3D Systems announced its acquisition of Volumetric and its plans to keep operations in Houston. Photo via Jordan Miller/Rice University

Houston-based Volumetric Biotechnologies has gone from startup to nine-figure acquisition in a mere three years.

Volumetric, which makes 3D-printed human organs and tissues, agreed October 27 to be purchased by publicly traded 3D Systems, a Rock Hill, South Carolina-based company that specializes in 3D technology, for as much as $400 million. The cash-and-stock deal, expected to be completed this year, will provide $45 million at closing and up to $355 million if Volumetric reaches certain benchmarks.

"Volumetric is already successful in its space with innovative light-based bioprinting," says Jeffrey Graves, president and CEO of 3D Systems. "This acquisition and integration of Volumetric into the 3D Systems family advances our commitment to health care."

Founded in 2018, Volumetric is a privately held spin-out of Rice University's bioengineering department. Its co-founders are Jordan Miller, the company's president, and Bagrat Grigoryan, the chief operating officer. Volumetric participated in the San Francisco-based accelerator Y Combinator in 2020. Investors include two health care nonprofits, the Methuselah Foundation and Methuselah Fund.

Miller, an associate professor of bioengineering at Rice University, will join 3D Systems as chief scientist for regenerative medicine, and Grigoryan will come aboard as vice president of regenerative medicine.

In conjunction with the acquisition, 3D Systems and business partner United Therapeutics, based in Manchester, New Hampshire, will conduct R&D for organ and tissue manufacturing at Volumetric's 20,000-square-foot facility in Houston's East End Maker Hub. Last December, Volumetric moved its operations to the hub. The startup produces human organs and tissues like the liver, kidney, pancreas, lung, and heart using a combination of human cells and medical-grade plastics.

"The vital organs inside of the human body are the most complicated structures in the known universe," Miller says in a news release. "Just as a vibrant city needs roads, a vital organ needs vasculature. Our work to date at Volumetric has focused on 3D bioprinting the intricate blood vessel architecture that is crucial for the function of these organs."

Grigoryan says manufacturing human organs represents a "transformative opportunity" to combat organ diseases.

"Broadening our team's ability to deliver on the promise of organ therapy is a win for patients and medical care around the world, as well as Volumetric shareholders who believed in our promise from early phase development," Grigoryan says.

Human-tissue printing technology, blockchain networks, health care solutions, game-changing software — all this innovation and more is coming out of Houston startups. Courtesy photos

Editor's Picks: Top 10 Houston startup feature stories of 2019

2019 in review

Thousands of startups call Houston home. According to the Greater Houston Partnership's data, the Houston area added 11,700 firms between 2013 to 2018. And, if you consider Crunchbase's tally, at the end of 2018, Houston had over 1,400 tech startups on the investment tracking website's radar.

This past year, InnovationMap featured profiles on dozens of these Houston startups — from blockchain and software companies to startups with solutions in health care and oil and gas. Here are 10 that stood out throughout 2019.

Topl — a blockchain startup connecting every step of the way

Houston-based Topl can track almost anything using its blockchain technology. Getty Images

For Topl, 2019 was a year of laying the groundwork. In a January 2019 article on InnovationMap, Kim Raath, president of the Houston-based blockchain company, explained that Topl's mission originated out of the fact that 60 percent of the world lives on $10 a day — and it's in the poorest regions of the world where it's the hardest to get funding for a new business.

Raath says that in her experience backpacking and volunteering all around the world she learned that banks are too overwhelmed to evaluate these potential businesses. Topl has created a technology where banks can easily generate a report on these entrepreneurs that evaluates and makes a loan or investment recommendation on the business.

"We are a generation that wants a story," she says. "We want an origin, and don't want to be fooled. And, because you might be able to reduce the cost by having this transparency, you might be able to bring down the cost on both sides."

Later that year, the company closed a 20 percent oversubscribed $700,000 seed round. With the money, Topl will be able to grow its platforms, provide better product features, and increase marketing efforts. Topl's customers are drawn to the technology because of the business efficiency the blockchain adds to their supply chain, but they are also excited about how having this technology differentiates them from their competition. Raath says she's interested in growing Topl's ability to do joint marketing campaigns with their customers.

Incentifind — finding green incentives for commercial and residential building

Natalie Goodman founded Incentifind, which connects home builders and commercial developers with green incentives. Courtesy of Incentifind

When asked about the origin story of IncentiFind — a Houston-based startup that connects real estate developers and home builders with green construction incentives — founder Natalie Goodman doesn't mince words.

"We're a complete accident," Goodman tells InnovationMap in an interview in March. "I'm an architect. We didn't set out to have a startup."

IncentiFind's mission is to increase the amount of green developments and construction projects in the U.S. The company is equipped with a massive database of green incentives that are offered by utility, county, city, state and federal agencies. Many home builders or commercial developers don't take advantage of green incentives because they're simply not aware of them, Goodman says. Commercial developers can expect to spend around $1,500 with IncentiFind, while homeowners can expect to spend between $50 and $150.

Lazarus 3D — 3D printed organs to better train surgeons

Lazarus 3D is using 3D printing to help advance surgeons' skills. Photo via laz3d.com

It's pretty standard for surgeons in training to practice complicated surgeries on produce — slicing bananas open and sewing grapes back together. But for a pair of Baylor College of Medicine-educated doctors, that didn't seem like sufficient prep for working with living bodies; fruit surgery was not fruitful enough. In 2014, Drs. Jacques Zaneveld and Smriti Agrawal Zaneveld founded Lazarus3D to build a better training model — and layer by layer, they created models of abs and ribs and even hearts with a 3D printer.

"We adapted pre-existing 3D printing technology in a novel proprietary way that allows us to, overnight, build soft, silicone or hydrogel models of human anatomy," Jacques, who serves as CEO, tells InnovationMap in July. "They can be treated just like real tissue."

This year, the company grew to seven people and aims to expand even more to add to its sales and manufacturing teams. Having been funded mostly by friends and family investors, Lazarus3D plans enter its first equity round to raise $6 million, InnovationMap reported last summer.

Mental Health Match — connecting people to the right therapists

Ryan Schwartz realized online dating was easier than finding a therapist. He created a tool to change that. Courtesy of Mental Health Match

Nearly five years ago, Ryan Schwartz sat in a coffee shop in crisis mode. His mother had just died suddenly and he was struggling to find an appropriate therapist. Across the table, his friend sat making a profile on a dating app. Quickly, her endeavor was complete and she was ready to swipe right, but Schwartz was still on the hunt for mental help.

"In two minutes she could have a profile matching her with a partner potentially for the rest of her life and I was sitting there for hours and hours trying to find a therapist," he told InnovationMap in June. "I thought it should be easier to find a therapist than a life partner. That's what sent me on my journey."

That journey reached a watershed last month when Schwartz launched Mental Health Match, a website designed to pair patients with their ideal therapist. The idea gained traction as Schwartz described it to people he met and found that many said they had experienced similar difficulties in finding the right practitioner for their needs.

Grab — making ordering food at the airport easier

Houston-based Grab makes it so you're waiting in one less line at the airport. Getty Images

Most airport lines are unavoidable, but a Houston startup has cut out at least some of those lines with its mobile ordering app. Houston-based software company Grab was founded by Mark Bergsrud in 2015, who worked in senior leadership roles for almost 20 years at Continental Airlines and then United Airlines, following the merger. For Bergsrud, Grab feels like another major mobile game changer the industry experienced.

"I spent many years thinking about the travel experience and how to make it better and faster," Bergsrud told InnovationMap in July. "This feels like how mobile check in felt. There was a problem customers didn't know they had — check in wasn't that difficult anyway, but to be able to have that control, people love it."

Grab now has a presence in over 37 airports around the world, including Dallas and Austin though, ironically, not yet either of Houston's airports. Expansion is in the works for Grab, which closed a multimillion-dollar Series A round this year — London-based Collinson Group was the sole contributor.

NurseDash — An app that connects nurses to shifts

Houston-based NurseDash is the Uber of staffing nursing shifts in medical facilities. Photo via nursedash.com

Across the country, medical facilities are short on nurses. Agencies play a role in matchmaking nurses to open shifts, but agencies charge a high percentage for placement and lack transparency, says Andy Chen, former CFO for Nobilis Health Corporation. That's why he and Jakob Kohl created their app, NurseDash in 2017. The project manager for the app is in New York, but official headquarters in Houston's Galleria area, where a staff of five works with the team spread out around the world.

Since its debut, NurseDash has attracted 40 facilities in Houston, InnovationMap reported in May, including hospitals, surgery centers, and senior living, and about 400 nurses. Chen says he isn't sure just what to call his technology yet, but compares it to the ride hailing of Uber or Lyft and calls it "a virtual bulletin board."

Syzygy — hydrogen cells battery to minimize natural gas

Trevor Best, CEO of Syzygy Plasmonics, walked away from EarthX $100,000 richer. Photo via LinkedIn

A Houston technology company is doing something that, for many decades, wasn't thought to be possible. Syzygy Plasmonics is creating a hydrogen fuel cell technology that produces a cheaper source of energy that releases fewer carbon emissions. The hydrogen-fueled technology originated out of research done over two decades by two Rice University professors, Naomi Halas and Peter Nordlander.

Syzygy's technology, CEO Trevor Best told InnovationMap in August, is structured more like a battery than that of a combustion engine. Inside the technology, there are cells, lights, and mirrors making as bright as possible, which then spurs a reaction that creates energy. It has the potential to be cheaper — it's made with cheaper materials — and, of course, cleaner than traditional fueling technology with fewer carbon emissions released.

This new photocatalytic chemical reactor has the potential to shake up the industrial gas, chemical, and energy industries — something that hasn't gone unnoticed by investors. Syzygy just closed a $5.8 million Series A round, and the funds will allow for Syzygy to continue to develop its technology and grow its team. Best tells InnovationMap that he expects to launch a full-size pilot by the end of 2020 and is already in talks with potential clients who are interested in the technology for industrial purposes.

Volumetric — 3D printed human tissue

Houston researchers are commercializing their organ 3D printing technology. Jordan Miller/Rice University

There may come a time when you or someone you love is in need of a new pair of lungs. Or perhaps it's a liver. It's not a scenario anyone dreams of, but thanks to Houston company Volumetric, you may never end up on a waiting list. Instead, that organ is made to order and 3D printed using a mix of medical plastics and human cells.

And this possibility isn't necessarily in the distant future. On the cover of the May 3 issue of the journal Science, is a contraption that looks a bit like a futuristic beehive. It's a working air sac complete with blood vessels, the beginnings of a technology that is perhaps only a decade from being implanted in humans. And it was crafted on a 3D printer in Jordan Miller's lab at Rice University. Miller and his bioengineering graduate student Bagrat Grigoryan are primed to profit from their inventions.

In 2018, they started Volumetric Inc., a company that sells both the hydrogel solutions used for printing organs like theirs and the printers themselves. Touring Miller's lab in the Houston Medical Center is a visual timeline of his team's progress designing printers. The version being manufactured is a slick little number, small enough to fit under chemical exhaust hoods, but fitted with everything necessary to print living tissues. It's made and sold in cooperation with CellInk, a larger bioprinting company.

"Our technology is based on projection," Miller told InnovationMap in May. Specifically, it's stereolithography, a type of 3D printing that produces the finished product layer-by-layer. Shining colored light of the right intensity turns the polymers into a solid gel.

Voyager — Email-less communication tool for maritime shipping

Voyager, a Houston SaaS company, has received fresh funds to develop its bulk shipping software. Tom Fisk/Pexels

Houston software startup Voyager is making waves in its quest to improve efficiency — and stem billions of dollars in losses — in the maritime bulk-shipping business. Now, it's got some fresh capital to help it achieve that mission.

InnovationMap reported in August that Houston-based Voyager revealed it secured $1.5 million in seed funding from four investors from around the world: Austin-based ATX Venture Partners, Houston- and California-based Blue Bear Capital, New York City-based GreenHawk Capital, and Oman-based Phaze Ventures. Previous investors include Boulder, Colorado-based Techstars and Spring-based Knightsgate Ventures.

With its software-as-a-service offering, Voyager aims to modernize the workflows of operators in the maritime bulk-commodities industry. The company says its technology will become more vital as autonomous shipping and internet- and Internet of Things-enabled cargo vessels grow in popularity. Voyager's technology enables all communication tied to a shipment to be handled via its web dashboard and app, essentially creating a one-stop shop for people who need to track messages about maritime bulk shipments.

"With Voyager, what it allows companies to do is essentially have all of those counter parties working together in a shared environment to manage the voyage together — entirely email free," Matthew Costello, CEO, tells InnovationMap in December.

Galen Data — cloud-based platform for connecting medical devices to the internet

Houston-based Galen Data is growing its clientbase and just formed two new partnerships with medical device companies. Photo via galendata.com

Educated as an engineer, Chris DuPont has stepped outside his professional comfort zone to generate funding for his Houston-based startup, Galen Data Inc. DuPont's pool of technical contacts in Houston is "wide and deep," he says, but his pool of financial contacts had been shallow.

Overcoming obstacles in Houston's business waters, DuPont has raised two rounds of angel funding — he declines to say how much — that have enabled Galen Data to develop and market its cloud-based platform for connecting medical devices to the internet, including pacemakers and glucose monitors. DuPont is the startup's co-founder and CEO.

Galen Data's patent-pending technology lets medical device manufacturers tailor the cloud-based software to their unique needs. DuPont says his company's software is geared toward medical devices that are outside, not inside, hospitals and other healthcare facilities. He declines to divulge how many customers the startup has.

Hatched within Houston-based Tietronix Software Inc., DuPont's previous employer, Galen Data launched in 2016 but didn't roll out its first product until 2018. Galen Data's emergence comes as the market for internet-connected mobile health apps keeps growing. One forecast envisions the global space for mobile health exceeding $94 billion by 2023.

"We want to be at the forefront of that technology curve," DuPont tells InnovationMap in May. "We might be six months early, we might be a year early, but it's starting to happen."

Houston researchers are commercializing their organ 3D printing technology. Jordan Miller/Rice University

Houston researchers are commercializing their human tissue-printing technology

3d-printed organs

There may come a time when you or someone you love is in need of a new pair of lungs. Or perhaps it's a liver. It's not a scenario anyone dreams of, but thanks to Houston company Volumetric, you may never end up on a waiting list. Instead, that organ is made to order and 3D printed using a mix of medical plastics and human cells.

And this possibility isn't necessarily in the distant future. On the cover of the May 3 issue of the journal Science, is a contraption that looks a bit like a futuristic beehive. It's a working air sac complete with blood vessels, the beginnings of a technology that is perhaps only a decade from being implanted in humans. And it was crafted on a 3D printer in Jordan Miller's lab at Rice University.

Yes, there are shades of another Houston story — Denton Cooley's implantation of the first artificial heart — but Cooley only inserted the organ. Miller and his bioengineering graduate student Bagrat Grigoryan are primed to profit from their inventions.

In 2018, they started Volumetric Inc., a company that sells both the hydrogel solutions used for printing organs like theirs and the printers themselves. Touring Miller's lab in the Houston Medical Center is a visual timeline of his team's progress designing printers. The version being manufactured is a slick little number, small enough to fit under chemical exhaust hoods, but fitted with everything necessary to print living tissues. It's made and sold in cooperation with CellInk, a larger bioprinting company.

"Our technology is based on projection," Miller explains. Specifically, it's stereolithography, a type of 3D printing that produces the finished product layer-by-layer. Shining colored light of the right intensity turns the polymers into a solid gel.

But why start a company when Miller and Grigoryan are already busy with research?

"If we want to do translational research, commercialization is important," reasons Miller. "We need to build the market to get that technology into the world."

Miller explains that usually the inventor of a technology is the best one to bring it to market.

"When we were building this technology in the lab we saw the potential for commercialization," he recalls. "We do see that this technology is highly scalable. We do think it can have a positive impact on tissue models in a lab."

Those tissue models could one day make not just scientists, but also animal rights activists, very happy. With the technology that Volumetric is developing, scientists could eventually print human cells so well that animal models would be far less accurate in predicting the success that the product being tested would have on humans.

As academics, though, Miller and Grigoryan weren't sure how to start a company. Fortunately, there is the National Science Foundation (NSF) and its I-Corps program. The pair spent a couple of weeks doing a regional program that taught scientists how to commercialize their technology.

"They want to see funded research get out of the lab," Miller says, explaining that they moved on to the national I-Corps program while Miller was on sabbatical from teaching at Rice, allowing them to interview potential customers.

This gave them the confidence to launch last year. Grigoryan now works full-time at the Med Center incubator and accelerator, Johnson & Johnson's JLabs. He has a team of two other scientists on staff.

"It would have been a lot harder to get started if we didn't have a space like JLabs available," Miller says. It also helps, he adds, that JLabs takes no equity, only helping the fledgling brand to finalize its market and get hooked in with potential investors.

Volumetric has its demo units ready to go and expects to start shipping printers in late June, pending final certifications.

"We believe we have technology to make organ replacements for people," Miller says.

And someday soon, long waits for a new set of lungs and a life of antirejection drugs could be a thing of the past.


Rice University bioengineers (from left) Bagrat Grigoryan, Jordan Miller and Daniel Sazer and collaborators created a breakthrough bioprinting technique that could speed development of technology for 3D printing replacement organs and tissues. Photo by Jeff Fitlow/Rice University

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice Alliance and the Ion leader Brad Burke to retire this summer

lasting legacy

Brad Burke—a Rice University associate vice president who leads the Ion District’s Rice Alliance for Technology and Entrepreneurship and is a prominent figure in Houston’s startup community—is retiring this summer after a 25-year career at the university.

Burke will remain at the Rice Alliance as an adviser until his retirement on June 30.

“Brad’s impact on Rice extends far beyond any single program or initiative. He grew the Rice Alliance from a promising campus initiative into one of the most respected university-based entrepreneurship platforms,” Rice President Reginald DesRoches said in a news release.

During Burke’s tenure, the Rice Business School went from unranked in entrepreneurship to The Princeton Review’s No. 1 graduate entrepreneurship program for the past seven years and a top 20 entrepreneurship program in U.S. News & World Report’s rankings for the past 14 years.

“Brad didn’t just build programs — he built an ecosystem, a culture, and a reputation for Rice that now resonates around the world,” said Peter Rodriguez, dean of the business school. “Through his vision and steady leadership, Rice became a place where founders are taken seriously, ideas are rigorously supported, and entrepreneurship is embedded in the fabric of the university.”

One of Burke’s notable achievements at Rice is the creation of the Rice Business Plan Competition. During his tenure, the competition has grown from nine student teams competing for $10,000 into the world’s largest intercollegiate competition for student-led startups. Today, the annual competition welcomes 42 student-led startups that vie for more than $1 million in prizes.

Away from Rice, Burke has played a key role in cultivating entrepreneurship in the energy sector: He helped establish the Energy Tech Venture Forum along with Houston Energy and Climate Startup Week.

Furthermore, Burke co-founded the Texas University Network for Innovation and Entrepreneurship in 2008 to bolster the entrepreneurship programs at every university in Texas. In 2016, the Rice Alliance assumed leadership of the Global Consortium of Entrepreneurship Centers.

In 2023, Burke received the Trailblazer Award at the 2023 Houston Innovation Awards and was recognized by the Deshpande Foundation for his contributions to innovation and entrepreneurship in higher education.

“Working with an amazing team to build the entrepreneurial ecosystem at Rice, in Houston, and beyond has been the privilege of my career,” Burke said in the release. “It has been extremely gratifying to hear entrepreneurs say our efforts changed their lives, while bringing new innovations to market. The organization is well-positioned to help drive exponential growth across startups, investors, and the entrepreneurial ecosystem.”

Starting April 15, John “JR” Reale Jr. will serve as interim associate vice president at Rice and executive director of the Rice Alliance. He is managing director of the alliance and co-founder of Station Houston, beginning April 15. Reale is co-founder of the Station Houston startup hub and a startup investor and was also recently named director for startups and investor engagement for the Ion.

“The Rice Alliance has always been about helping founders gain advantages to realize their visions,” Reale said. “Under Brad’s leadership, the Rice Alliance has become a globally recognized platform that is grounded in trust and drives transformational founder outcomes. My commitment is to honor what Brad has built and led while continuing to serve our team and community, deepen relationships and deliver impact.”

Burke joined the Houston Innovators Podcast back in 2022. Listen to the full interview here.

Houston team uses CPRIT funding to develop nanodrug for cancer immunotherapy

cancer research

With a relative five-year survival rate of 50 percent, pancreatic cancer is a diagnosis nobody wants. At 60 percent, the prognosis for lung cancer isn’t much rosier. That’s because both cancers contain regulatory B cells (Bregs), which block the body’s natural immunity, making it harder to fight the enemies within.

Newly popular immunotherapies in a category known as STING agonists may stimulate natural cancer defenses. However, they can also increase Bregs while simultaneously causing significant side effects. But Wei Gao, assistant professor of pharmacology at the University of Houston College of Pharmacy, may have a solution to that conundrum.

Gao and her team have developed Nano-273, a dual-function drug, packaged in an albumin-based particle, that boosts the immune system to help it better fight pancreatic and lung cancers. Gao’s lab recently received a $900,000 grant from the Cancer Prevention and Research Institute of Texas (CPRIT) to aid in fueling her research into the nanodrug.

“Nano-273 both activates STING and blocks PI3Kγ—a pathway that drives Breg expansion, while albumin nanoparticles help deliver the drug directly to immune cells, reducing unwanted side effects,” Gao said in a press release. “This approach reduces harmful Bregs while boosting immune cells that attack cancer, leading to stronger and more targeted anti-tumor responses.”

In studies using models of both pancreatic and lung cancers, Nano-273 has shown great promise with low toxicity. Its best results thus far have involved using the drug in combination with immunotherapy or chemotherapy.

With the CPRIT funds, Gao and her team will be able to charge closer to clinical use with a series of important steps. Those include continuing to test Nano-273 alongside other drugs, including immune checkpoint inhibitors. Safety studies will follow, but with future patients in mind, Gao will also work toward improving her drug’s production, making sure that it’s safe and high-quality every time, so that it is eventually ready for trials.

Gao added: “If successful, this project could lead to a new type of immunotherapy that offers lasting tumor control and improved survival for patients with pancreatic and lung cancers, two diseases that urgently need better treatments."

Houston booms as No. 2 U.S. metro for new home construction

Construction Boom

Driven by population growth, more residential rooftops are popping up across Houston and the rest of Texas than anywhere else in America.

Using data from the U.S. Census Bureau and Zillow, Construction Coverage found 65,747 new residential units were authorized in greater Houston in 2024. That figure landed Houston in second place among major metro areas for the total number of housing permits, including those for single-family homes, apartments, and condos.

Just ahead of Houston was the Dallas-Fort Worth Metroplex, which took first place with 71,788 residential permits approved in 2024. In third place was the country’s largest metro, New York City (57,929 permits).Elsewhere in Texas, the Austin metro ranked sixth (32,294 permits), and the San Antonio metro ranked 20th (14,857 permits).

Construction Coverage also sorted major metro areas based on the number of new housing units authorized per 1,000 existing homes in 2024. Raleigh, North Carolina, held the No. 1 spot (28.8 permits per 1,000 existing homes), followed by Austin at No. 2 (28.6), DFW at No. 3 (22.2), Houston at No. 4 (21.6), and San Antonio at No. 13 (13.6).

A Newsweek analysis of Census Bureau data shows building permits for 225,756 new residential units were approved in 2024 in Texas — a trend fueled largely by activity in DFW, Houston, Austin, and San Antonio. That put Texas atop the list of states building the most residential units for the year.

Through the first eight months of last year, 145,901 permits for new residential units were approved in Texas, according to Census Bureau data. That’s nearly 80,000 permits shy of the 2024 total.

Among the states, Construction Coverage ranks Texas sixth for the number of residential building permits approved in 2024 per 1,000 existing homes (17.9).

Extra housing is being built in Texas to meet demand spurred by population growth. From April 2020 to July 2024, the state’s population increased 7.3 percent, the Census Bureau says.

While builders are busy constructing new housing in Texas, they’re not necessarily profiting a lot from homebuilding activity.

“Market conditions remain challenging, with two-thirds of builders reporting they are offering incentives to move buyers off the fence,” North Carolina homebuilder Buddy Hughes, chairman of the National Association of Home Builders, said in a December news release. “Meanwhile, builders are contending with rising material and labor prices, as tariffs are having serious repercussions on construction costs.”