research roundup

2 Houston research projects unveil revolutionary solar and battery technologies

Two Houston-area research projects out of local universities have created new, greener technologies. Photo courtesy of Rice University

Research, perhaps now more than ever, is crucial to expanding and growing innovation in Houston — and it's happening across the city right under our noses.

In InnovationMap's latest roundup of research news, two Houston institutions are working on clean energy innovation thanks to new technologies.

Rice University team develops seeds for growing solar energy collectors

Rice engineers discovered a self-assembly method for producing the films from "seeds," submicroscopic pieces of 2D crystals that serve as templates. Photo by Jeff Fitlow/Rice University

Man-made solar panels are continuing to be affixed to rooftops everywhere, but scientists at Rice University have just figured out a way to grow solar energy collectors in a more efficient way than ever before.

3D halide perovskite photovoltaic devices have been developed relatively reliably, but the Rice engineers have created microscopic seeds for growing 2D perovskite crystals that are both stable and highly efficient at harvesting electricity from sunlight, according to a release from Rice.

"We've come up with a method where you can really tailor the properties of the macroscopic films by first tailoring what you put into solution," said study co-author Aditya Mohite, an associate professor of chemical and biomolecular engineering and of materials science and nanoengineering at Rice. "You can arrive at something that is very homogeneous in its size and properties, and that leads to higher efficiency. We got almost state-of-the-art device efficiency for the 2D case of 17%, and that was without optimization. We think we can improve on that in several ways."

The study was published online in Advanced Materials by Mohite and his fellow chemical engineers from Rice's Brown School of Engineering. The seeds can be used to grow homogenous thin films that proved both efficient and reliable, a previously problematic combination for devices made from either 3D or 2D perovskites.

"Homogeneous films are expected to lead to optoelectronic devices with both high efficiency and technologically relevant stability," he says.

The process is more efficient and effective, as well as being cheaper. The Department of Energy's Office of Energy Efficiency and Renewable Energy and the Academic Institute of France and the Office of Naval Research supported the project.

Houston researchers are finding ways to improve EV batteries

Houston researchers are working on a new way to make electric vehicles more commercially viable with enhanced — and cheaper — batteries. Photo via uh.edu

Only a small fraction of vehicles on the road these days are electric — but that's going to change. It's projected that EVs will make up 30 percent of on-road vehicles in 2030. A team of scientists at the University of Houston are focusing on improving EV batteries — a major key in the commercialization of these greener vehicles.

The UH team — Yan Yao, Cullen Professor of electrical and computer engineering at the Cullen College of Engineering at the University of Houston, and UH post doctorate Jibo Zhang — are taking on this challenge with Rice University colleagues — Zhaoyang Chen, Fang Hao, Yanliang Liang of UH, Qing Ai, Tanguy Terlier, Hua Guo and Jun Lou.

In a recently published paper in Joule, the team demonstrated a two-fold improvement in energy density for organic-based, solid state lithium batteries by using a solvent-assisted process to alter the electrode microstructure, according to a news release from UH.

"We are developing low-cost, earth-abundant, cobalt-free organic-based cathode materials for a solid-state battery that will no longer require scarce transition metals found in mines," says Yao in the release. "This research is a step forward in increasing EV battery energy density using this more sustainable alternative."

Yao, who is also Principal Investigator with the Texas Center for Superconductivity at UH, explains that there is increasing concern about the supply chain of lithium-ion batteries in the United States.

"In this work, we show the possibility of building high energy-density lithium batteries by replacing transition metal-based cathodes with organic materials obtained from either an oil refinery or biorefinery, both of which the U.S. has the largest capacity in the world," he goes on to say.

The cost of EV batteries declined to nearly 10 percent of their original cost over the past decade, and innovation and research like this project are only going to make EVs more commercially viable. The research was funded by the US Department of Energy's Office of Energy Efficiency and Renewable Energy as part of the Battery 500 Consortium.

Trending News

Building Houston

 
 

From a low-cost vaccine to an app that can help reduce exposure, here are the latest COVID-focused and Houston-based research projects. Photo via Getty Images

While it might seem like the COVID-19 pandemic has settled down for the time being, there's plenty of innovative research ongoing to create solutions for affordable vaccines and tech-enabled protection against the spread of the virus.

Some of that research is happening right here in Houston. Here are two innovative projects in the works at local institutions.

UH researcher designs app to monitor best times to shop

A UH professor is putting safe shopping at your fingertips. Photo via UH.edu

When is the best time to run an errand in the pandemic era we currently reside? There might be an app for that. Albert Cheng, professor of computer science and electrical and computer engineering at the University of Houston, is working on a real-time COVID-19 infection risk assessment and mitigation system. He presented his plans at the Institute of Electrical and Electronics Engineers conference HPC for Urgent Decision Making and will publish the work in IEEE Xplore.

Cheng's work analyzes up-to-date data from multiple open sources to see when is the best time to avoid crowds and accomplish activities outside the home.

"Preliminary work has been performed to determine the usability of a number of COVID-19 data websites and other websites such as grocery stores and restaurants' popular times and traffic," Cheng says in a UH release. "Other data, such as vaccination rates and cultural factors (for example, the percentage of people willing to wear facial coverings or masks in an area), are also used to determine the best grocery store to shop in within a time frame."

To use the app, a user would input their intended destinations and the farthest distance willing to go, as well as the time frame of the trip. The risk assessment and mitigation system, or RT-CIRAM, then "provides as output the target location and the time interval to reach there that would reduce the chance of infections," said Cheng.

There's a lot to it, says Cheng, and the process is highly reliant on technology.

"We are leveraging urgent high-performance cloud computing, coupled with time-critical scheduling and routing techniques, along with our expertise in real-time embedded systems and cyber-physical systems, machine learning, medical devices, real-time knowledge/rule-based decision systems, formal verification, functional reactive systems, virtualization and intrusion detection," says Cheng.

2 Houston hospitals team up with immunotherapy company for new vaccine for Africa

The new vaccine will hopefully help mitigate spread of the disease in Sub-Saharan Africa. Photo via bcm.edu

Baylor College of Medicine and Texas Children's Hospital have teamed up with ImmunityBio Inc. — a clinical-stage immunotherapy company — under a licensing agreement to develop a safe, effective and affordable COVID-19 vaccine.

BCM has licensed out a recombinant protein COVID-19 vaccine candidate that was developed at the Texas Children's Hospital Center for Vaccine Development to ImmunityBio. According to the release, the company engaged in license negotiations with the BCM Ventures team, about the vaccine that could address the current pandemic needs in South Africa.

"We hope that our COVID-19 vaccine for global health might become an important step towards advancing vaccine development capacity in South Africa, and ultimately for all of Sub-Saharan Africa," says Dr. Peter Hotez, professor and dean of the National School of Tropical Medicine at Baylor and co-director of the Texas Children's Hospital Center for Vaccine Development.

ImmunityBio, which was founded in 2014 by Dr. Patrick Soon-Shiong, is working on innovative immunotherapies that address serious unmet needs in infectious diseases, according to a news release from BCM.

"There is a great need for second-generation vaccines, which are accessible, durable and offer broad protection against the emerging variants," says Soon-Shiong. "ImmunityBio has executed on a heterologous ("mix-and-match") strategy to develop a universal COVID-19 vaccine. To accomplish this, we have embarked upon large-scale good manufacturing practices and development of DNA (adenovirus), RNA (self-amplifying mRNA) and subunit protein (yeast) vaccine platforms. This comprehensive approach will leverage our expertise in these platforms for both infectious disease and cancer therapies."

Trending News