiom.

Axiom has been working on the development of orbital data centers since 2022. The two nodes going into space in 2025 will be part of Kepler Communications’ 10-satellite data relay network, which is scheduled to launch by the end of this year. Axiom Space and Kepler Communications have been collaborating since 2023.

Kam Ghaffarian, co-founder, executive chairman, and CEO of Axiom, says his company already has deals in place with buyers of space-based cloud computing services. Orbital data centers “are integral to Axiom Space’s vision of era-defining space infrastructure, unlocking transformational capabilities and economic growth,” he says.

Axiom Space says it will be able to buy additional payloads on Kepler’s network to boost capacity for orbital data centers. The two companies will team up to provide network and orbital data center services to various customers.

Intuitive Machines

Meanwhile, Intuitive Machines, a space exploration, infrastructure and services company, has picked SpaceX’s Falcon 9 rocket to launch its fourth delivery mission to the moon. The launch will include two lunar data relay satellites for NASA.

Intuitive Machines says its fourth lunar delivery mission is scheduled for 2027. The mission will comprise six NASA commercial lunar payloads, including a European Space Agency drill set designed to search for water at the moon’s south pole.

“Lunar surface delivery and data relay satellites are central to our strategy to commercialize the moon,” Intuitive Machines CEO Steve Altemus says.

The first of five lunar data relay satellites will be included in the company’s third delivery mission to the moon. The fourth mission, featuring two more satellites, will be followed by two other satellite-delivery missions.

Houston doctor aims to revolutionize hearing aid industry with tiny implant

small but mighty

“What is the future of hearing aids?” That’s the question that led to a potential revolution.

“The current hearing aid market and technology is old, and there are little incremental improvements, but really no significant, radical new ideas, and I like to challenge the status quo,” says Dr. Ron Moses, an ENT specialist and surgeon at Houston Methodist.

Moses is the creator of NanoEar, which he calls “the world’s smallest hearing aid.” NanoEar is an implantable device that combines the invisibility of a micro-sized tympanostomy tube with more power—and a superior hearing experience—than the best behind-the-ear hearing aid.

“You put the NanoEar inside of the eardrum in an in-office procedure that takes literally five minutes,” Moses says.

As Moses explains, because of how the human cochlea is formed, its nerves break down over time. It’s simply an inevitability that if we live long enough, we will need hearing aids.

“The question is, ‘Are we going to all be satisfied with what exists?’” he asks.

Moses says that currently, only about 20 percent of patients who need hearing aids have them. That’s because of the combination of the stigma, the expense, and the hassle and discomfort associated with the hearing aids currently available on the market. That leaves 80 percent untapped among a population of 466 million people with hearing impairment, and more to come as our population ages. In a nearly $7 billion global market, that additional 80 percent could mean big money.

Moses initially patented a version of the invention in 2000, but says that it took finding the right team to incorporate as NanoEar. That took place in 2016, when he joined forces with cofounders Michael Moore and Willem Vermaat, now the company’s president and CFO, respectively. Moore is a mechanical engineer, while Vermaat is a “financial guru;” both are repeat entrepreneurs in the biotech space.

Today, NanoEar has nine active patents. The company’s technical advisors include “the genius behind developing the brains in this device,” Chris Salthouse; NASA battery engineer Will West; Dutch physicist and audiologist Joris Dirckx; and Daniel Spitz, a third-generation master watchmaker and the original guitarist for the famed metal band Anthrax.

The NanoEar concept has done proof-of-concept testing on both cadavers at the University of Antwerp and on chinchillas, which are excellent models for human hearing, at Tulane University. As part of the TMC Innovation Institute program in 2017, the NanoEar team met with FDA advisors, who told them that they might be eligible for an expedited pathway to approval.

Thus far, NanoEar has raised about $900,000 to get its nine patents and perform its proof-of-concept experiments. The next step is to build the prototype, but completing it will take $2.75 million of seed funding.

Despite the potential for making global change, Moses has said it’s been challenging to raise funds for his innovation.

“We're hoping to find that group of people or person who may want to hear their children or grandchildren better. They may want to join with others and bring a team of investors to offset that risk, to move this forward, because we already have a world-class team ready to go,” he says.

To that end, NanoEar has partnered with Austin-based Capital Factory to help with their raise. “I have reached out to their entire network and am getting a lot of interest, a lot of interest,” says Moses. “But in the end, of course, we need the money.”

It will likely, quite literally, be a sound investment in the future of how we all hear the next generation.